Targeting Epigenetic Regulators for Endometrial Cancer Therapy: Its Molecular Biology and Potential Clinical Applications
Abstract
:1. Introduction
1.1. Endometrial Cancer
1.2. Epigenetics (DNA Methylation, Histone Modification, Non-Coding RNA)
2. Mechanisms of Carcinogenesis and Cancer Progression Involving DNA Methylation in EC
2.1. DNA Methylation
2.2. DNA Methylation and EC
2.3. Diagnosis of Endometrial Cancer Using DNA Methylation
3. Mechanisms of Carcinogenesis and Cancer Progression Involving Histone Modification in EC
3.1. Histone Modification
3.2. Histone Acetylation
3.2.1. Histone Acetyltransferases (HATs)
3.2.2. Histone Deacetylases (HDACs)
3.2.3. Histone Acetylation and EC
3.3. Histone Methylation
3.3.1. Histone Methyltransferases (HMTs)
3.3.2. Histone Demethylases (HDMs)
3.3.3. Histone Methylation and EC
4. Inhibitors Targeting Epigenetic Regulators
4.1. Inhibitors Targeting DNA Methylation
4.2. Inhibitors Targeting Histone Modification
4.2.1. Histone Deacetylase Inhibitors and the Treatment of EC
4.2.2. Inhibitors of Histone Methyltransferases (HMTs) and Histone Demethylases (HDMs) and the Treatment of EC
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Freddie, B.; Jacques, F.; Isabelle, S.; Rebecca, L.S.; Lindsey, A.T.; Ahmedin, J. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar]
- ACS (American Cancer Society). Available online: https://www.cancer.org/cancer/endometrial-cancer/about.html (accessed on 20 December 2020).
- Braun, M.M. Diagnosis and Management of Endometrial Cancer. Rev. Am. Fam. Physician 2016, 93, 468–474. [Google Scholar]
- Douglas, A.L. The Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar]
- Antonio, R.; Antonio, T.; Massimo, M.; Luigi, C.; Maurizio, G.; Luigi, I.; Fulvio, Z. TCGA molecular groups of endometrial cancer: Pooled data about prognosis. Gynecol. Oncol. 2019, 155, 374–383. [Google Scholar]
- Felix, K.F.K.; Damian, S.; Daniel, S.; Mark, K.; Basile, T.C.; Aline, T.; Jessica, N.M.; Kenneth, T.E.C.; Dominik, S.; Stefan, M.P.; et al. TCGA molecular subgroups and FIGO grade in endometrial endometrioid carcinoma. J. Cancer Res. Clin. Oncol. 2020, 146, 97–104. [Google Scholar]
- Jason, D.W.; William, M.B.; Ana, I.T.; June, Y.H.; Yongmei, H.; Jim, C.H.; Grace, C.H.; Cande, V.A.; Alfred, I.N.; Dawn, L.H. Comparative Effectiveness of Minimally Invasive Hysterectomy for Endometrial Cancer. J. Clin. Oncol. 2016, 34, 10. [Google Scholar]
- Stefano, U.; Matteo, B.; Stefano, P.; Francesco, F.; Mario, M.; Marcello, C.; Renato, S.; Annamaria, F.; Roberto, B.; Enrico, V.; et al. Laparoscopic vs. open treatment of endometrial cancer in the elderly and very elderly: An age-stratified multicenter study on 1606 women. Gynecol. Oncol. 2016, 141, 211–217. [Google Scholar]
- Jason, D.W.; Yongmei, H.; William, M.B.; Ana, I.T.; June, Y.H.; Jim, C.H.; Alfred, I.N.; Cande, V.A.; Dawn, L.H. Influence of Lymphadenectomy on Survival for Early-Stage Endometrial Cancer. Obs. Gynecol. 2016, 127, 109–118. [Google Scholar]
- Megan, E. Endometrial Cancer: Obesity, Genetics, and Targeted Agents. Obs. Gynecol. Clin. N. Am. 2019, 46, 89–105. [Google Scholar]
- Dawson, M.A.; Kouzarides, T. Cancer Epigenetics: From Mechanism to Therapy. Cell 2012, 150, 12–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. 2016, 17, 487. [Google Scholar] [CrossRef] [PubMed]
- Kanwala, R.; Gupta, S. Epigenetic modifications in cancer. Clin. Genet. 2012, 81, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Holliday, R. The inheritance of epigenetic defects. Science 1987, 238, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.L. An operational definition of epigenetics. Genes Dev. 2009, 23, 781–783. [Google Scholar] [CrossRef] [Green Version]
