An Integrated Bioinformatics Study of a Novel Niclosamide Derivative, NSC765689, a Potential GSK3β/β-Catenin/STAT3/CD44 Suppressor with Anti-Glioblastoma Properties
Abstract
:1. Introduction
2. Results
2.1. NSC765689 Successfully Meets Required Drug-Likeness Criteria
2.2. NSC765689 Exhibits Similar Anticancer Fingerprint with NCI Synthetic Compounds and Standard Agents
2.3. GSK3β/β-Catenin/STAT3/CD44 Are Potential Druggable Candidates for NSC765689
2.4. Increased GSK3β/β-Catenin/STAT3 Expressions Are Associated with Poor Prognoses
2.5. Increased Expressions of the GSK3β/β-Catenin/STAT3/CD44 Signatures and Reduced miR-135b Are Associated with Poor Prognoses of GBM Patients
2.6. In Silico Molecular Docking Showed Putative Binding of NSC765689 with GSK3β/β-Catenin/STAT3/CD44
2.7. NSC765689 Exhibits Cytotoxic Activities Obtained from Single High-Dose Testing of 60 Human Cancer Cell Lines (NCI)
2.8. NSC765689 Exhibits Dose-Dependent Anticancer Activities against NCI-60 Human Cancer Cell Lines
3. Discussion
4. Materials and Methods
4.1. Pharmacokinetics, Drug-Likeness, and Medicinal Chemical Analyses
4.2. Bioinformatics Predictions
4.3. In Silico Molecular Docking Analyses
4.4. In Vitro Screening Of NSC765689 against the Full NCI-60 Cell Panels of Human Tumor Cell Lines
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serrano-Garrido, O.; Peris-Torres, C.; Redondo-Garcia, S.; Asenjo, H.G.; Plaza-Calonge, M.D.C.; Fernandez-Luna, J.L.; Rodriguez-Manzaneque, J.C. ADAMTS1 Supports Endothelial Plasticity of Glioblastoma Cells with Relevance for Glioma Progression. Biomolecules 2020, 11, 44. [Google Scholar] [CrossRef]
- Weller, M.; van den Bent, M.; Tonn, J.C.; Stupp, R.; Preusser, M.; Cohen-Jonathan-Moyal, E.; Henriksson, R.; Le Rhun, E.; Balana, C.; Chinot, O.; et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017, 18, e315–e329. [Google Scholar] [CrossRef] [Green Version]
- Da Hora, C.C.; Schweiger, M.W.; Wurdinger, T.; Tannous, B.A. Patient-Derived Glioma Models: From Patients to Dish to Animals. Cells 2019, 8, 1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef]
- Desland, F.A.; Hormigo, A. The CNS and the Brain Tumor Microenvironment: Implications for Glioblastoma Immunotherapy. Int. J. Mol. Sci. 2020, 21, 7358. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [Green Version]
- Piperi, C.; Papavassiliou, K.A.; Papavassiliou, A.G. Pivotal Role of STAT3 in Shaping Glioblastoma Immune Microenvironment. Cells 2019, 8, 1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quail, D.F.; Joyce, J.A. The Microenvironmental Landscape of Brain Tumors. Cancer Cell 2017, 31, 326–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Truffi, M.; Mazzucchelli, S.; Bonizzi, A.; Sorrentino, L.; Allevi, R.; Vanna, R.; Morasso, C.; Corsi, F. Nano-Strategies to Target Breast Cancer-Associated Fibroblasts: Rearranging the Tumor Microenvironment to Achieve Antitumor Efficacy. Int. J. Mol. Sci. 2019, 20, 1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galdieri, L.; Jash, A.; Malkova, O.; Mao, D.D.; DeSouza, P.A.; Chu, Y.E.; Salter, A.; Campian, J.L.; Naegle, K.M.; Brennan, C.W.; et al. Defining phenotypic and functional heterogeneity of glioblastoma stem cells by mass cytometry. JCI Insight 2021, 6, 128456. [Google Scholar] [CrossRef] [PubMed]
