Synthesis and Anticancer Activity of Mitotic-Specific 3,4-Dihydropyridine-2(1H)-thiones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Dihydropyridine-2-thiones S1-S22
2.2. The Antiproliferative Activity
2.3. Selectivity-Index
2.4. Apoptosis Detection
2.5. Cell Cycle Analysis
2.6. Impact on Mitotic Spindle Formation
2.7. Tubulin Polymerization in Cells and Cell-Free Conditions
2.8. Colchicine-Binding Site Study
3. Conclusions
4. Materials and Methods
4.1. Experimental Part
4.2. Synthesis of Compounds S1-S22
4.3. Purification Conditions and Spectroscopic Data
4.4. Cell Culture
4.5. Antiproliferative Activity
4.6. Selectivity-Index
4.7. Apoptosis Detection
4.8. Cell Cycle Analysis
4.9. Confocal Microscopy Imaging
4.10. Cell Free Tubulin Polymerization Assay
4.11. Cell-Based Tubulin Polymerization Assay
4.12. Colchicine Binding-Site Assay
4.13. Molecular Docking
4.14. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Synthesis of Precursors of Compounds S1-S22
Synthesis and Spectroscopic Data of Compounds 1-8
Appendix A.2. Synthesis and Spectroscopic Data of Compounds O1, O8-12, O18-22
Appendix A.3. Synthesis and Spectroscopic Data of N-alkylated O2, O3, O7, O13-17
References
- Wood, K.W.; Cornwell, W.D.; Jackson, J.R. Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol. 2001, 1, 370–377. [Google Scholar] [CrossRef]
- Liu, Y.M.; Chen, H.L.; Lee, H.Y.; Liou, J.P. Tubulin inhibitors: A patent review. Expert Opin. Ther. Pat. 2014, 24, 69–88. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.S.; Koh, C.G.; Li, H.Y. Mitosis-targeted anti-cancer therapies: Where they stand. Cell Death Dis. 2012, 3, e411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.T.; Liu, Y.N.; Liu, Z.P. Tubulin colchicine binding site inhibitors as vascular disrupting agents in clinical developments. Curr. Med. Chem. 2015, 22, 1348–1360. [Google Scholar] [CrossRef]
- Finkelstein, Y.; Aks, S.E.; Hutson, J.R.; Juurlink, D.N.; Nguyen, P.; Dubnov-Raz, G.; Pollak, U.; Koren, G.; Bentur, Y. Colchicine poisoning: The dark side of an ancient drug. Clin. Toxicol. (Phila) 2010, 48, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 2012, 29, 2943–2971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriques, A.C.; Ribeiro, D.; Pedrosa, J.; Sarmento, B.; Silva, P.M.A.; Bousbaa, H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett. 2019, 440–441, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Penna, L.S.; Henriques, J.A.P.; Bonatto, D. Anti-mitotic agents: Are they emerging molecules for cancer treatment? Pharmacol. Ther. 2017, 173, 67–82. [Google Scholar] [CrossRef]
- Perużyńska, M.; Piotrowska, K.; Tkacz, M.; Kurzawski, M.; Struk, Ł.; Borzyszkowska, A.; Idzik, T.J.; Sośnicki, J.G.; Droździk, M. Comparative evaluation of new dihydropyrimidine and dihydropyridine derivatives perturbing mitotic spindle formation. Future Med. Chem. 2018, 10, 2395–2410. [Google Scholar] [CrossRef]
- Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box. Molecules 2015, 20, 16852–16891. [Google Scholar] [CrossRef] [PubMed]
- Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999, 286, 971–974. [Google Scholar] [CrossRef] [Green Version]