- Berdasco, M.; Esteller, M. Clinical epigenetics: Seizing opportunities for translation. Nat. Rev. Genet. 2019, 20, 109–127. [Google Scholar] [CrossRef] [PubMed]
- Roger, D. Twenty-Five Years of the Nucleosome, Review Fundamental Particle of the Eukaryote Chromosome. Cell 1999, 98, 285–294. [Google Scholar]
- Cheng, Y. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 2019, 4, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michael, K.; Deborah, N.; Razi, G.; Howard, C. DNA Methylation in Cancer and Aging. Cancer Res. 2016, 76, 12. [Google Scholar]
- Hamamoto, R. Epigenetics Analysis and Integrated Analysis of Multiomics Data, Including Epigenetic Data, Using Artificial Intelligence in the Era of Precision. Biomolecules 2020, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Schübeler, D. Function and information content of DNA methylation. Nature 2015, 517, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin. Exp. Med. 2018, 18, 1–14. [Google Scholar] [CrossRef]
- Alexander, K.; Sophie, C.J.; Zheng, F.; Tim, C.R.; Muriel, X.D.; Muriel, X.D.; Veerle, M.; Kim, M.S.; Jurgen, V.; James, G.H.; et al. Analysis of DNA methylation in cancer: Location revisited. Nat. Rev. Clin. Oncol. 2018, 15, 459–466. [Google Scholar]
- Herman, J.G.; Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 2003, 349, 2042–2054. [Google Scholar] [CrossRef] [PubMed]
- Ranjani, L.; Gangning, L. The Role of DNA Methylation in Cancer. Adv. Exp. Med. Biol. 2016, 945, 151–172. [Google Scholar]
- Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 2002, 3, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.J. Epigenetics and Precision Oncology. Cancer J. 2017, 23, 262–269. [Google Scholar] [CrossRef]
- Teixeira, S.R. Direct monitoring of breast and endometrial cancer cell epigenetic response to DNA methyltransferase and histone deacetylase inhibitors. Biosens. Bioelectron. 2019, 141, 111386. [Google Scholar] [CrossRef]
- Meng, H.T.; Freudenheim, J.L. DNA methylation in endometrial cancer. Epigenetics 2010, 5, 491–498. [Google Scholar]
- Caplakova, V. DNA Methylation Machinery in the Endometrium and Endometrial Cancer. Anticancer Res. 2016, 36, 4407–4420. [Google Scholar] [CrossRef] [Green Version]
- Stampoliou, A. Epigenetic mechanisms in endometrial cancer. JBUON 2016, 21, 301–306. [Google Scholar] [PubMed]
- Jiang, S.-W. Application of DNA methylation biomarkers for endometrial cancer management. Expert Rev. Mol. Diagn. 2008, 8, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Makabe, T. Genome-wide DNA methylation profile of early-onset endometrial cancer: Its correlation with genetic aberrations and comparison with late-onset endometrial cancer. Carcinogenesis 2019, 40, 611–623. [Google Scholar] [CrossRef]
- Xiong, Y. Opposite alterations of DNA methyltransferase gene expression in endometrioid and serous endometrial cancers. Gynecol. Oncol. 2005, 96, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Siu, M.K.; Chan, K.Y.; Wong, E.S.; Ngan, H.Y.; Chan, Q.K.; Li, A.S.; Khoo, U.; Cheung, A.N. Hypermethylation of RAS effector related genes and DNA methyltrans-ferase 1 expression in endometrial carcinogenesis. Int. J. Cancer 2008, 123, 296–302. [Google Scholar] [CrossRef]
- Zhou, X.C.; Dowdy, S.C.; Podratz, K.C.; Jiang, S. Epigenetic considerations for endometrial cancer prevention, diagnosis and treatment. Gynecol. Oncol. 2007, 107, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Gao, X. Epigenetic Modifications and Carcinogenesis of Human Endometrial Cancer. Austin J. Clin. Pathol. 2014, 1, 1014. [Google Scholar]