- Son, M.J.; Woolard, K.; Nam, D.H.; Lee, J.; Fine, H.A. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 2009, 4, 440–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirkse, A.; Golebiewska, A.; Buder, T.; Nazarov, P.V.; Muller, A.; Poovathingal, S.; Brons, N.H.C.; Leite, S.; Sauvageot, N.; Sarkisjan, D.; et al. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat. Commun. 2019, 10, 1787. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Lal, B.; Tung, B.; Wang, S.; Goodwin, C.R.; Laterra, J. Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro Oncol. 2016, 18, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Moon, R.T.; Kohn, A.D.; De Ferrari, G.V.; Kaykas, A. WNT and beta-catenin signalling: Diseases and therapies. Nat. Rev. Genet. 2004, 5, 691–701. [Google Scholar] [CrossRef]
- Nager, M.; Bhardwaj, D.; Cantí, C.; Medina, L.; Nogués, P.; Herreros, J. β-Catenin Signalling in Glioblastoma Multiforme and Glioma-Initiating Cells. Chemother. Res. Pract. 2012, 2012, 192362. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Watari, K.; Shibata, T.; Miyamoto, T.; Murakami, Y.; Nakahara, Y.; Izumi, H.; Wakimoto, H.; Kuwano, M.; Abe, T.; et al. Bidirectional Regulation between NDRG1 and GSK3β Controls Tumor Growth and Is Targeted by Differentiation Inducing Factor-1 in Glioblastoma. Cancer Res. 2020, 80, 234–248. [Google Scholar] [CrossRef]
- Xiao, S.; Yang, Z.; Lv, R.; Zhao, J.; Wu, M.; Liao, Y.; Liu, Q. miR-135b contributes to the radioresistance by targeting GSK3β in human glioblastoma multiforme cells. PLoS ONE 2014, 9, e108810. [Google Scholar] [CrossRef]
- Kotliarova, S.; Pastorino, S.; Kovell, L.C.; Kotliarov, Y.; Song, H.; Zhang, W.; Bailey, R.; Maric, D.; Zenklusen, J.C.; Lee, J.; et al. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res. 2008, 68, 6643–6651. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhang, D.; Bae, D.H.; Sahni, S.; Jansson, P.; Zheng, Y.; Zhao, Q.; Yue, F.; Zheng, M.; Kovacevic, Z.; et al. Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis 2013, 34, 1943–1954. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, J.S.; Rosler, K.M.; Harrison, D.A. The JAK/STAT signaling pathway. J. Cell Sci. 2004, 117, 1281–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segerman, A.; Niklasson, M.; Haglund, C.; Bergström, T.; Jarvius, M.; Xie, Y.; Westermark, A.; Sönmez, D.; Hermansson, A.; Kastemar, M.; et al. Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition. Cell Rep. 2016, 17, 2994–3009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Bernal, G.M.; Cahill, K.E.; Pytel, P.; Fitzpatrick, C.A.; Mashek, H.; Weichselbaum, R.R.; Yamini, B. BCL3 expression promotes resistance to alkylating chemotherapy in gliomas. Sci. Transl. Med. 2018, 10, eaar2238. [Google Scholar] [CrossRef] [Green Version]
