Secondary Metabolites of Plants as Modulators of Endothelium Functions
Abstract
:1. Introduction
2. The Endothelium: From a Simple Barrier to a Specialized Organ
2.1. Morphology of the Endothelium
2.2. Physiological Roles of Endothelium
2.2.1. Vascular Tone Regulation
Angiotensin-Converting Enzyme
Nitric Oxide–Cyclic Guanosine Monophosphate Activation Pathway
Prostacyclin–Cyclic Adenosine Monophosphate Activation Pathway
Inhibition of Phosphodiesterase
Activation of K+ Channels or Inhibition of Intracellular Ca2+ Levels
2.2.2. Other Endothelial Functions
3. Substances Affecting Vascular Tone
3.1. Substances with Vasoconstriction Activity
3.1.1. Thromboxane A2
3.1.2. Endothelin
3.1.3. Platelet-Activating Factor
4. Exogenous Substances with Vasodilation Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | adenylyl cyclase |
ACE | angiotensin-converting enzyme |
ARA | arachidonic acid |
AT I | angiotensin I |
AT II | angiotensin II |
AT1R | angiotensin II receptor type-1 |
ATP | adenosine triphosphate |
BK | bradykinin |
C | calmodulin |
cAMP | cyclic adenosine monophosphate |
cGMP | cyclic guanosine monophosphate |
CNP | natriuretic peptide C |
CO | carbon monoxide |
COX | cyclooxygenase |
COX-1 | cyclooxygenase 1 |
COX-2 | cyclooxygenase 2 |
CSF | colony-stimulating factor |
EC | endothelial cell |
ECE-1 | endothelin-converting enzyme 1 |
ECE-2 | endothelin-converting enzyme 2 |
ECE-3 | endothelin-converting enzyme 3 |
ECM | extracellular matrix |
EDH | endothelium-derived hyperpolarization |
E-D H2O2 | endothelium-derived H2O2 |
eNOS | endothelial nitric oxide synthase |
ER | endoplasmic reticulum |
ET | endothelin |
ET-1 | endothelin-1 |
ET-2 | endothelin-2 |
ET-3 | endothelin-3 |
ETA | receptor A for endothelin |
ETB1 | receptor B1 for endothelin |
ETB2 | receptor B2 for endothelin |
ETC | receptor C for endothelin |
GTP | guanosine triphosphate |
H2S | hydrogen sulphide |
iACEs | angiotensin-converting enzyme inhibitors |
i-eNOS | endothelial nitric oxide synthase inhibition |
i-PGIS | prostacyclin synthase inhibition |
IGF | insulin-like growth factor |
iNOS | inducible nitric oxide synthase |
KCa | Ca2+ activated K+ channels |
L-arg | L-arginine |
LDL-receptor | low-density lipoprotein receptor |
MH | membrane hyperpolarization |
MHC II | major histocompatibility complex type 2 |
N | nucleus |
nNOS | neural nitric oxide synthase |
NO | nitric oxide |
NO–cGMP | nitric oxide–cyclic guanosine monophosphate |
NOS | nitric oxide synthase |
PAF | platelet-activating factor |
PAI | plasminogen activator inhibitor |
PDE | phosphodiesterase |
PGH2 | prostaglandin H2 |
PGI2 | prostacyclin |
PGI2–cAMP | prostacyclin–cyclic adenosine monophosphate |
PGIS | prostacyclin synthase |
R | receptor |
RAAS | renin–angiotensin–aldosterone system |
ROCC | receptor-operated Ca2+ channels |
ROS | reactive oxygen species |
sGC | soluble receptor with guanylate cyclase activity |
SMC | smooth muscle cell |
SO Ca2+ | store-operated Ca2+ channels |
SR | sarcoplasmic reticulum |
SS | shear stress |
TGF | transforming growth factor |
TPR | thromboxane A2–prostanoid receptor |
TXA2 | thromboxane A2 |
TXAS | thromboxane synthase |
VDCC | voltage-dependent Ca2+ channels |
VEGF | vascular endothelial growth factor |
vIF | various inactive fragments |
vRF | various reactive fragments |
VSMC | vascular smooth muscle cell |
vWf | von Willebrand’s factor |
References