- Lasabova, Z.; Danko, J. Hypermethylation of selected genes in endometrial carcinogenesis. Neuro Endocrinol. Lett. 2013, 34, 675–680. [Google Scholar]
- Chang, L.; Chang, M.; Chang, H.M.; Chang, F. Expending Role of Microsatellite Instability in Diagnosis and Treatment of Colorectal Cancers. J. Gastrointest. Cancer 2017, 48, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Talukdar, S.; Mullany, A.S.; Winterhoff, B. Molecular characterization of endometrial cancer and therapeutic implications. Curr. Opin. Obs. Gynecol. 2019, 1, 24–30. [Google Scholar] [CrossRef]
- Peterson, L.M. Molecular characterization of endometrial cancer: A correlative study assessing microsatellite instability, MLH1 hypermethylation, DNA mismatch repair protein expression, and PTEN, PIK3CA, KRAS, and BRAF mutation analysis. Int. J. Gynecol. Pathol. 2012, 31, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Paul, J. Combined Microsatellite Instability, MLH1 Methylation Analysis, and Immunohistochemistry for Lynch Syndrome Screening in Endometrial Cancers From GOG210: An NRG Oncology and Gynecologic Oncology Group Study. J. Clin. Oncol. 2015, 33, 4301–4308. [Google Scholar]
- Virginia, A.G.; Yasmine, T.; Helen, M.W.; Nicholas, R.L. Mechanisms of PTEN loss in cancer: It’s all about diversity. Semin. Cancer Biol. 2019, 59, 66–79. [Google Scholar]
- Karlijn, M.C.; Kim, W.; Koen, K.; Anneke, A.M.; Manon, E.; Roy, F.P.; Johanna, M.A. Gene Promoter Methylation in Endometrial Carcinogenesis. Pathol. Oncol. Res. 2019, 25, 659–667. [Google Scholar]
- Esteller, M. Epigenetic lesions causing genetic lesions in human cancer promoter hypermethylation of DNA repair genes. Eur. J. Cancer 2000, 36, 2294–2300. [Google Scholar] [CrossRef]
- Noel, P.; Anthicha, K.; Chetana, R.; Hamdi, J.; Denise, M.C.; Caio, P.B.; Bianca, B. Potential of RASSF1A promoter methylation as biomarker for endometrial cancer: A systematic review and meta-analysis. Gynecol. Oncol. 2017, 146, 603–608. [Google Scholar]
- Kang, S.; Kim, J.W.; Kang, G.H.; Lee, S.; Park, N.H.; Song, Y.S.; Park, S.Y.; Kang, S.B.; Lee, H.P. Comparison of DNA hypermethylation patterns in different types of uterine cancer: Cervical squamous cell carcinoma, cervical adenocarcinoma. Int. J. Cancer 2006, 118, 2168–2171. [Google Scholar] [CrossRef]
- Fialkova, V. DNA methylation as mechanism of apoptotic resistance development in endometrial cancer patients. Gen. Physiol. Biophys. 2017, 36, 521–529. [Google Scholar] [CrossRef]
- Anne, G. Progesterone and endometrial cancer. Best Pr. Res. Clin. Obs. Gynaecol. 2020, 69, 95–107. [Google Scholar]
- Fang, S.; Gao, Y.; Ding, J.; Chen, Q. Is the positivity of estrogen receptor or progesterone receptor different between type 1 and type 2 endometrial cancer? Oncotarget 2017, 8, 506–511. [Google Scholar]
- Yang, S.; Jia, Y.; Liu, X. Systematic dissection of the mechanisms underlying progesterone receptor downregulation in endometrial cancer. Oncotarget 2014, 5, 9783–9797. [Google Scholar] [CrossRef] [Green Version]
- Yu, F. The diagnostic role of DNA methylation in sporadic endometrial cancer: A systematic review and meta-analysis. Oncotarget 2018, 9, 8642–8652. [Google Scholar]
- Sone, K.; Eguchi, S.; Asada, K.; Inoue, F.; Miyamoto, Y.; Tanikawa, M.; Tsuruga, T.; Mori, M.; Matsumoto, Y.; Hiraike, O.; et al. Usefulness of biopsy by office hysteroscopy for endometrial cancer: A case report. Mol. Clin. Oncol. 2020, 13, 141–145. [Google Scholar] [CrossRef]