- DeBonis, S.; Simorre, J.P.; Crevel, I.; Lebeau, L.; Skoufias, D.A.; Blangy, A.; Ebel, C.; Gans, P.; Cross, R.; Hackney, D.D.; et al. Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. Biochemistry 2003, 42, 338–349. [Google Scholar] [CrossRef] [Green Version]
- El-Nassan, H.B. Advances in the discovery of kinesin spindle protein (Eg5) inhibitors as antitumor agents. Eur. J. Med. Chem. 2013, 62, 614–631. [Google Scholar] [CrossRef]
- Prashantha Kumar, B.R.; Masih, P.; Karthikeyan, E.; Bansal, A.; Suja Vijayan, P. Synthesis of novel Hantzsch dihydropyridines and Biginelli dihydropyrimidynes of biological interest: A 3D-QSAR study on their cytotoxicity. Med. Chem. Res. 2010, 19, 344–363. [Google Scholar] [CrossRef]
- Sośnicki, G.J.; Idzik, T.; Borzyszkowska, A.; Wróblewski, E.; Maciejewska, G.; Struk, Ł. Addition of novel benzylmagnesium “ate” complexes of BnR2MgLi type to 2-(thio)pyridones and related compounds. Tetrahedron 2017, 73, 481–493. [Google Scholar]
- McLoughlin, E.C.; O’Boyle, N.M. Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals (Basel) 2020, 13, 8. [Google Scholar] [CrossRef] [Green Version]
- Sośnicki, J.G.; Struk, Ł.; Kurzawski, M.; Perużyńska, M.; Maciejewska, G.; Droździk, M. Regioselective synthesis of novel 4,5-diaryl functionalized 3,4-dihydropyrimidine-2(1H)-thiones via a non-Biginelli-type approach and evaluation of their in vitro anticancer activity. Org. Biomol. Chem. 2014, 12, 3427–3440. [Google Scholar] [CrossRef] [Green Version]
- Ghose, A.K.; Pritchett, A.; Crippen, G.M. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships III: Modeling hydrophobic interactions. J. Comput. Chem. 1988, 9, 80. [Google Scholar] [CrossRef]
- Hafez, H.N.; Alsalamah, S.A.; El-Gazzar, A.B.A. Synthesis of thiophene and N-substituted thieno[3,2-d] pyrimidine derivatives as potent antitumor and antibacterial agents. Acta Pharm. 2017, 67, 275–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, F.A.; Pereira, M.C.; de Oliveira, T.B.; Mendonça Junior, F.J.B.; de Lima, M.D.C.A.; Pitta, M.G.D.R.; Pitta, I.D.R.; de Melo Rêgo, M.J.B.; da Rocha Pitta, M.G. Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells. Anticancer Drugs. 2018, 29, 157–166. [Google Scholar] [CrossRef]
- Gulipalli, K.C.; Bodige, S.; Ravula, P.; Endoori, S.; Vanaja, G.R.; Suresh Babu, G.; Narendra Sharath Chandra, J.N.; Seelam, N. Design, synthesis, in silico and in vitro evaluation of thiophene derivatives: A potent tyrosine phosphatase 1B inhibitor and anticancer activity. Bioorg. Med. Chem. Lett. 2017, 27, 3558–3564. [Google Scholar] [CrossRef]
- Romagnoli, R.; Kimatrai Salvador, M.; Schiaffino Ortega, S.; Baraldi, P.G.; Oliva, P.; Baraldi, S.; Lopez-Cara, L.C.; Brancale, A.; Ferla, S.; Hamel, E.; et al. 2-Alkoxycarbonyl-3-arylamino-5-substituted thiophenes as a novel class of antimicrotubule agents: Design, synthesis, cell growth and tubulin polymerization inhibition. Eur. J. Med. Chem. 2018, 143, 683–698. [Google Scholar] [CrossRef]