- Moh, A.; Zhang, W.; Yu, S.; Wang, J.; Xu, X.; Li, J.; Fu, X.Y. STAT3 sensitizes insulin signaling by negatively regulating glycogen synthase kinase-3 beta. Diabetes 2008, 57, 1227–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eramo, A.; Ricci-Vitiani, L.; Zeuner, A.; Pallini, R.; Lotti, F.; Sette, G.; Pilozzi, E.; Larocca, L.M.; Peschle, C.; De Maria, R. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 2006, 13, 1238–1241. [Google Scholar] [CrossRef] [Green Version]
- Mohyeldin, A.; Chiocca, E.A. Gene and viral therapy for glioblastoma: A review of clinical trials and future directions. Cancer J. 2012, 18, 82–88. [Google Scholar] [CrossRef]
- Skalsky, R.L.; Cullen, B.R. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene. PLoS ONE 2011, 6, e24248. [Google Scholar] [CrossRef]
- Munding, J.B.; Adai, A.T.; Maghnouj, A.; Urbanik, A.; Zöllner, H.; Liffers, S.T.; Chromik, A.M.; Uhl, W.; Szafranska-Schwarzbach, A.E.; Tannapfel, A.; et al. Global microRNA expression profiling of microdissected tissues identifies miR-135b as a novel biomarker for pancreatic ductal adenocarcinoma. Int. J. Cancer 2012, 131, E86–E95. [Google Scholar] [CrossRef]
- Lulli, V.; Buccarelli, M.; Martini, M.; Signore, M.; Biffoni, M.; Giannetti, S.; Morgante, L.; Marziali, G.; Ilari, R.; Pagliuca, A.; et al. miR-135b suppresses tumorigenesis in glioblastoma stem-like cells impairing proliferation, migration and self-renewal. Oncotarget 2015, 6, 37241–37256. [Google Scholar] [CrossRef]
- Barbosa, E.J.; Löbenberg, R.; de Araujo, G.L.B.; Bou-Chacra, N.A. Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur. J. Pharm. Biopharm. 2019, 141, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, T.J.; Ertl, P.; Lewis, R. The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discov. Today 2011, 16, 65–72. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korur, S.; Huber, R.M.; Sivasankaran, B.; Petrich, M.; Morin, P., Jr.; Hemmings, B.A.; Merlo, A.; Lino, M.M. GSK3β eta regulates differentiation and growth arrest in glioblastoma. PLoS ONE 2009, 4, e7443. [Google Scholar] [CrossRef]
- Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 2006, 6, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Ellingson, B.M.; Wen, P.Y.; van den Bent, M.J.; Cloughesy, T.F. Pros and cons of current brain tumor imaging. Neuro Oncol. 2014, 16 (Suppl. 7), vii2–vii11. [Google Scholar] [CrossRef] [PubMed]
- Birzu, C.; Tran, S.; Bielle, F.; Touat, M.; Mokhtari, K.; Younan, N.; Psimaras, D.; Hoang-Xuan, K.; Sanson, M.; Delattre, J.Y.; et al. Leptomeningeal Spread in Glioblastoma: Diagnostic and Therapeutic Challenges. Oncologist 2020, 25, e1763–e1776. [Google Scholar] [CrossRef]
- Wen, Y.T.; Wu, A.T.; Bamodu, O.A.; Wei, L.; Lin, C.M.; Yen, Y.; Chao, T.Y.; Mukhopadhyay, D.; Hsiao, M.; Huang, H.S. A Novel Multi-Target Small Molecule, LCC-09, Inhibits Stemness and Therapy-Resistant Phenotypes of Glioblastoma Cells by Increasing miR-34a and Deregulating the DRD4/Akt/mTOR Signaling Axis. Cancers 2019, 11, 1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, A.; Yung, W.K.A.; Majd, N. Molecular Mechanisms of Treatment Resistance in Glioblastoma. Int. J. Mol. Sci. 2020, 22, 351. [Google Scholar] [CrossRef]
