Current Advances in Comprehending Dynamics of Regenerating Axons and Axon–Glia Interactions after Peripheral Nerve Injury in Zebrafish
Abstract
:1. Introduction
2. Selection Criteria
3. Models for Peripheral Nerve Injury in Zebrafish
3.1. Posterior Lateral Line Nerve (pLLn)
3.2. Motor Axons
3.3. Sensory Axons
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Waller, A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philos. Trans. R. Soc. 1851, 5, 924–925. [Google Scholar] [CrossRef]
- Conforti, L.; Gilley, J.; Coleman, M.P. Wallerian degeneration: An emerging axon death pathway linking injury and disease. Nat. Rev. Neurosci. 2014, 15, 394–409. [Google Scholar] [CrossRef]
- Lunn, E.R.; Perry, V.H.; Brown, M.C.; Rosen, H.; Gordon, S. Absence of Wallerian Degeneration does not Hinder Regeneration in Peripheral Nerve. Eur. J. Neurosci. 1989, 1, 27–33. [Google Scholar] [CrossRef]
- Perry, V.H.; Lunn, E.R.; Brown, M.C.; Cahusac, S.; Gordon, S. Evidence that the Rate of Wallerian Degeneration is Controlled by a Single Autosomal Dominant Gene. Eur. J. Neurosci. 1990, 2, 408–413. [Google Scholar] [CrossRef]
- Coleman, M.P.; Conforti, L.; Buckmaster, E.A.; Tarlton, A.; Ewing, R.M.; Brown, M.C.; Lyon, M.F.; Perry, V.H. An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse. Proc. Natl. Acad. Sci. USA 1998, 95, 9985–9990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conforti, L.; Tarlton, A.; Mack, T.G.A.; Mi, W.; Buckmaster, E.A.; Wagner, D.; Perry, V.H.; Coleman, M.P. A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (Wld(s)) mouse. Proc. Natl. Acad. Sci. USA 2000, 97, 11377–11382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattin, A.L.; Burden, J.J.; Van Emmenis, L.; MacKenzie, F.E.; Hoving, J.J.A.; Garcia Calavia, N.; Guo, Y.; McLaughlin, M.; Rosenberg, L.H.; Quereda, V.; et al. Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves. Cell 2015, 162, 1127–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattin, A.L.; Lloyd, A.C. The multicellular complexity of peripheral nerve regeneration. Curr. Opin. Neurobiol. 2016, 39, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Scheib, J.; Höke, A. Advances in peripheral nerve regeneration. Nat. Rev. Neurol. 2013, 9, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Stierli, S.; Imperatore, V.; Lloyd, A.C. Schwann cell plasticity-roles in tissue homeostasis, regeneration, and disease. Glia 2019, 67, 2203–2215. [Google Scholar] [CrossRef]
- Jessen, K.R.; Mirsky, R.; Lloyd, A.C. Schwann cells: Development and role in nerve repair. Cold Spring Harb. Perspect. Biol. 2015, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Arthur-Farraj, P.J.; Latouche, M.; Wilton, D.K.; Quintes, S.; Chabrol, E.; Banerjee, A.; Woodhoo, A.; Jenkins, B.; Rahman, M.; Turmaine, M.; et al. c-Jun Reprograms Schwann Cells of Injured Nerves to Generate a Repair Cell Essential for Regeneration. Neuron 2012, 75, 633–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jessen, K.R.; Mirsky, R. Negative regulation of myelination: Relevance for development, injury, and demyelinating disease. Glia 2008, 56, 1552–1565. [Google Scholar] [CrossRef]
- Gompel, N.; Cubedo, N.; Thisse, C.; Thisse, B.; Dambly-Chaudière, C.; Ghysen, A. Pattern formation in the lateral line of zebrafish. Mech. Dev. 2001, 105, 69–77. [Google Scholar] [CrossRef]
- Ghysen, A.; Dambly-Chaudière, C. Development of the zebrafish lateral line. Curr. Opin. Neurobiol. 2004, 14, 67–73. [Google Scholar] [CrossRef]
- Partridge, B.L.; Pitcher, T.J. The sensory basis of fish schools: Relative roles of lateral line and vision. J. Comp. Physiol. A 1980, 135, 315–325. [Google Scholar] [CrossRef]
- Coombs, S.; Van Netten, S. The Hydrodynamics and Structural Mechanics of the Lateral Line System. Fish Physiol. 2005, 23, 103–139. [Google Scholar] [CrossRef]