- Romagnoli, R.; Baraldi, P.G.; Kimatrai Salvador, M.; Preti, D.; Aghazadeh Tabrizi, M.; Bassetto, M.; Brancale, A.; Hamel, E.; Castagliuolo, I.; Bortolozzi, R.; et al. Synthesis and biological evaluation of 2-(alkoxycarbonyl)-3-anilinobenzo[b]thiophenes and thieno[2,3-b]pyridines as new potent anticancer agents. J. Med. Chem. 2013, 56, 2606–2618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hura, N.; Sawant, A.V.; Kumari, A.; Guchhait, S.K.; Panda, D. Combretastatin-Inspired Heterocycles as Antitubulin Anticancer Agents. ACS Omega. 2018, 3, 9754–9769. [Google Scholar] [CrossRef] [PubMed]
- Do Amaral, D.N.; Cavalcanti, B.C.; Bezerra, D.P.; Ferreira, P.M.; Castro Rde, P.; Sabino, J.R.; Machado, C.M.; Chammas, R.; Pessoa, C.; Sant’Anna, C.M.; et al. Docking, synthesis and antiproliferative activity of N-acylhydrazone derivatives designed as combretastatin A4 analogues. PLoS ONE 2014, 9, e85380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blay, J.Y.; Pápai, Z.; Tolcher, A.W.; Italiano, A.; Cupissol, D.; López-Pousa, A.; Chawla, S.P.; Bompas, E.; Babovic, N.; Penel, N.; et al. Ombrabulin plus cisplatin versus placebo plus cisplatin in patients with advanced soft-tissue sarcomas after failure of anthracycline and ifosfamide chemotherapy: A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2015, 16, 531–540. [Google Scholar] [CrossRef]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, Post-Treatment Recovery, and Selectivity Analysis of Naturally Occurring Podophyllotoxins from Bursera fagaroides var. fagaroides on Breast Cancer Cell Lines. Molecules 2016, 21, 1013. [Google Scholar] [CrossRef]
- Darzynkiewicz, Z.; Gloria Juan, G.; Bedner, E. Determining Cell Cycle Stages by Flow Cytometry. Curr. Protoc. Cell Biol. 2001, 1, 8.4.1–8.4.18. [Google Scholar] [CrossRef]
- Kajstura, M.; Halicka, H.D.; Pryjma, J.; Darzynkiewicz, Z. Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete “sub-G1” peaks on DNA content histograms. Cytom. A 2007, 71, 125–131. [Google Scholar] [CrossRef]
- Fankhauser, G.; Humphrey, R.R. The Rare Occurrence of Mitosis Without Spindle Apparatus (“Colchicine Mitosis”) Producing Endopolyploidy in Embryos of the Axolotl. Proc. Natl. Acad. Sci. USA 1952, 38, 1073–1082. [Google Scholar] [CrossRef] [Green Version]
- Gilson, P.; Josa-Prado, F.; Beauvineau, C.; Naud-Martin, D.; Vanwonterghem, L.; Mahuteau-Betzer, F.; Moreno, A.; Falson, P.; Lafanechère, L.; Frachet, V.; et al. Identification of pyrrolopyrimidine derivative PP-13 as a novel microtubule-destabilizing agent with promising anticancer properties. Sci. Rep. 2017, 7, 10209. [Google Scholar] [CrossRef] [Green Version]
- Romagnoli, R.; Baraldi, P.G.; Cara, C.L.; Hamel, E.; Basso, G.; Bortolozzi, R.; Viola, G. Synthesis and biological evaluation of 2-(3′,4′,5′-trimethoxybenzoyl)-3-aryl/arylaminobenzo[b]thiophene derivatives as a novel class of antiproliferative agents. Eur. J. Med. Chem. 2010, 45, 5781–5791. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, B.; Panda, D.; Gupta, S.; Banerjee, M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med. Res. Rev. 2008, 28, 155–183. [Google Scholar] [CrossRef] [PubMed]