- Hoque, M.O.; Begum, S.; Topaloglu, O.; Jeronimo, C.; Mambo, E.; Westra, W.H.; Califano, J.A.; Sidransky, D. Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res. 2004, 64, 5511–5557. [Google Scholar] [CrossRef]
- Fiegl, H. Methylated DNA collected by tampons—A new tool to detect endometrial cancer. Cancer Epidemiol. Biomark. Prev. 2004, 13, 882–888. [Google Scholar]
- Jamie, N. Detection of Endometrial Cancer via Molecular Analysis of DNA Collected with Vaginal Tampons. Gynecol. Oncol. 2015, 137, 14–22. [Google Scholar]
- Sangtani, A. Combining copy number, methylation markers, and mutations as a panel for endometrial cancer detection via intravaginal tampon collection. Gynecol. Oncol. 2020, 156, 387–392. [Google Scholar] [CrossRef]
- Liew, P.L.; Huang, R.L.; Wu, T.I. Combined genetic mutations and DNA-methylated genes as biomarkers for endometrial cancer detection from cervical scrapings. Clin. Epigenet. 2019, 11, 170. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Hou, J.; Cui, X.H.; Suo, L.N.; Lv, Y.W. RG108 induces the apoptosis of endometrial cancer Ishikawa cell lines by inhibiting the expression of DNMT3B and demethylation of HMLH1. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5056–5064. [Google Scholar]
- Nagashima, M.; Miwa, N.; Hirasawa, H.; Katagiri, Y.; Takamatsu, K.; Morita, M. Genome-wide DNA methylation analysis in obese women predicts an epigenetic signature for future endometrial cancer. Sci. Rep. 2019, 9, 6469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Audia, J.E. Histone Modifications and Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019521. [Google Scholar] [CrossRef]
- Jingchun, Q. Histone Modifications and their Role in Colorectal Cancer (Review). Pathol. Oncol. Res. 2020, 26, 2023–2033. [Google Scholar]
- Fraga, M.F.; Ballestar, E.; Garea, A.V.; Chornet, M.B.; Espada, J.; Schotta, G.; Bonaldi, T.; Haydon, C.; Ropero, S.; Petrie, K.; et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 2005, 37, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Weichert, W. Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia 2008, 10, 1021–1027. [Google Scholar] [CrossRef] [Green Version]
- Allfrey, V.; Faulkner, R.; Mirsky, A. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 1964, 51, 786–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gujral, P. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod. Biol. Endocrinol. 2020, 18, 84. [Google Scholar] [CrossRef]
- Marmorstein, R. Writers and readers of histone acetylation: Structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 2014, 6, a018762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and coregulates major cellular functions. Science 2009, 325, 834–840. [Google Scholar] [CrossRef] [Green Version]
- Ropero, S.; Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 2007, 1, 19–25. [Google Scholar] [CrossRef]
- Seto, E.; Yoshida, M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 2014, 6, a018713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ruijter, A.J. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J. 2003, 370, 737–749. [Google Scholar] [CrossRef]
- Yi, W. Histone acetyltransferase MOF is involved in suppression of endometrial cancer and maintenance of ERa stability. Biochem. Biophys. Res. Commun. 2019, 509, 541–548. [Google Scholar]
- Fakhry, H. Immunohistochemical detection of histone deacetylases in endometrial carcinoma: Involvement of histone deacetylase 2 in the proliferation of endometrial carcinoma cells. Hum. Pathol. 2010, 41, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Ren, J. HDAC as a therapeutic target for treatment of endometrial cancers. Curr. Pharm. Des. 2014, 20, 1847–1856. [Google Scholar] [CrossRef]