- Alexandre, D.; Ghysen, A. Somatotopy of the lateral line projection in larval zebrafish. Proc. Natl. Acad. Sci. USA 1999, 96, 7558–7562. [Google Scholar] [CrossRef] [Green Version]
- Pujol-Martí, J.; López-Schier, H. Developmental and architectural principles of the lateral-line neural map. Front. Neural Circuits 2013, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, G.S.; Rieger, S.; Martin, S.M.; Cavanaugh, A.M.; Portera-Cailliau, C.; Sagasti, A. Two-photon axotomy and time-lapse confocal imaging in live zebrafish embryos. J. Vis. Exp. 2009, 24. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, A.F.; Wolman, M.A.; Franzini-Armstrong, C.; Granato, M. In vivo nerve-macrophage interactions following peripheral nerve injury. J. Neurosci. 2012, 32, 3898–3909. [Google Scholar] [CrossRef]
- Schuster, K.; Dambly-Chaudière, C.; Ghysen, A. Glial cell line-derived neurotrophic factor defines the path of developing and regenerating axons in the lateral line system of zebrafish. Proc. Natl. Acad. Sci. USA 2010, 107, 19531–19536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villegas, R.; Martin, S.M.; O’Donnell, K.C.; Carrillo, S.A.; Sagasti, A.; Allende, M.L. Dynamics of degeneration and regeneration in developing zebrafish peripheral axons reveals a requirement for extrinsic cell types. Neural Dev. 2012, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graciarena, M.; Dambly-Chaudière, C.; Ghysen, A. Dynamics of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. Proc. Natl. Acad. Sci. USA 2014, 111, 1610–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Faucherre, A.; Pola-Morell, L.; Heddleston, J.M.; Liu, T.L.; Chew, T.L.; Sato, F.; Sehara-Fujisawa, A.; Kawakami, K.; López-Schier, H. High-resolution live imaging reveals axon-glia interactions during peripheral nerve injury and repair in zebrafish. DMM Dis. Model. Mech. 2015, 8, 553–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; López-Schier, H. Studying Axonal Regeneration by Laser Microsurgery and High-Resolution Videomicroscopy. In Zebrafish: Methods and Protocols, Methods in Molecular Biology; Humana Press: New York, NY, USA, 2016; Volume 1451, pp. 271–280. ISBN 9781493937714. [Google Scholar]
- Ceci, M.L.; Mardones-Krsulovic, C.; Sánchez, M.; Valdivia, L.E.; Allende, M.L. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae. Neural Dev. 2014, 9, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satish, A.; Korrapati, P.S. Strategic design of peptide-decorated aligned nanofibers impregnated with triiodothyronine for neural regeneration. J. Tissue Eng. Regen. Med. 2019, 13, 753–770. [Google Scholar] [CrossRef] [PubMed]
- Moya-Díaz, J.; Peña, O.A.; Sánchez, M.; Ureta, D.A.; Reynaert, N.G.; Anguita-Salinas, C.; Marín, G.; Allende, M.L. Electroablation: A method for neurectomy and localized tissue injury. BMC Dev. Biol. 2014, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, M.; Ceci, M.L.; Gutiérrez, D.; Anguita-Salinas, C.; Allende, M.L. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells. BMC Biol. 2016, 14, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lush, M.E.; Piotrowski, T. ErbB expressing Schwann cells control lateral line progenitor cells via non-cell-autonomous regulation of Wnt/β-catenin. eLife 2014, 2014, 1–27. [Google Scholar] [CrossRef]
- Tian, W.; Czopka, T.; López-Schier, H. Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration. Commun. Biol. 2020, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Imai, S.; Koyanagi, M.; Azimi, Z.; Nakazato, Y.; Matsumoto, M.; Ogihara, T.; Yonezawa, A.; Omura, T.; Nakagawa, S.; Wakatsuki, S.; et al. Taxanes and platinum derivatives impair Schwann cells via distinct mechanisms. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisen, J.S.; Myers, P.Z.; Westerfield, M. Pathway selection by growth cones of identified motoneurones in live zebra fish embryos. Nature 1986, 320, 269–271. [Google Scholar] [CrossRef]