- Ogden, A.; Rida, P.C.; Reid, M.D.; Aneja, R. Interphase microtubules: Chief casualties in the war on cancer? Drug Discov. Today. 2014, 19, 824–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyama, T.; Wilson, D.M., 3rd. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst.) 2013, 12, 620–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaunky, D.B.; Husser, M.; Larocque, K.; Liu, P.; Thampipillai, S.; Forgione, P.; Piekny, A.J. A novel compound that disrupts mitotic spindle poles in human cells. bioRxiv 2020. [Google Scholar] [CrossRef]
- Zhu, C.; Zhao, J.; Bibikova, M.; Leverson, J.D.; Bossy-Wetzel, E.; Fan, J.B.; Abraham, R.T.; Jiang, W. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol. Biol. Cell. 2005, 16, 3187–3199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, A.; Bechi, B.; Tighe, A.; Thompson, S.; Procter, D.J.; Taylor, S.S. Cenp-E inhibitor GSK923295: Novel synthetic route and use as a tool to generate aneuploidy. Oncotarget 2015, 6, 20921–20932. [Google Scholar] [CrossRef] [Green Version]
- Blank, M.; Shiloh, Y. Programs for cell death: Apoptosis is only one way to go. Cell Cycle 2007, 6, 686–695. [Google Scholar] [CrossRef]
- Castedo, M.; Perfettini, J.L.; Roumier, T.; Andreau, K.; Medema, R.; Kroemer, G. Cell death by mitotic catastrophe: A molecular definition. Oncogene 2004, 23, 2825–2837. [Google Scholar] [CrossRef] [Green Version]
- Kanthou, C.; Greco, O.; Stratford, A.; Cook, I.; Knight, R.; Benzakour, O.; Tozer, G. The tubulin-binding agent combretastatin A-4-phosphate arrests endothelial cells in mitosis and induces mitotic cell death. Am. J. Pathol. 2004, 165, 1401–1411. [Google Scholar] [CrossRef]
- Vitale, I.; Antoccia, A.; Cenciarelli, C.; Crateri, P.; Meschini, S.; Arancia, G.; Pisano, C.; Tanzarella, C. Combretastatin CA-4 and combretastatin derivative induce mitotic catastrophe dependent on spindle checkpoint and caspase-3 activation in non-small cell lung cancer cells. Apoptosis 2007, 12, 155–166. [Google Scholar] [CrossRef]
- Risinger, A.L.; Giles, F.J.; Mooberry, S.L. Microtubule dynamics as a target in oncology. Cancer Treat. Rev. 2009, 35, 255–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, A.; Shaik, B.; Nayak, V.L.; Nagaraju, B.; Kapure, J.S.; Shaheer Malik, M.; Shaik, T.B.; Prasad, B. Synthesis and biological evaluation of 1,2,3-triazole linked aminocombretastatin conjugates as mitochondrial mediated apoptosis inducers. Bioorg. Med. Chem. 2014, 22, 5155–5167. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Fornabaio, M.; Kellogg, G.E.; Gupton, J.T.; Gewirtz, D.A.; Yeudall, W.A.; Vega, N.E.; Mooberry, S.L. Docking and hydropathic scoring of polysubstituted pyrrole compounds with antitubulin activity. Bioorg. Med. Chem. 2008, 16, 2235–2242. [Google Scholar] [CrossRef] [Green Version]