- Fukuda, T. Putative tumor suppression function of SIRT6 in endometrial cancer. FEBS Lett. 2015, 589, 2274–2281. [Google Scholar] [CrossRef] [Green Version]
- Bartosch, C. Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium. Oncotarget 2016, 7, 1144–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyer, S. Sirtuin1 expression and survival in endometrial and clear-cell uterine cancer. Histochem. Cell Biol. 2020, 154, 189–195. [Google Scholar] [CrossRef]
- Barski, A. High-resolution profiling of histone methylations in the human genome. Cell 2007, 129, 823–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husmann, D.; Gozani, O. Histone lysine methyltransferases in biology and disease. Nat. Struct. Mol. Biol. 2019, 26, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Yanzhong, Y.; Bedford, M.T. Protein arginine methyltransferases and cancer. Nat. Rev. Cancer 2013, 13, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Bingsheng, C. JMJD6 is a histone arginine demethylase. Science 2007, 318, 444–447. [Google Scholar]
- Shi, Y.; Lan, F. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004, 119, 941–953. [Google Scholar] [CrossRef] [Green Version]
- Nagasawa, S. LSD1 overexpression is associated with poor prognosis in basal-like breast cancer, and sensitivity to PARP inhibition. PLoS ONE 2015, 13, e0118002. [Google Scholar] [CrossRef]
- Kashyap, V. The lysine specific demethylase-1 (LSD1/KDM1A) regulates VEGF-A expression in prostate cancer. Mol. Oncol. 2013, 7, 555–566. [Google Scholar] [CrossRef]
- Chen, C.; Ge, J.; Lu, Q.; Ping, G.; Yang, C.; Fang, X. Expression of lysine-specific demethylase 1 in human epithelial ovarian cancer. J. Ovarian Res. 2015, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Qing, L. The expression and significance of histone lysine methylation in endometrial cancer. Oncol. Lett. 2017, 14, 6210–6216. [Google Scholar]
- Krilla, L. Overexpression of enhance of Zeste homolog 2 (EZH2) in endometrial carcinoma: An NRG Oncology/Gynecologic Oncology Group Study. Gynecol. Oncol. 2020, 156, 423–429. [Google Scholar] [CrossRef]
- Oki, S.; Kenbun, S.; Oda, K.; Hamamoto, R.; Ikemura, M.; Maeda, D.; Takeuchi, M.; Tanikawa, M.; Mori, M.; Nagasaka, K.; et al. Oncogenic histone methyltransferase EZH2: A novel prognostic marker with therapeutic potential in endometrial cancer. Oncotarget 2017, 8, 40402–40411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, S.-M. The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer. Ann. Surg. Oncol. 2015, 22, 1556–1565. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M. Overexpression of MMSET in endometrial cancer: A clinicopathologic study. J. Surg. Oncol. 2013, 107, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N. PRMT6 promotes endometrial cancer via AKT/mTOR signaling and indicates poor prognosis. Int. J. Biochem. Cell Biol. 2020, 120, 105681. [Google Scholar] [CrossRef]
- Liu, Y.D. Overexpression of Lysine-Specific Demethylase 1 Is Associated With Tumor Progression and Unfavorable Prognosis in Chinese Patients With Endometrioid Endometrial Adenocarcinoma. Int. J. Gynecol. Cancer 2015, 8, 1453–1460. [Google Scholar] [CrossRef]
- Theisen, E.R. Reversible inhibition of lysine specific demethylase 1 is a novel anti-tumor strategy for poorly differentiated endometrial carcinoma. BMC Cancer 2014, 14, 752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C. LSD1 sustains estrogen-driven endometrial carcinoma cell proliferation through the PI3K/AKT pathway via di-demethylating H3K9 of cyclin D1. Int. J. Oncol. 2017, 50, 942–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, K. ASH2L is involved in promotion of endometrial cancer progression via upregulation of PAX2 transcription. Cancer Sci. 2020, 111, 2062–2077. [Google Scholar] [CrossRef]