- Myers, P.Z.; Eisen, J.S.; Westerfield, M. Development and axonal outgrowth of identified motoneurons in the zebrafish. J. Neurosci. 1986, 6, 2278–2289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babin, P.J.; Goizet, C.; Raldúa, D. Zebrafish models of human motor neuron diseases: Advantages and limitations. Prog. Neurobiol. 2014, 118, 36–58. [Google Scholar] [CrossRef]
- Eisen, J.S.; Pike, S.H.; Romancier, B. An identified motoneuron with variable fates in embryonic zebrafish. J. Neurosci. 1990, 10, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerfield, M.; McMurray, J.V.; Eisen, J.S. Identified motoneurons and their innervation of axial muscles in the zebrafish. J. Neurosci. 1986, 6, 2267–2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menelaou, E.; McLean, D.L. A gradient in endogenous rhythmicity and oscillatory drive matches recruitment order in an axial motor pool. J. Neurosci. 2012, 32, 10925–10939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.; Gordon, L.; Donn, T.M.; Berti, C.; Moens, C.B.; Burden, S.J.; Granato, M. A novel role for MuSK and non-canonical wnt signaling during segmental neural crest cell migration. Development 2011, 138, 3287–3296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morsch, M.; Radford, R.; Lee, A.; Don, E.K.; Badrock, A.P.; Hall, T.E.; Cole, N.J.; Chung, R. In vivo characterization of microglial engulfment of dying neurons in the zebrafish spinal cord. Front. Cell. Neurosci. 2015, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Morsch, M.; Radford, R.A.W.; Don, E.K.; Lee, A.; Hortle, E.; Cole, N.J.; Chung, R.S. Triggering cell stress and death using conventional UV laser confocal microscopy. J. Vis. Exp. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Svahn, A.J.; Don, E.K.; Badrock, A.P.; Cole, N.J.; Graeber, M.B.; Yerbury, J.J.; Chung, R.; Morsch, M. Nucleo-cytoplasmic transport of TDP-43 studied in real time: Impaired microglia function leads to axonal spreading of TDP-43 in degenerating motor neurons. Acta Neuropathol. 2018, 136, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, A.F.; Isaacman-Beck, J.; Franzini-Armstrong, C.; Granato, M. Schwann cells and deleted in colorectal carcinoma direct regenerating motor axons towards their original path. J. Neurosci. 2014, 34, 14668–14681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaacman-Beck, J.; Schneider, V.; Franzini-Armstrong, C.; Granato, M. The lh3 Glycosyltransferase Directs Target-Selective Peripheral Nerve Regeneration. Neuron 2015, 88, 691–703. [Google Scholar] [CrossRef] [Green Version]
- Roumazeilles, L.; Dokalis, N.; Kaulich, E.; Lelievre, V. It is all about the support—The role of the extracellular matrix in regenerating axon guidance. Cell Adhes. Migr. 2018, 12, 87–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwee, S.S.L.; Radford, R.A.W.; Chow, S.; Syal, M.D.; Morsch, M.; Formella, I.; Lee, A.; Don, E.K.; Badrock, A.P.; Cole, N.J.; et al. Aurora kinase B regulates axonal outgrowth and regeneration in the spinal motor neurons of developing zebrafish. Cell. Mol. Life Sci. 2018, 75, 4269–4285. [Google Scholar] [CrossRef] [PubMed]
- Ducommun Priest, M.; Navarro, M.F.; Bremer, J.; Granato, M. Dynein promotes sustained axonal growth and Schwann cell remodeling early during peripheral nerve regeneration. PLoS Genet. 2019, 15, e1007982. [Google Scholar] [CrossRef]