- Hess, K.R. Extent of resection as a prognostic variable in the treatment of gliomas. J. Neurooncol. 1999, 42, 227–231. [Google Scholar] [CrossRef]
- Holbeck, S.L.; Collins, J.M.; Doroshow, J.H. Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther. 2010, 9, 1451–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, T.; Zhao, L.; Wu, D.; Wang, B.; Feng, X.; Wang, E.; Sun, J. The Protein-Protein Interaction Network of Litopenaeus vannamei Haemocytes. Front. Physiol. 2019, 10, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navlakha, S.; Gitter, A.; Bar-Joseph, Z. A network-based approach for predicting missing pathway interactions. PLoS Comput. Biol. 2012, 8, e1002640. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, K.; Kawakami, K.; Nakada, M.; Mai, W.; Shakoori, A.; Fujisawa, H.; Hayashi, Y.; Hamada, J.; Minamoto, T. Potential therapeutic effect of glycogen synthase kinase 3beta inhibition against human glioblastoma. Clin. Cancer Res. 2009, 15, 887–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyashita, K.; Nakada, M.; Shakoori, A.; Ishigaki, Y.; Shimasaki, T.; Motoo, Y.; Kawakami, K.; Minamoto, T. An emerging strategy for cancer treatment targeting aberrant glycogen synthase kinase 3 beta. Anticancer Agents Med. Chem. 2009, 9, 1114–1122. [Google Scholar] [CrossRef]
- Toraih, E.A.; El-Wazir, A.; Abdallah, H.Y.; Tantawy, M.A.; Fawzy, M.S. Deregulated MicroRNA Signature Following Glioblastoma Irradiation. Cancer Control 2019, 26, 1073274819847226. [Google Scholar] [CrossRef] [PubMed]
- Toraih, E.A.; Ibrahiem, A.T.; Fawzy, M.S.; Hussein, M.H.; Al-Qahtani, S.A.M.; Shaalan, A.A.M. MicroRNA-34a: A Key Regulator in the Hallmarks of Renal Cell Carcinoma. Oxid. Med. Cell. Longev. 2017, 2017, 3269379. [Google Scholar] [CrossRef] [Green Version]
- Toraih, E.A.; Mohammed, E.A.; Farrag, S.; Ramsis, N.; Hosny, S. Pilot Study of Serum MicroRNA-21 as a Diagnostic and Prognostic Biomarker in Egyptian Breast Cancer Patients. Mol. Diagn. Ther. 2015, 19, 179–190. [Google Scholar] [CrossRef]
- Ma, R.; Ma, Z.G.; Zhen, C.L.; Shen, X.; Li, S.L.; Li, L.; Zheng, Y.F.; Dong, D.L.; Sun, Z.J. Design, synthesis and characterization of poly (methacrylic acid-niclosamide) and its effect on arterial function. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 352–359. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A. Lead-and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Martin, Y.C. A bioavailability score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef] [PubMed]
NSC-Synthetic Compounds | NSC-Standard Agents | |||||||
---|---|---|---|---|---|---|---|---|
Rank | r | CCLC | Target NSC | Target Descriptor | MW | r | CCLC | Target Descriptor |
1 | 0.59 | 59 | 757391 | DICHLOROPHENE | 269.12 g/mol | 0.4 | 57 | bryostatin 1 |
2 | 0.59 | 59 | 29027 | TETRACHLOROCATECHOL | 247.92 g/mol | 0.37 | 58 | 4-ipomeanol |