- Alfonso, D.G.; Jose, L.; Alma, C.B.; Guadalupe, D.G.; Eli, F.G. Developmental DNA methyltransferase inhibitors in the treatment of gynecologic cancers. Expert Opin. Pharmacother. 2016, 17, 323–338. [Google Scholar]
- Liao, Y.M.; Song, Y.; Li, Y.K.; Du, J.H.; Zhou, Y. SOX17, β-catenin and CyclinD1 expression in the endometrioid adenocarcinoma and influence of 5-AZA on expression. Cancer Gene Ther. 2020, 27, 256–263. [Google Scholar] [CrossRef]
- Cui, M.; Wen, Z.; Yang, Z.; Chen, J.; Wang, F. Estrogen regulates DNA methyltransferase 3B expression in Ishikawa endometrial adenocarcinoma cells. Mol. Biol. Rep. 2009, 36, 2201–2207. [Google Scholar] [CrossRef]
- Xiong, Y.; Dowdy, S.C.; Podratz, K.C.; Jin, F.; Attewell, J.R.; Eberhardt, N.L.; Jiang, S.W. Histone Deacetylase Inhibitors Decrease DNA Methyltransferase-3B Messenger RNA Stability and Down-regulate De novo DNA Methyltransferase Activity in Human Endometrial Cells. Cancer Res. 2005, 65, 2684–2689. [Google Scholar] [CrossRef] [Green Version]
- Xu, S. Cytostatic and apoptotic effects of DNMT and HDAC inhibitors in endometrial cancer cells. Curr. Pharm. Des. 2014, 20, 1881–1887. [Google Scholar] [CrossRef]
- Yi, T.-Z. DNMT inhibitors and HDAC inhibitors regulate E-cadherin and Bcl-2 expression in endometrial carcinoma in vitro and in vivo. Chemotherapy 2012, 58, 19–29. [Google Scholar] [CrossRef]
- Garmpis, N. Targeting histone deacetylases in endometrial cancer: A paradigm-shifting therapeutic strategy? Eur. Rev. Med. Pharm. Sci. 2018, 22, 950–960. [Google Scholar]
- Eckschlager, T. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 2017, 18, 1414. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N. Preclinical studies on histone deacetylase inhibitors as therapeutic reagents for endometrial and ovarian cancers. Future Oncol. 2011, 7, 1415–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu-Hong, L. Histone deacetylase inhibitor, Romidepsin (FK228) inhibits endometrial cancer cell growth through augmentation of p53-p21 pathway. Biomed. Pharmacother. 2016, 86, 161–166. [Google Scholar]
- Takai, N.; Ueda, T.; Nishida, M.; Nasu, K.; Nakahara, H. Anticancer activity of MS-275, a novel histone deacetylase inhibitor, against human endometrial cancer cells. Anticancer Res. 2006, 26, 939–945. [Google Scholar]
- Dowdy, S.C.; Jiang, S.; Zhou, X.C.; Hou, X.; Jin, F.; Podratz, K.C.; Jiang, S.W. Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol. Cancer Ther. 2006, 5, 2767–2776. [Google Scholar] [CrossRef] [Green Version]
- Takai, N.; Desmond, J.C.; Kumagai, T.; Gui, D.; Said, J.W.; Whittaker, S.; Miyakawa, I.; Koeffler, H.P. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin. Cancer Res. 2004, 10, 1141–1149. [Google Scholar] [CrossRef] [Green Version]
- Yoshioka, T.; Yogosawa, S.; Yamada, T.; Kitawaki, J.; Sakai, T. Combination of a novel HDAC inhibitor OBP-801/YM753 and a PI3K inhibitor LY294002 synergistically induces apoptosis in human endometrial carcinoma cells due to increase of Bim with accumulation of ROS. Gynecol. Oncol. 2013, 129, 425–432. [Google Scholar] [CrossRef]
- Tamar, K.; Yichen, J.; Donghai, D.; Xiangbing, M.; Kristina, W.T.; Kimberly, K.L.; Yang, S. Inverse Relationship between Progesterone Receptor and Myc in Endometrial Cancer. PLoS ONE 2016, 11, e0148912. [Google Scholar]