- Sumpio, B.E.; Riley, J.T.; Dardik, A. Cells in focus: Endothelial cell. Int. J. Biochem. Cell Biol. 2002, 34, 1508–1512. [Google Scholar] [CrossRef]
- Roberts, D.M.; Kearney, J.B.; Johnson, J.H.; Rosenberg, M.P.; Kumar, R.; Bautch, V.L. The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation. Am. J. Pathol. 2004, 164, 1531–1535. [Google Scholar] [CrossRef] [Green Version]
- Patan, S. Vasculogenesis and angiogenesis. Cancer Treat. Res. 2004, 117, 3–32. [Google Scholar] [CrossRef] [PubMed]
- Kajdaniuk, D.; Marek, B.; Borgiel-Marek, H.; Kos-Kudła, B. Vascular endothelial growth factor (VEGF)—Part 1: In physiology and pathophysiology. Endokrynol. Pol. 2011, 62, 444–455. [Google Scholar]
- Fels, J.; Jeggle, P.; Liashkovich, I.; Peters, W.; Oberleithner, H. Nanomechanics of vascular endothelium. Cell Tissue Res. 2014, 355, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Galley, H.F.; Webster, N.R. Physiology of the endothelium. Br. J. Anaesth. 2004, 93, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Shimokawa, H.; Godo, S. Nitric oxide and endothelium-dependent hyperpolarization mediated by hydrogen peroxide in health and disease. Basic Clin. Pharmacol. Toxicol. 2020, 127, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Laroia, S.T.; Ganti, A.K.; Laroia, A.T.; Tendulkar, K.K. Endothelium and the lipid metabolism: The current understanding. Int J. Cardiol. 2003, 88, 1–9. [Google Scholar] [CrossRef]
- Ballermann, B.J.; Dardik, A.; Eng, E.; Liu, A. Shear stress and the endothelium. Kidney Int. Suppl. 1998, 67, S100–S108. [Google Scholar] [CrossRef] [Green Version]
- Landmesser, U.; Drexler, H. Effect of angiotensin II type 1 receptor antagonism on endothelial function: Role of bradykinin and nitric oxide. J. Hypertens. Suppl. 2006, 24, S39–S43. [Google Scholar] [CrossRef]
- Watanabe, T.; Barker, T.A.; Berk, B.C. Angiotensin II and the endothelium: Diverse signals and effects. Hypertension 2005, 45, 163–169. [Google Scholar] [CrossRef]
- Parsaee, H.; McEwan, J.R.; MacDermot, J. Bradykinin-induced release of PGI2 from aortic endothelial cell lines: Responses mediated selectively by Ca2+ ions or a staurosporine-sensitive kinase. Br. J. Pharmacol. 1993, 110, 411–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, K.V.; Das, U.N. Are free radicals involved in the pathobiology of human essential hypertension? Free Radic. Res. Commun. 1993, 19, 59–66. [Google Scholar] [CrossRef]
- Barbosa-Filho, J.M.; Martins, V.K.M.; Rabelo, L.A.; Moura, M.D.; Silva, M.S.; Cunha, E.V.L.; Souza, M.F.V.; Almeida, R.N.; Medeiros, I.A. Natural products inhibitors of the angiotensin converting enzyme (ACE)s: A review between 1980–2000. Rev. Bras. Farmacogn. 2006, 16, 421–446. [Google Scholar] [CrossRef]
- Fyhrquist, F.; Metsärinne, K.; Tikkanen, I. Role of angiotensin II in blood pressure regulation and in the pathophysiology of cardiovascular disorders. J. Hum. Hypertens. 1995, 9 (Suppl. 5), S19–S24. [Google Scholar]
- Ferrario, C.M. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J. Renin. Angiotensin. Aldosterone Syst. 2006, 7, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoll, M.; Steckelings, U.M.; Paul, M.; Bottari, S.P.; Metzger, R.; Unger, T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J. Clin. Invest. 1995, 95, 651–657. [Google Scholar] [CrossRef]