3 | 0.58 | 59 | 825282 | CPI455 | 314.77 g/mol | 0.36 | 58 | Pentamethyl melamine |
4 | 0.58 | 56 | 768421 | 5-CHLORO-2-(3-(3,4,5-TRIMETHOX | 383.01 g/mol | 0.33 | 46 | rhizoxin |
5 | 0.58 | 54 | 406472 | OCTOXYNOL 9(USAN) | 250.19 g/mol | 0.29 | 58 | gallium nitrate |
6 | 0.57 | 58 | 767063 | 3-(1-(3,4-DICHLOROPHENYL)-2,5- | 308.89 g/mol | 0.28 | 58 | flavoneacetic acid |
7 | 0.57 | 59 | 767322 | RO3200934-000 | 371.41 g/mol | 0.27 | 46 | didemnin B |
8 | 0.56 | 56 | 768406 | 5-FLUORO-2-(3-(3,4,5-TRIMETHOX | 470.17 g/mol | 0.27 | 58 | ARA-6-MP |
9 | 0.56 | 56 | 755806 | XL147 | 448.52 g/mol | 0.27 | 56 | tamoxifen |
10 | 0.56 | 56 | 756322 | GW701032X | 413.51 g/mol | 0.27 | 54 | doxorubicin (Adriamycin) |
11 | 0.56 | 59 | 755984 | PNU-74654 | 320.34 g/mol | 0.26 | 57 | pibenzimol hydrochloride |
12 | 0.55 | 56 | 772889 | MK-2048 | 461.87 g/mol | 0.26 | 46 | cyanomorpholino-ADR |
13 | 0.55 | 56 | 750742 | (E)-3-(6-(4-METHOXYPHENYL)-2-M | 177.18 g/mol | 0.26 | 46 | S-trityl-L-cysteine |
14 | 0.54 | 52 | 328477 | BENZAMIDE, N-(3-CHLORO-2-METHY | 134.08 g/mol | 0.25 | 58 | chromomycin A3 |
15 | 0.54 | 49 | 401443 | PHLORETIN | 274.26 g/mol | 0.25 | 58 | mitramycin |
Target | Common Name | Uniprot ID | ChEMBL ID | Target Class |
---|---|---|---|---|
Cyclin-dependent kinase 9 | CDK9 | P50750 | CHEMBL3116 | Kinase |
Tyrosine-protein kinase JAK3 | JAK3 | P52333 | CHEMBL2148 | Kinase |
6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase 3 | PFKFB3 | Q16875 | CHEMBL2331053 | Enzyme |
Epidermal growth factor receptor erbB1 | EGFR | P00533 | CHEMBL203 | Kinase |
Glycogen synthase kinase-3 beta | GSK3B | P49841 | CHEMBL262 | Kinase |
MAP kinase p38 alpha | MAPK14 | Q16539 | CHEMBL260 | Kinase |
Cyclin-dependent kinase 2 | CDK2 | P24941 | CHEMBL301 | Kinase |
Cyclin-dependent kinase 1 | CDK1 | P06493 | CHEMBL308 | Kinase |
Hexokinase type IV | GCK | P35557 | CHEMBL3820 | Enzyme |
Tankyrase-2 | TNKS2 | Q9H2K2 | CHEMBL6154 | Enzyme |
Tankyrase-1 | TNKS | O95271 | CHEMBL6164 | Enzyme |
Fructose-1,6- bisphosphatase | FBP1 | P09467 | CHEMBL3975 | Enzyme |
11-beta-hydroxysteroid | HSD11B1 | P28845 | CHEMBL4235 | Enzyme |
Poly [ADP-ribose] | PARP1 | P09874 | CHEMBL3105 | Enzyme |
Nicotinamide | NAMPT | P43490 | CHEMBL1744525 | Enzyme |
Signal transducer and activator of transcription 3 | STAT3 | P40763 | CHEMBL4026 | Transcription factor |
PI3-kinase p110-delta subunit | PIK3CD | O00329 | CHEMBL3130 | Enzyme |
Thrombin | F2 | P00734 | CHEMBL204 | Protease |
Panel/Cell line (μM) | NSC765689 | ||
---|---|---|---|
GI50 | TGI | LC50 | |
Leukemia | |||
CCRF-CEM | 0.65 | 20.86 | 15.70 |
HL-60(TB) | 0.52 | 10.80 | >100 |
K-562 | 2.40 | 58.2 | >100 |
MOLT-4 | 0.30 | 17.7 | 43.90 |
RPMI-8226 | 0.69 | 38.0 | 47.90 |
Non-Small Cell Lung Cancer | |||
A549/ATCC | 1.87 | 10.80 | >100 |
EKVX | 1.88 | 6.94 | 96.20 |
HOP-62 | 1.24 | 0.67 | >100 |
HOP-92 | 0.55 | 5.48 | >100 |
NCI-H226 | 0.41 | 2.77 | 53.40 |
NCI-H23 | 1.80 | 8.91 | >100 |
NCU-H322M | 0.85 | 12.30 | >100 |