- Sarfstein, R.; Bruchim, I.; Fishman, A.; Werner, H. The Mechanism of Action of the Histone Deacetylase Inhibitor Vorinostat Involves Interaction with the Insulin- Like Growth Factor Signaling Pathway. PLoS ONE 2011, 6, e24468. [Google Scholar] [CrossRef] [Green Version]
- Umasankar, D.; Ji, Y.S.; Richa, S.; Park, Y.J.; Kang, D.; Yoon, K.; Lee, B.M.; Kim, I.S.; Moon, H.R.; Kim, H.S. A New Synthetic Histone Deacetylase Inhibitor, MHY2256, Induces Apoptosis and Autophagy Cell Death in Endometrial Cancer Cells via p53 Acetylation. Int. J. Mol. Sci. 2018, 19, 2743. [Google Scholar]
- Ihira, K.; Peixin, D.; Xiong, Y.; Watari, H.; Konno, Y.; Hanley, S.J.; Noguchi, M.; Hirata, N.; Suizu, F.; Yamada, T.; et al. EZH2 inhibition suppresses endometrial cancer progression via miR-361/Twist axis. Oncotarget 2017, 8, 13509–13520. [Google Scholar] [CrossRef] [PubMed]
- Ramez, N.E.; Tao, J.; Be, H.; Rooba, W.; Leslie, M.; Randall, B.; Bang, H. Inhibition of Enhancer of Zeste Homolog 2 (EZH2) Expression Is Associated With Decreased Tumor Cell Proliferation, Migration, and Invasion in Endometrial Cancer Cell Lines. Int. J. Gynecol. Cancer 2013, 23, 997–1005. [Google Scholar]
Enzyme | Endometrial Cancer |
---|---|
DNMT1 | DNMT1 is overexpressed in type I EC, although it is downregulated in type II EC [34,35]. |
DNMT2 | |
DNMT3A | |
DNMT3B | DNMT3B is overexpressed in type I EC, although it is downregulated in type II EC [34,35]. DNMT3B inhibition promotes demethylation of hMLH1, inducing apoptosis [59]. |
DNMT3L |
Enzyme | Synonym | Endometrial Cancer | |
---|---|---|---|
Histone acetyltransferases (HATs): writers | |||
GNAT family | GCN5 | KAT2A | |
PCAF | KAT2B | ||
MYST family | MOZ | MYST3, KAT6A | |
MOF | MYST1, KAT8 | MOF regulates ERα function as a tumor suppressor in EC [72]. | |
TIP60 | HTATIP, KAT5 | ||
HBO1 | MYST2, KAT7 | ||
p300/CBP family | p300 | EP300, KAT3B | |
CBP | CREBBP, KAT3A | ||
Histone deacetylases (HDACs): erasers | |||
Class I HDACs | HDAC1 | The expression levels of HDAC1, 2, and 3 are higher in EC compared to that in normal endometrium, and these have been associated with poor prognosis [64,73]. | |
HDAC2 | |||
HDAC3 | |||
HDAC8 | |||
Class II HDACs | HDAC4 | ||
HDAC5 | |||
HDAC6 | |||
HDAC7 | |||
HDAC9 | |||
HDAC10 | |||
Class III HDACs | SIRT1 | The expression levels of SIRT1, 2, 4, and 5 are downregulated in EC [76]. SIRT1 expression is higher in endometrioid carcinoma (type I EC) than in clear cell carcinoma (type II EC). High SIRT1 expression in patients with EC is associated with better prognosis [77]. | |
SIRT2 | |||
SIRT3 | |||
SIRT4 | |||
SIRT5 | |||
SIRT6 | SIRT6 is downregulated in EC, inducing apoptosis by repressing survivin [75]. | ||
SIRT7 | SIRT7 is overexpressed in EC [76]. | ||
Class IV HDACs | HDAC11 |
Substrate | Enzyme | Synonym | Endometrial Cancer |
---|---|---|---|
Lysine methyltransferases (KMTs) | |||
H3K4 | SETD1A | KMT2F | |
SETD1B | KMT2G | ||
MLL1 | KMT2A | ||
MLL2 | KMT2B | ||
MLL3 | KMT2C | ||
MLL4 | KMT2D | ||
SETD7 | KMT7, SET7, SET7/9 | ||
PRDM9 | PFM6 | ||
H3K9 | SUV39H1 | KMT1A | |
SUV39H2 | KMT1B | ||
SETDB1 | KMT1E | ||
G9A | EHMT2, KMT1C | EHMT2 is overexpressed in EC and is correlated with deep myometrial invasion and cell proliferation. EHMT2 inhibition induces apoptosis [80,81,82,83,84,85,86,87,88,89]. | |
GLP | EHMT1 | ||
H3K36 | SETD2 | KMT3A, SET2 | |
NSD1 | KMT3B, ARA267 | ||
NSD2 | KMT3G, WHSC1, MMSET | NSD2 is overexpressed in EC and is associated with poor prognosis. NSD1 expression is correlated with clinicopathologic grade of the disease [90]. | |
NSD3 | KMT3F, WHSC1L1 | ||
ASH1L | KMT2H, ASH1 | ||