- Wong, M.K.S. Bradykinin. In Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research; Takei, Y., Ando, H., Tsutsui, K., Eds.; Academic Press Ltd-Elsevier Science Ltd.: London, UK, 2016; p. 274. [Google Scholar] [CrossRef]
- Tomiyama, H.; Kushiro, T.; Abeta, H.; Ishii, T.; Takahashi, A.; Furukawa, L.; Asagami, T.; Hino, T.; Saito, F.; Otsuka, Y. Kinins contribute to the improvement of insulin sensitivity during treatment with angiotensin converting enzyme inhibitor. Hypertension 1994, 23, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Greaney, J.L.; Kutz, J.L.; Shank, S.W.; Jandu, S.; Santhanam, L.; Alexander, L.M. Impaired Hydrogen Sulfide-Mediated Vasodilation Contributes to Microvascular Endothelial Dysfunction in Hypertensive Adults. Hypertension 2017, 69, 902–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallance, P.; Hingorani, A. Endothelial nitric oxide in humans in health and disease. Int. J. Exp. Pathol. 1999, 80, 291–303. [Google Scholar] [CrossRef]
- Ghalayini, I.F. Nitric oxide-cyclic GMP pathway with some emphasis on cavernosal contractility. Int. J. Impot. Res. 2004, 16, 459–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, A.; Khan, R.M.; Alkharfy, K.M. Effects of selected bioactive natural products on the vascular endothelium. J. Cardiovasc. Pharmacol. 2013, 62, 111–121. [Google Scholar] [CrossRef]
- Ozkor, M.A.; Quyyumi, A.A. Endothelium-derived hyperpolarizing factor and vascular function. Cardiol. Res. Pract. 2011, 2011, 156146. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.M.; Huang, Y.T.; Zhang, Y.Q.; Hsieh, C.W.; Wung, B.S. Carbon monoxide releasing molecule induces endothelial nitric oxide synthase activation through a calcium and phosphatidylinositol 3-kinase/Akt mechanism. Vascul. Pharmacol. 2016, 87, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, G.; Marinko, M.; Milojevic, P.; Stojanovic, I.; Nenezic, D.; Kanjuh, V.; Yang, Q.; He, G.W.; Novakovic, A. Mechanisms of endothelium-dependent vasorelaxation induced by procyanidin B2 in venous bypass graft. J. Pharmacol. Sci. 2020, 142, 101–108. [Google Scholar] [CrossRef]
- Li, H.; Xia, N.; Brausch, I.; Yao, Y.; Förstermann, U. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells. J. Pharmacol. Exp. Ther. 2004, 310, 926–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Eto, M.; Akishita, M.; Kaneko, A.; Ouchi, Y.; Okabe, T. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: A possible involvement of androgen receptor. Biochem Biophys Res. Commun. 2007, 353, 764–769. [Google Scholar] [CrossRef]
- Fisher, N.D.; Hughes, M.; Gerhard-Herman, M.; Hollenberg, N.K. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J. Hypertens. 2003, 21, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Moncada, S.; Vane, J.R. Interrelationships between prostacyclin and thromboxane A2. Ciba Found. Symp. 1980, 78, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Majed, B.H.; Khalil, R.A. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol. Rev. 2012, 64, 540–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandoo, A.; van Zanten, J.J.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 2010, 4, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Rojas-Molina, I.; Zavala-Sánchez, M.A. Vasodilator compounds derived from plants and their mechanisms of action. Molecules 2013, 18, 5814–5857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raimundo, J.M.; Trindade, A.P.; Velozo, L.S.; Kaplan, M.A.; Sudo, R.T.; Zapata-Sudo, G. The lignan eudesmin extracted from Piper truncatum induced vascular relaxation via activation of endothelial histamine H1 receptors. Eur. J. Pharmacol. 2009, 606, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Raimundo, J.M.; de Almeida, R.R.; Velozo, L.S.; Kaplan, M.A.; Gattass, C.R.; Zapata-Sudo, G. In-vitro vasodilatory activity of the hexanic extract of leaves and stems from Piper truncatum Vell. in rats. J. Pharm. Pharmacol. 2004, 56, 1457–1462. [Google Scholar] [CrossRef]