NCI-H46- | 0.36 | 2.31 | 43.40 |
Colon cancer | |||
COLON 205 | 5.13 | 17.90 | 53.30 |
HCC2998 | 2.88 | 7.91 | 50.40 |
HCT-116 | 1.14 | 6.01 | 38.80 |
HCT-15 | 1.20 | 10.70 | >100 |
HT-29 | 4.05 | 15.10 | >100 |
KM12 | 1.73 | 7.31 | >100 |
SW-620 | 2.08 | 31.10 | <100 |
CNS cancer | |||
SF-295 | 1.53 | 18.90 | 8.01 |
SF-539 | 1.81 | 3.81 | 55.50 |
SNB-19 | 1.51 | 8.06 | >100 |
SNB-75 | 0.61 | 17.40 | >100 |
U251 | 1.03 | 4.99 | 61.40 |
Melanoma | |||
LOX IMVI | 1.23 | 3.91 | 8.26 |
MALME-3M | 0.38 | 2.71 | >100 |
M14 | 0.24 | 9.96 | >100 |
MDA-MB-435 | 1.68 | 5.13 | >100 |
SK-MEL-2 | 0.39 | 1.83 | 7.81 |
SK-MEL-28 | 0.43 | 4.76 | >100 |
SK-MEL-5 | 0.23 | 0.10 | 3.08 |
UACC-257 | 0.73 | 3.71 | >100 |
UACC-62 | 0.36 | 1.91 | 35.80 |
Ovarian cancer | |||
IGROV1 | 0.88 | 21.50 | >100 |
OVCAR-3 | 0.55 | 12.50 | >100 |
OVCAR-4 | 0.38 | 5.74 | >100 |
OVCAR-5 | 4.76 | 100.00 | >100 |
OVCAR-8 | 1.77 | 12.00 | >100 |
NCI/ADR-RES | 0.54 | 1.00 | >100 |
SK-OV-3 | 0.75 | 0.70 | >100 |
Renal cancer | |||
786-0 | 2.94 | 2.94 | 41.40 |
A489 | 0.40 | 0.40 | 15.80 |
ACHN | 1.18 | 1.18 | 62.00 |
CAKI-1 | 2.35 | 2.35 | >100 |
RXF 393 | 1.10 | 1.10 | 92.30 |
SN12C | 0.92 | 0.92 | >100 |
TK-10 | 2.89 | 2.89 | >100 |
UO-31 | 1.62 | 1.62 | >100 |
Prostate cancer | |||
PC-3 | 1.14 | 1.14 | >100 |
DU-145 | 2.57 | 2.57 | >100 |
Breast cancer | |||
MCF7 | 0.36 | 4.26 | >100 |
MDA-MB-231/ATCC | 1.28 | 4.89 | 68.10 |
HS 578-T | 0.66 | 5.28 | >100 |
BT-549 | 0.29 | 0.99 | >100 |
T-47D | 0.37 | 2.88 | >100 |
MDA-MB-468 | 1.17 | 3.21 | >100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokgautsi, N.; Wen, Y.-T.; Lawal, B.; Khedkar, H.; Sumitra, M.R.; Wu, A.T.H.; Huang, H.-S. An Integrated Bioinformatics Study of a Novel Niclosamide Derivative, NSC765689, a Potential GSK3β/β-Catenin/STAT3/CD44 Suppressor with Anti-Glioblastoma Properties. Int. J. Mol. Sci. 2021, 22, 2464. https://doi.org/10.3390/ijms22052464
Mokgautsi N, Wen Y-T, Lawal B, Khedkar H, Sumitra MR, Wu ATH, Huang H-S. An Integrated Bioinformatics Study of a Novel Niclosamide Derivative, NSC765689, a Potential GSK3β/β-Catenin/STAT3/CD44 Suppressor with Anti-Glioblastoma Properties. International Journal of Molecular Sciences. 2021; 22(5):2464. https://doi.org/10.3390/ijms22052464
Chicago/Turabian StyleMokgautsi, Ntlotlang, Ya-Ting Wen, Bashir Lawal, Harshita Khedkar, Maryam Rachmawati Sumitra, Alexander T. H. Wu, and Hsu-Shan Huang. 2021. "An Integrated Bioinformatics Study of a Novel Niclosamide Derivative, NSC765689, a Potential GSK3β/β-Catenin/STAT3/CD44 Suppressor with Anti-Glioblastoma Properties" International Journal of Molecular Sciences 22, no. 5: 2464. https://doi.org/10.3390/ijms22052464
APA StyleMokgautsi, N., Wen, Y.-T., Lawal, B., Khedkar, H., Sumitra, M. R., Wu, A. T. H., & Huang, H.-S. (2021). An Integrated Bioinformatics Study of a Novel Niclosamide Derivative, NSC765689, a Potential GSK3β/β-Catenin/STAT3/CD44 Suppressor with Anti-Glioblastoma Properties. International Journal of Molecular Sciences, 22(5), 2464. https://doi.org/10.3390/ijms22052464