H3K79 | DOT1L | KMT4 | |
H4K20 | SET8 | KMT5A, SETD8 | |
SUV420H1 | KMT5B | ||
SUV420H2 | KMT5C | ||
H3K27 | EZH1 | KMT6B, KIA0388 | |
EZH2 | KMT6, KMT6A | EZH2 is overexpressed in EC compared to normal endometrium and is associated with poor prognosis [87,88]. |
Type | Products | Enzyme | Endometrial Cancer |
---|---|---|---|
Protein arginine methyltransferases (PRMTs) | |||
type I PRMTs | asymmetric dimethylarginine (ADMA) | PRMT1 | |
PRMT2 | |||
PRMT3 | |||
PRMT4/CARM1 | |||
PRMT6 | Overexpression of PRMT6 is associated with poor prognosis via AKT/mTOR pathway [91]. | ||
PRMT8 | |||
type II PRMTs | symmetric dimethylarginine (SDMA) | PRMT5 | |
PRMT7 | |||
type III PRMT | monomethylarginine (MMA) | PRMT7 | |
PRMT9 has not yet been classified. |
Enzyme | Synonym | Endometrial Cancer | |
---|---|---|---|
LSD (KDM1) | LSD1 | KDM1A | LSD1 is overexpressed in EC and is associated with cell proliferation [92,93,94]. LSD1 expression is correlated with poor prognosis, involving the PIK3K/AKT pathway through demethylation of H3K9me2 at the cyclin D1 promoter [94]. |
LSD2 | KDM1B | ||
JHDM1 (KDM2) | JHDM1A | KDM2A | |
JHDM1B | KDM2B | ||
JHDM2 (JMJD1, KDM3) | JHDM2A | KDM3A | |
JHDM2C | KDM3C | ||
JHMD3 (JMJD2, KDM4) | JHDM3A | KDM4A | |
JMJD2B | KDM4B | ||
JARID (KDM5) | JARID1A | KDM5A | |
JARID1B | KDM5B | ||
PHF (KDM7) | JHDM1F | KDM7B | |
UT (KDM6) | UTX | KDM6A | |
JMJD3 | KDM6B |
NCT03018249 | |
---|---|
Condition | FIGO Grade 1 endometrial endometrioid adenocarcinoma FIGO Grade 2 endometrial endometrioid adenocarcinoma FIGO Grade 3 endometrial endometrioid adenocarcinoma |
Design | HDAC inhibitor, Entinostat (MS-275) + medroxyprogesterone acetate |
Phase | I |
Sample size | 50 |
Recruitment status | Active, not recruiting |
First Posted Date | 12 January 2017 |
NCT04611139 | |
Condition | small cell ovarian cancer of the hypercalcemic type ovarian clear cell tumor ovarian endometrioid adenocarcinoma endometrial cancer |
Design | LSD inhibitor, Seclidemstat (SP-2577) + PD-1 antibody, Pembrolizumab |
Phase | I |
Sample size | 30 |
Recruitment status | Not yet recruiting |
First Posted Date | 2 November 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inoue, F.; Sone, K.; Toyohara, Y.; Takahashi, Y.; Kukita, A.; Hara, A.; Taguchi, A.; Tanikawa, M.; Tsuruga, T.; Osuga, Y. Targeting Epigenetic Regulators for Endometrial Cancer Therapy: Its Molecular Biology and Potential Clinical Applications. Int. J. Mol. Sci. 2021, 22, 2305. https://doi.org/10.3390/ijms22052305
Inoue F, Sone K, Toyohara Y, Takahashi Y, Kukita A, Hara A, Taguchi A, Tanikawa M, Tsuruga T, Osuga Y. Targeting Epigenetic Regulators for Endometrial Cancer Therapy: Its Molecular Biology and Potential Clinical Applications. International Journal of Molecular Sciences. 2021; 22(5):2305. https://doi.org/10.3390/ijms22052305
Chicago/Turabian StyleInoue, Futaba, Kenbun Sone, Yusuke Toyohara, Yu Takahashi, Asako Kukita, Aki Hara, Ayumi Taguchi, Michihiro Tanikawa, Tetsushi Tsuruga, and Yutaka Osuga. 2021. "Targeting Epigenetic Regulators for Endometrial Cancer Therapy: Its Molecular Biology and Potential Clinical Applications" International Journal of Molecular Sciences 22, no. 5: 2305. https://doi.org/10.3390/ijms22052305
APA StyleInoue, F., Sone, K., Toyohara, Y., Takahashi, Y., Kukita, A., Hara, A., Taguchi, A., Tanikawa, M., Tsuruga, T., & Osuga, Y. (2021). Targeting Epigenetic Regulators for Endometrial Cancer Therapy: Its Molecular Biology and Potential Clinical Applications. International Journal of Molecular Sciences, 22(5), 2305. https://doi.org/10.3390/ijms22052305