- Chau, Y.; Li, F.S.; Levsh, O.; Weng, J.K. Exploration of icariin analog structure space reveals key features driving potent inhibition of human phosphodiesterase-5. PLoS ONE 2019, 14, e0222803. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.H.; Chen, X.L.; Wu, Y.S.; Qiu, H.L.; Li, J.Z.; Ruan, X.M.; Xu, D.P.; Lin, D.Q. 3,7-Bis(2-hydroxyethyl)icaritin, a potent inhibitor of phosphodiesterase-5, prevents monocrotaline-induced pulmonary arterial hypertension via NO/cGMP activation in rats. Eur. J. Pharmacol. 2018, 829, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Garland, C.J.; Hiley, C.R.; Dora, K.A. EDHF: Spreading the influence of the endothelium. Br. J. Pharmacol. 2011, 164, 839–852. [Google Scholar] [CrossRef]
- Knox, M.; Vinet, R.; Fuentes, L.; Morales, B.; Martínez, J.L. A Review of Endothelium-Dependent and -Independent Vasodilation Induced by Phytochemicals in Isolated Rat Aorta. Animals 2019, 9, 623. [Google Scholar] [CrossRef] [Green Version]
- Lumsden, N.G.; Khambata, R.S.; Hobbs, A.J. C-type natriuretic peptide (CNP): Cardiovascular roles and potential as a therapeutic target. Curr. Pharm. Des. 2010, 16, 4080–4088. [Google Scholar] [CrossRef]
- Mustafa, A.K.; Sikka, G.; Gazi, S.K.; Steppan, J.; Jung, S.M.; Bhunia, A.K.; Barodka, V.M.; Gazi, F.K.; Barrow, R.K.; Wang, R.; et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 2011, 109, 1259–1268. [Google Scholar] [CrossRef]
- Bhatia, M. Hydrogen sulfide as a vasodilator. IUBMB Life 2005, 57, 603–606. [Google Scholar] [CrossRef]
- Mombouli, J.V.; Bissiriou, I.; Agboton, V.; Vanhoutte, P.M. Endothelium-derived hyperpolarizing factor: A key mediator of the vasodilator action of bradykinin. Immunopharmacology 1996, 33, 46–50. [Google Scholar] [CrossRef]
- Van Hinsbergh, V.W. Endothelium—Role in regulation of coagulation and inflammation. Semin. Immunopathol. 2012, 34, 93–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, I.J.; Bornfeldt, K.E. Lipids and the endothelium: Bidirectional interactions. Curr. Atheroscler. Rep. 2013, 15, 365. [Google Scholar] [CrossRef] [Green Version]
- García, X.; Cartas-Heredia, L.; Lorenzana-Jímenez, M.; Gijón, E. Vasoconstrictor effect of Cissus sicyoides on guinea-pig aortic rings. Gen. Pharmacol. 1997, 29, 457–462. [Google Scholar] [CrossRef]
- Bull, H.A.; Pittilo, R.M.; Blow, D.J.; Blow, C.M.; Rowles, P.M.; Woolf, N.; Machin, S.J. The effects of nicotine on PGI2 production by rat aortic endothelium. Thromb. Haemost. 1985, 54, 472–474. [Google Scholar] [CrossRef] [PubMed]