- Da, C.; Telang, N.; Hall, K.; Kluball, E.; Barelli, P.; Finzel, K.; Jia, X.; Gupton, J.T.; Mooberry, S.L.; Kellogg, G.E. Developing novel C-4 analogues of pyrrole-based antitubulin agents: Weak but critical hydrogen bonding in the colchicine site. Medchemcomm 2013, 4, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.L.; McGrath, C.; Hermone, A.R.; Burnett, J.C.; Zaharevitz, D.W.; Day, B.W.; Wipf, P.; Hamel, E.; Gussio, R. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J. Med. Chem. 2005, 48, 6107–6116. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Gigant, B.; Yu, Y.; Wu, Y.; Chen, X.; Lai, Q.; Yang, Z.; Chen, Q.; Yang, J. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. FEBS J. 2016, 283, 102–111. [Google Scholar] [CrossRef]
- Russowsky, D.; Canto, R.F.; Sanches, S.A.; D’Oca, M.G.; de Fátima, A.; Pilli, R.A.; Kohn, L.K.; Antônio, M.A.; de Carvalho, J.E. Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: Monastrol, oxo-monastrol and oxygenated analogues. Bioorg. Chem. 2006, 34, 173–182. [Google Scholar] [CrossRef]
- Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Rath, O.; Kozielski, F. Kinesins and cancer. Nat. Rev. Cancer. 2012, 12, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Daire, V.; Poüs, C. Kinesins and protein kinases: Key players in the regulation of microtubule dynamics and organization. Arch. Biochem. Biophys. 2011, 510, 83–92. [Google Scholar] [CrossRef]
- Park, H.; Hong, S.; Hong, S. Nocodazole is a high-affinity ligand for the cancer-related kinases ABL, c-KIT, BRAF, and MEK. ChemMedChem 2012, 7, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Frezzato, F.; Trimarco, V.; Martini, V.; Gattazzo, C.; Ave, E.; Visentin, A.; Cabrelle, A.; Olivieri, V.; Zambello, R.; Facco, M.; et al. Leukaemic cells from chronic lymphocytic leukaemia patients undergo apoptosis following microtubule depolymerization and Lyn inhibition by nocodazole. Br. J. Haematol. 2014, 165, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Ravanbakhsh, S.; Gajewski, M.; Greiner, R.; Tuszynski, J.A. Determination of the optimal tubulin isotype target as a method for the development of individualized cancer chemotherapy. Theor. Biol. Med. Model. 2013, 10, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, C.A.; Walker, C.C.; Neal, D.A.; Harper, C.E.; Bloodgood, R.A.; Somers, K.D.; Mills, S.E.; Rebhun, L.I.; Levine, P.A. Beta-tubulin epitope expression in normal and malignant epithelial cells. Arch. Otolaryngol. Head Neck Surg. 1990, 116, 583–589. [Google Scholar] [CrossRef]
- Blagosklonny, M.V.; Giannakakou, P.; el-Deiry, W.S.; Kingston, D.G.; Higgs, P.I.; Neckers, L.; Fojo, T. Raf-1/bcl-2 phosphorylation: A step from microtubule damage to cell death. Cancer Res. 1997, 57, 130–135. [Google Scholar]
- Sung, M.; Giannakakou, P. BRCA1 regulates microtubule dynamics and taxane-induced apoptotic cell signaling. Oncogene 2014, 33, 1418–1428. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ni, Q.; Bao, F.; Qiu, J. A simple and efficient protocol for a palladium-catalyzed ligand-free Suzuki reaction at room temperature in aqueous DMF. Green Chem. 2011, 13, 1260–1266. [Google Scholar] [CrossRef]
- Sośnicki, J.G.; Struk, Ł.; Idzik, T.; Maciejewska, G. Scope and limitations of the synthesis of functionalized quinolizidi-nones and related compounds by a simple precursor approach via addition of lithium allylmagnesates to 2-pyridones and RCM as key steps. Tetrahedron 2014, 70, 8624–8635. [Google Scholar] [CrossRef]