- Gribble, K.D.; Walker, L.J.; Saint-Amant, L.; Kuwada, J.Y.; Granato, M. The synaptic receptor Lrp4 promotes peripheral nerve regeneration. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Kucenas, S.; Takada, N.; Park, H.C.; Woodruff, E.; Broadie, K.; Appel, B. CNS-derived glia ensheath peripheral nerves and mediate motor root development. Nat. Neurosci. 2008, 11, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binari, L.A.; Lewis, G.M.; Kucenas, S. Perineurial glia require notch signaling during motor nerve development but not regeneration. J. Neurosci. 2013, 33, 4241–4252. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.M.; Kucenas, S. Motor nerve transection and time-lapse imaging of glial cell behaviors in live zebrafish. J. Vis. Exp. 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.M.; Kucenas, S. Perineurial glia are essential for motor axon regrowth following nerve injury. J. Neurosci. 2014, 34, 12762–12777. [Google Scholar] [CrossRef] [Green Version]
- Morris, A.D.; Lewis, G.M.; Kucenas, S. Perineurial Glial Plasticity and the Role of TGF-β in the Development of the Blood–Nerve Barrier. J. Neurosci. 2017, 37, 4790–4807. [Google Scholar] [CrossRef] [Green Version]
- Langheinrich, U. Zebrafish: A new model on the pharmaceutical catwalk. BioEssays 2003, 25, 904–912. [Google Scholar] [CrossRef]
- MacRae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Bremer, J.; Skinner, J.; Granato, M. A small molecule screen identifies in vivo modulators of peripheral nerve regeneration in zebrafish. PLoS ONE 2017, 12, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grothe, C.; Meisinger, C.; Claus, P. In vivo expression and localization of the fibroblast growth factor system in the intact and lesioned rat peripheral nerve and spinal ganglia. J. Comp. Neurol. 2001, 434, 342–357. [Google Scholar] [CrossRef] [PubMed]
- Haastert, K.; Lipokatić, E.; Fischer, M.; Timmer, M.; Grothe, C. Differentially promoted peripheral nerve regeneration by grafted Schwann cells over-expressing different FGF-2 isoforms. Neurobiol. Dis. 2006, 21, 138–153. [Google Scholar] [CrossRef]
- Jungnickel, J.; Haase, K.; Konitzer, J.; Timmer, M.; Grothe, C. Faster nerve regeneration after sciatic nerve injury in mice over-expressing basic fibroblast growth factor. J. Neurobiol. 2006, 66, 940–948. [Google Scholar] [CrossRef]
- O’Brien, G.S.; Martin, S.M.; Söllner, C.; Wright, G.J.; Becker, C.G.; Portera-Cailliau, C.; Sagasti, A. Developmentally Regulated Impediments to Skin Reinnervation by Injured Peripheral Sensory Axon Terminals. Curr. Biol. 2009, 19, 2086–2090. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.M.; O’Brien, G.S.; Portera-Cailliau, C.; Sagasti, A. Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning. Development 2010, 137, 3985–3994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieger, S.; Sagasti, A. Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol. 2011, 9, e10000621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, D.; Allende, M.L. Current Advances in Comprehending Dynamics of Regenerating Axons and Axon–Glia Interactions after Peripheral Nerve Injury in Zebrafish. Int. J. Mol. Sci. 2021, 22, 2484. https://doi.org/10.3390/ijms22052484
Gonzalez D, Allende ML. Current Advances in Comprehending Dynamics of Regenerating Axons and Axon–Glia Interactions after Peripheral Nerve Injury in Zebrafish. International Journal of Molecular Sciences. 2021; 22(5):2484. https://doi.org/10.3390/ijms22052484
Chicago/Turabian StyleGonzalez, David, and Miguel L. Allende. 2021. "Current Advances in Comprehending Dynamics of Regenerating Axons and Axon–Glia Interactions after Peripheral Nerve Injury in Zebrafish" International Journal of Molecular Sciences 22, no. 5: 2484. https://doi.org/10.3390/ijms22052484
APA StyleGonzalez, D., & Allende, M. L. (2021). Current Advances in Comprehending Dynamics of Regenerating Axons and Axon–Glia Interactions after Peripheral Nerve Injury in Zebrafish. International Journal of Molecular Sciences, 22(5), 2484. https://doi.org/10.3390/ijms22052484