- Oakes, J.M.; Xu, J.; Morris, T.M.; Fried, N.D.; Pearson, C.S.; Lobell, T.D.; Gilpin, N.W.; Lazartigues, E.; Gardner, J.D.; Yue, X. Effects of Chronic Nicotine Inhalation on Systemic and Pulmonary Blood Pressure and Right Ventricular Remodeling in Mice. Hypertension 2020, 75, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Wölfle, U.; Hoffmann, J.; Haarhaus, B.; Rao Mittapalli, V.; Schempp, C.M. Anti-inflammatory and vasoconstrictive properties of Potentilla erecta—A traditional medicinal plant from the northern hemisphere. J. Ethnopharmacol. 2017, 204, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Hayat-Malik, M.N.; Bashir, S.; Khan, I.U.; Karim, S.; Mushtaq, M.N.; Khan, H.U.; Rashid, M.; Naz, H.; Samreen, S. Cardiotonic and vasoconstriction effects of aqueous methanolic extract of Paspalidium flavidum L. Pak. J. Pharm. Sci. 2015, 28, 437–441. [Google Scholar]
- Gilani, A.U.H.; Shaheen, F. Vasoconstrictor and cardiotonic actions of Haloxylon-recurvum extract. Phytother. Res. 1994, 8, 115–117. [Google Scholar] [CrossRef]
- Wahab, A.; Ahmed, E.; Nawaz, S.A.; Sharif, A.; Ul Haq, R.; Malik, A.; Choudhary, M.I.; Raza, M. A pharmacological and toxicological evaluation of Haloxylon recurvum. Nat. Prod. Res. 2008, 22, 1317–1326. [Google Scholar] [CrossRef]
- Chen, H. Role of thromboxane A. Prostaglandins Other Lipid Med. 2018, 134, 32–37. [Google Scholar] [CrossRef]
- Rucker, D.; Dhamoon, A.S. Physiology, Thromboxane A2. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Grann, M.; Comerma-Steffensen, S.; Arcanjo, D.D.; Simonsen, U. Mechanisms Involved in Thromboxane A. Basic Clin. Pharmacol. Toxicol. 2016, 119 (Suppl. 3), 86–95. [Google Scholar] [CrossRef] [Green Version]
- Caughey, G.E.; Cleland, L.G.; Penglis, P.S.; Gamble, J.R.; James, M.J. Roles of cyclooxygenase (COX)-1 and COX-2 in prostanoid production by human endothelial cells: Selective up-regulation of prostacyclin synthesis by COX-2. J. Immunol. 2001, 167, 2831–2838. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Endothelin. Pharmacol. Rev. 2016, 68, 357–418. [Google Scholar] [CrossRef] [Green Version]
- Drawnel, F.M.; Archer, C.R.; Roderick, H.L. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br. J. Pharmacol. 2013, 168, 296–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, M.; Yanagisawa, M. Endothelin: 30 Years From Discovery to Therapy. Hypertension 2019, 74, 1232–1265. [Google Scholar] [CrossRef] [PubMed]
- Stow, L.R.; Jacobs, M.E.; Wingo, C.S.; Cain, B.D. Endothelin-1 gene regulation. FASEB J. 2011, 25, 16–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unic, A.; Derek, L.; Hodak, N.; Marijancevic, D.; Ceprnja, M.; Serdar, T.; Krhac, M.; Romic, Z. Endothelins—Clinical perspectives. Biochem. Med. 2011, 21, 231–242. [Google Scholar] [CrossRef]
- Camussi, G.; Tetta, C.; Baglioni, C. The role of platelet-activating factor in inflammation. Clin. Immunol. Immunopathol. 1990, 57, 331–338. [Google Scholar] [CrossRef]
- Majewski, M. Allium sativum: Facts and myths regarding human health. Rocz. Panstw. Zakl. Hig. 2014, 65, 1–8. [Google Scholar]
- Ashraf, R.; Khan, R.A.; Ashraf, I.; Qureshi, A.A. Effects of Allium sativum (garlic) on systolic and diastolic blood pressure in patients with essential hypertension. Pak. J. Pharm. Sci. 2013, 26, 859–863. [Google Scholar]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; G Wasef, L.; Elewa, Y.H.A.; A Al-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; M Abd-Elhakim, Y.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.). Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedraza-Chaverrí, J.; Tapia, E.; Medina-Campos, O.N.; de los Angeles Granados, M.; Franco, M. Garlic prevents hypertension induced by chronic inhibition of nitric oxide synthesis. Life Sci. 1998, 62, PL71–PL77. [Google Scholar] [CrossRef]