- Tan, X.; Zhou, Z.J.; Zhang, J.X.; Duan, X.H. Efficient One-Pot Cross-Coupling of Two Aryl Halides by Stannylation/Stille Reaction in Water under Microwave Irradiation. Eur. J. Org. Chem. 2014, 24, 5153–5157. [Google Scholar] [CrossRef]
- Markovic, T.; Rocke, B.N.; Blakemore, D.C.; Mascitti, V.; Willis, M.C. Pyridine sulfinates as general nucleophilic cou-pling partners in palladium-catalyzed cross-coupling reactions with aryl halides. Chem. Sci. 2017, 8, 4437–4442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spada, A.P.; Myers, M.R.; Maguire, M.P.; Persons, P.E. Bis Mono- and Bicyclic Aryl and Heteroaryl Compounds Which Inhibit EGF and/or PDGF Receptor Tyrosine Kinase. U.S. Patent Grant US-5480883-A, 2 January 1996. [Google Scholar]
- Bolliger, J.L.; Frech, C.M. [Pd(Cl)2{P(NC5H10)(C6H11)2}2]—A Highly Effective and Extremely Versatile Palladi-um-Based Negishi Catalyst that Efficiently and Reliably Operates at Low Catalyst Loadings. Chem.—Eur. J. 2010, 16, 11072–11081. [Google Scholar] [CrossRef] [PubMed]
- Duong, A.H.; Wu, W.; Teo, Y.-Y. Cobalt-Catalyzed Cross-Coupling Reactions of Arylboronic Esters and Aryl Halides. Organometallics 2017, 36, 4363–4366. [Google Scholar] [CrossRef]
- Parry, P.R.; Wang, C.; Batsanov, A.S.; Bryce, M.R.; Tarbit, B. Functionalized Pyridylboronic Acids and Their Su-zuki Cross-Coupling Reactions To Yield Novel Heteroarylpyridines. J. Org. Chem. 2002, 67, 7541–7543. [Google Scholar] [CrossRef]
- Struk, Ł.; Sośnicki, J.G. Noncryogenic Synthesis of Functionalized 2-Methoxypyridines by Halogen-Magnesium Exchange Using Lithium Dibutyl (isopropyl) magnesate (1-) and Lithium Chloride. Synthesis 2012, 44, 735–746. [Google Scholar]
- Church, R.; Trust, R.; Albright, J.D.; Powell, D. New Synthetic Routes to 3-, 5-, and 6-Aryl-2-chloropyridines. J. Org. Chem. 1995, 60, 3750–3758. [Google Scholar] [CrossRef]
- Idzik, T.J.; Borzyszkowska-Ledwig, A.; Struk, Ł.; Sośnicki, J.G. Magnesiate-Utilized/Benzyne-Mediated Approach to Indenopyridones from 2-Pyridones: An Attempt To Synthesize the Indenopyridine Core of Haouamine. Org. Lett. 2019, 21, 9667–9671. [Google Scholar] [CrossRef]
- Idzik, T.J.; Myk, Z.M.; Sośnicki, J.G. Diversity-Oriented Synthesis toward Fused and Bridged Benzobicyclic Piperidin(on)es. J. Org. Chem. 2019, 84, 8046–8066. [Google Scholar] [CrossRef]
- Krasovskiy, A.; Knochel, P. Convenient Titration Method for Organometallic Zinc, Magnesium, and Lanthanide-Reagents. Synthesis 2006, 5, 890–891. [Google Scholar]
Compounds | MCF7 | A375 | HT-29 | SK-OV3 | PC-3 | LogP 1 |
---|---|---|---|---|---|---|
S1 | 18.02 ± 9.01 | 4.33 ± 1.00 | 39.22 ± 17.59 | 6.75 ± 2.88 | 50.66 ± 0.61 | 3.86 |
S2 | 70.03 ± 7.30 | 12.55 ± 2.16 | 89.46 ± 9.78 | 18.06 ± 4.31 | >100 | 4.10 |
S3 | 84.87 ± 0.01 | 53.89 ± 16.80 | >100 | 68.94 ± 14.18 | >100 | 4.91 |
S4 | >100 | >100 | >100 | >100 | >100 | 5.88 |
S5 | >100 | >100 | >100 | >100 | >100 | 2.49 |
S6 | 99.08 ± 0.92 | 97.51 ± 0.86 | >100 | 74.71 ± 1.58 | ≥100 | 4.09 |
S7 | 74.22 ± 15.44 | 82.82 ± 9.99 | >100 | 54.95 ± 20.42 | ≥100 | 4.45 |