- Victorio, C.P.; Kuster, R.M.; de Moura, R.S.; Lage, C.L.S. Vasodilator activity of extracts of field Alpinia purpurata (Vieill) K. Schum and A. zerumbet (Pers.) Burtt et Smith cultured in vitro. Braz. J. Pharm. Sci. 2009, 45, 507–514. [Google Scholar] [CrossRef] [Green Version]
- De Moura, R.S.; Emiliano, A.F.; de Carvalho, L.C.; Souza, M.A.; Guedes, D.C.; Tano, T.; Resende, A.C. Antihypertensive and endothelium-dependent vasodilator effects of Alpinia zerumbet, a medicinal plant. J. Cardiovasc. Pharmacol. 2005, 46, 288–294. [Google Scholar] [CrossRef]
- Afkir, S.; Nguelefack, T.B.; Aziz, M.; Zoheir, J.; Cuisinaud, G.; Bnouham, M.; Mekhfi, H.; Legssyer, A.; Lahlou, S.; Ziyyat, A. Arbutus unedo prevents cardiovascular and morphological alterations in L-NAME-induced hypertensive rats Part I: Cardiovascular and renal hemodynamic effects of Arbutus unedo in L-NAME-induced hypertensive rats. J. Ethnopharmacol. 2008, 116, 288–295. [Google Scholar] [CrossRef]
- Xie, Y.W.; Ming, D.S.; Xu, H.X.; Dong, H.; But, P.P. Vasorelaxing effects of Caesalpinia sappan involvement of endogenous nitric oxide. Life Sci. 2000, 67, 1913–1918. [Google Scholar] [CrossRef]
- Hu, C.M.; Kang, J.J.; Lee, C.C.; Li, C.H.; Liao, J.W.; Cheng, Y.W. Induction of vasorelaxation through activation of nitric oxide synthase in endothelial cells by brazilin. Eur. J. Pharmacol. 2003, 468, 37–45. [Google Scholar] [CrossRef]
- Cherkaoui-Tangi, K.; Lachkar, M.; Wibo, M.; Morel, N.; Gilani, A.H.; Lyoussi, B. Pharmacological studies on hypotensive, diuretic and vasodilator activities of chrysin glucoside from Calycotome villosa in rats. Phytother. Res. 2008, 22, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Villar, I.C.; Vera, R.; Galisteo, M.; O‘Valle, F.; Romero, M.; Zarzuelo, A.; Duarte, J. Endothelial nitric oxide production stimulated by the bioflavonoid chrysin in rat isolated aorta. Planta Med. 2005, 71, 829–834. [Google Scholar] [CrossRef]
- Duarte, J.; Jiménez, R.; Villar, I.C.; Pérez-Vizcaíno, F.; Jiménez, J.; Tamargo, J. Vasorelaxant effects of the bioflavonoid chrysin in isolated rat aorta. Planta Med. 2001, 67, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Assreuy, A.M.; Fontenele, S.R.; Pires, A.e.F.; Fernandes, D.C.; Rodrigues, N.V.; Bezerra, E.H.; Moura, T.R.; do Nascimento, K.S.; Cavada, B.S. Vasodilator effects of Diocleinae lectins from the Canavalia genus. Naunyn Schmiedebergs Arch. Pharmacol. 2009, 380, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Neto, I.L.; Simões, R.C.; Rocha, B.A.; Bezerra, M.J.; Pereira-Junior, F.N.; Silva Osterne, V.J.; Nascimento, K.S.; Nagano, C.S.; Delatorre, P.; Pereira, M.G.; et al. Vasorelaxant activity of Canavalia grandiflora seed lectin: A structural analysis. Arch. Biochem. Biophys. 2014, 543, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, Y.; Duan, H.; Wang, H.; He, L. Imperatorin prevents cardiac hypertrophy and the transition to heart failure via NO-dependent mechanisms in mice. Fitoterapia 2012, 83, 60–66. [Google Scholar] [CrossRef]
- Bertin, R.; Chen, Z.; Martínez-Vázquez, M.; García-Argaéz, A.; Froldi, G. Vasodilation and radical-scavenging activity of imperatorin and selected coumarinic and flavonoid compounds from genus Casimiroa. Phytomedicine 2014, 21, 586–594. [Google Scholar] [CrossRef]
- Vinet, R.; Cortes, M.; Alvarez, R.; Guzman, L.; Flores, E. Centaurium cachanlahuen (Mol.) Robinson, a Chilean native plant with a vasodilatory effect. Bol. Latinoam. Caribe Plantas Med. Aromat. 2012, 11, 61–65. [Google Scholar]
- Belmokhtar, M.; Bouanani, N.E.; Ziyyat, A.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Matéo, P.; Fischmeister, R.; Legssyer, A. Antihypertensive and endothelium-dependent vasodilator effects of aqueous extract of Cistus ladaniferus. Biochem. Biophys. Res. Commun. 2009, 389, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Kosala, K.; Ismail, S.; Fikriah, I.; Magdaleni, A.R. In vitro Exploration of Vasodilation Activity of the Methanol Extract of the Coptosapelta flavescens Korth stem. J. Islam. Med. Res. 2017, 1, 10–14. [Google Scholar]
- Generalić Mekinić, I.; Blažević, I.; Mudnić, I.; Burčul, F.; Grga, M.; Skroza, D.; Jerčić, I.; Ljubenkov, I.; Boban, M.; Miloš, M.; et al. Sea fennel (Crithmum maritimum L.): Phytochemical profile, antioxidative, cholinesterase inhibitory and vasodilatory activity. J. Food Sci Technol 2016, 53, 3104–3112. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, M.F.; Puebla, P.; Carrón, R.; Martín, M.L.; Arteaga, L.; Román, L.S. Assessment of the antihypertensive and vasodilator effects of ethanolic extracts of some Colombian medicinal plants. J. Ethnopharmacol. 2002, 80, 37–42. [Google Scholar] [CrossRef]
- Paez, M.T.; Rodriguez, D.C.; Lopez, D.F.; Castaneda, J.A.; Buitrago, D.M.; Cuca, L.E.; Guerrero, M.F. Croton schiedeanus Schltd prevents experimental hypertension in rats induced by nitric oxide deficit. Braz. J. Pharm. Sci. 2013, 49, 865–871. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, M.F.; Puebla, P.; Carrón, R.; Martín, M.L.; San Román, L. Quercetin 3,7-dimethyl ether: A vasorelaxant flavonoid isolated from Croton schiedeanus Schlecht. J. Pharm. Pharmacol. 2002, 54, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.J.; Capettini, L.S.; Lôbo, L.T.; da Silva, G.A.; Arruda, M.S.; Lemos, V.S.; Côrtes, S.F. Endothelial nitric oxide-dependent vasorelaxant effect of isotirumalin, a dihydroflavonol from Derris urucu, on the rat aorta. Biol. Pharm. Bull. 2011, 34, 1499–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo, L.T.; da Silva, G.A.; Ferreira, M.; da Silva, M.N.; Santos, A.S.; Arruda, A.C.; Guilhon, G.; Santos, L.S.; Borges, R.D.; Arruda, M.S.P. Dihydroflavonols from the leaves of Derris urucu (Leguminosae): Structural Elucidation and DPPH Radical-Scavenging Activity. J. Braz. Chem. Soc. 2009, 20, 1082–1088. [Google Scholar] [CrossRef] [Green Version]
- Rocha, A.P.; Carvalho, L.C.; Sousa, M.A.; Madeira, S.V.; Sousa, P.J.; Tano, T.; Schini-Kerth, V.B.; Resende, A.C.; Soares de Moura, R. Endothelium-dependent vasodilator effect of Euterpe oleracea Mart. (Açaí) extracts in mesenteric vascular bed of the rat. Vascul. Pharmacol. 2007, 46, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.W.; Xu, H.X.; Dong, H.; Fiscus, R.R.; But, P.P. Role of nitric oxide in the vasorelaxant and hypotensive effects of extracts and purified tannins from Geum japonicum. J. Ethnopharmacol. 2007, 109, 128–133. [Google Scholar] [CrossRef]
- Chen, X.; Salwinski, S.; Lee, T.J.F. Extracts of Ginkgo biloba and ginsenosides exert cerebral vasorelaxation via a nitric oxide pathway. Clin. Exp. Pharm. Physiol. 1997, 24, 958–959. [Google Scholar] [CrossRef]
- Nishida, S.; Satoh, H. Mechanisms for the vasodilations induced by Ginkgo biloba extract and its main constituent, bilobalide, in rat aorta. Life Sci. 2003, 72, 2659–2667. [Google Scholar] [CrossRef]