S8 | 34.18 ± 2.86 | 22.44 ± 1.79 | 46.61 ± 4.88 | 34.68 ± 15.00 | 48.57 ± 1.22 | 4.00 |
S9 | 45.81 ± 3.4 | 24.38 ± 4.79 | 51.57 ± 2.95 | 51.01 ± 1.21 | 48.41 ± 3.26 | 4.13 |
S10 | 34.25 ± 8.07 | 17.41 ± 2.00 | 40.38 ± 12.25 | 31.62 ± 14.33 | 40.28 ± 8.47 | 4.37 |
S11 | 40.06 ± 16.45 | 8.33 ± 2.02 | 42.44 ± 6.37 | 14.39 ± 2.5 | 50.50 ± 6.82 | 3.60 |
S12 | 57.77 ± 9.94 | 53.94 ± 7.29 | 53.31 ± 4.48 | 61.66 ± 11.94 | 37.46 ± 11.53 | 3.35 |
S13 | >100 | 41.89 ± 9.18 | >100 | 42.93 ± 3.25 | >100 | 4.24 |
S14 | >100 | >100 | >100 | >100 | >100 | 4.38 |
S15 | >100 | >100 | >100 | >100 | >100 | 4.62 |
S16 | >100 | 18.83 ± 3.93 | >100 | 38.71 ± 12.79 | >100 | 3.85 |
S17 | >100 | >100 | >100 | >100 | 53.31 ± 28.82 | 3.60 |
S18 | 24.45 ± 5.3 | 10.18 ± 1.52 | 27.66 ± 2.88 | 30.32 ± 8.81 | 23.07 ± 8.93 | 4.10 |
S19 | 20.15 ± 2.14 | 3.70 ± 1.26 | 21.33 ± 3.45 | 13.40 ± 3.26 | 31.47 ± 13.98 | 3.60 |
S20 | 35.90 ± 9.69 | 9.91 ± 3.29 | 55.46 ± 5.21 | 39.57 ± 7.73 | 57.60 ± 1.08 | 5.54 |
S21 | 40.48 ± 14.95 | 10.89 ± 2.69 | >100 | 15.86 ± 5.94 | 72.66 ± 8.73 | 4.86 |
S22 | 44.86 ± 17.1 | 1.71 ± 0.58 | 16.54 ± 6.86 | 1.67 ± 1.47 | 20.91 ± 2.13 | 3.15 |
CA-4 | 0.008 ± 0.003 | 0.002 ± 0.001 | >10 | 0.005 ± 0.001 | 0.004 ± 0.004 | 3.38 |
Compounds | A375 | HEM | SI 1 |
---|---|---|---|
S1 | 4.33 ± 1.00 | 28.80 ± 7.77 | 6.65 |
S19 | 3.70 ± 1.26 | 33.95 ± 0.33 | 9.18 |
S22 | 1.71 ± 0.58 | 36.11 ± 4.03 | 21.09 |
CA-4 | 0.002 ± 0.001 | 0.001 ± 0.0004 | 0.57 |
Compounds | IC50 1 |
---|---|
S1 | 10.77 ± 3.83 |
S19 | 17.38 ± 10.00 |
S22 | 26.82 ± 15.21 |
CA-4 [44] | 1.08 ± 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perużyńska, M.; Borzyszkowska-Ledwig, A.; Sośnicki, J.G.; Struk, Ł.; Idzik, T.J.; Maciejewska, G.; Skalski, Ł.; Piotrowska, K.; Łukasik, P.; Droździk, M.; et al. Synthesis and Anticancer Activity of Mitotic-Specific 3,4-Dihydropyridine-2(1H)-thiones. Int. J. Mol. Sci. 2021, 22, 2462. https://doi.org/10.3390/ijms22052462
Perużyńska M, Borzyszkowska-Ledwig A, Sośnicki JG, Struk Ł, Idzik TJ, Maciejewska G, Skalski Ł, Piotrowska K, Łukasik P, Droździk M, et al. Synthesis and Anticancer Activity of Mitotic-Specific 3,4-Dihydropyridine-2(1H)-thiones. International Journal of Molecular Sciences. 2021; 22(5):2462. https://doi.org/10.3390/ijms22052462
Chicago/Turabian StylePerużyńska, Magdalena, Aleksandra Borzyszkowska-Ledwig, Jacek G. Sośnicki, Łukasz Struk, Tomasz J. Idzik, Gabriela Maciejewska, Łukasz Skalski, Katarzyna Piotrowska, Paweł Łukasik, Marek Droździk, and et al. 2021. "Synthesis and Anticancer Activity of Mitotic-Specific 3,4-Dihydropyridine-2(1H)-thiones" International Journal of Molecular Sciences 22, no. 5: 2462. https://doi.org/10.3390/ijms22052462
APA StylePerużyńska, M., Borzyszkowska-Ledwig, A., Sośnicki, J. G., Struk, Ł., Idzik, T. J., Maciejewska, G., Skalski, Ł., Piotrowska, K., Łukasik, P., Droździk, M., & Kurzawski, M. (2021). Synthesis and Anticancer Activity of Mitotic-Specific 3,4-Dihydropyridine-2(1H)-thiones. International Journal of Molecular Sciences, 22(5), 2462. https://doi.org/10.3390/ijms22052462