- Hakkou, Z.; Maciuk, A.; Leblais, V.; Bouanani, N.E.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Hadda, T.B.; et al. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother. 2017, 93, 62–69. [Google Scholar] [CrossRef]
- Del Valle-Mondragón, L.; Tenorio-López, F.A.; Zarco-Olvera, G.; Pastelín-Hernández, G. Vulgarenol, a sesquiterpene isolated from Magnolia grandiflora, induces nitric oxide synthases II and III overexpression in guinea pig hearts. Z. Naturforsch. C J. Biosci. 2007, 62, 725–730. [Google Scholar] [CrossRef]
- Zamblé, A.; Martin-Nizard, F.; Sahpaz, S.; Reynaert, M.L.; Staels, B.; Bordet, R.; Duriez, P.; Gressier, B.; Bailleul, F. Effects of Microdesmis keayana alkaloids on vascular parameters of erectile dysfunction. Phytother. Res. 2009, 23, 892–895. [Google Scholar] [CrossRef]
- Interaminense, L.F.; Leal-Cardoso, J.H.; Magalhães, P.J.; Duarte, G.P.; Lahlou, S. Enhanced hypotensive effects of the essential oil of Ocimum gratissimum leaves and its main constituent, eugenol, in DOCA-salt hypertensive conscious rats. Planta Med. 2005, 71, 376–378. [Google Scholar] [CrossRef]
- Pires, A.F.; Madeira, S.V.; Soares, P.M.; Montenegro, C.M.; Souza, E.P.; Resende, A.C.; Soares de Moura, R.; Assreuy, A.M.; Criddle, D.N. The role of endothelium in the vasorelaxant effects of the essential oil of Ocimum gratissimum in aorta and mesenteric vascular bed of rats. Can. J. Physiol. Pharmacol. 2012, 90, 1380–1385. [Google Scholar] [CrossRef]
- Yoo, M.Y.; Lee, B.H.; Choi, Y.H.; Lee, J.W.; Seo, J.H.; Oh, K.S.; Koo, H.N.; Seo, H.W.; Yon, G.H.; Kwon, D.Y.; et al. Vasorelaxant effect of the rootbark extract of Paeonia moutan on isolated rat thoracic aorta. Planta Med. 2006, 72, 1338–1341. [Google Scholar] [CrossRef]
- Kim, Y.M.; Namkoong, S.; Yun, Y.G.; Hong, H.D.; Lee, Y.C.; Ha, K.S.; Lee, H.; Kwon, H.J.; Kwon, Y.G. Water extract of Korean red ginseng stimulates angiogenesis by activating the PI3K/Akt-dependent ERK1/2 and eNOS pathways in human umbilical vein endothelial cells. Biol. Pharm. Bull. 2007, 30, 1674–1679. [Google Scholar] [CrossRef] [Green Version]
- Leung, K.W.; Cheng, Y.K.; Mak, N.K.; Chan, K.K.; Fan, T.P.; Wong, R.N. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett. 2006, 580, 3211–3216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, N.; Bollinger, L.; Steinkamp-Fenske, K.; Förstermann, U.; Li, H. Prunella vulgaris L. Upregulates eNOS expression in human endothelial cells. Am. J. Chin. Med. 2010, 38, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Li, Y.; Mu, J.; Zhang, Y. Chemical constituents of Prunella vulgaris. J. Environ. Sci. 2013, 25 (Suppl. 1), S161–S163. [Google Scholar] [CrossRef]
- Sham, T.T.; Yuen, A.C.; Ng, Y.F.; Chan, C.O.; Mok, D.K.; Chan, S.W. A review of the phytochemistry and pharmacological activities of raphani semen. Evid. Based Complement. Alternat. Med. 2013, 2013, 636194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, D.H.; Kim, S.H.; Myung, N.; Cho, K.J.; Chang, M.J. The antihypertensive effect of ethyl acetate extract of radish leaves in spontaneously hypertensive rats. Nutr. Res. Pract. 2012, 6, 308–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, M.K.; Kang, D.G.; Lee, J.K.; Kim, J.S.; Lee, H.S. Vasodilatory and anti-inflammatory effects of the aqueous extract of rhubarb via a NO-cGMP pathway. Life Sci. 2006, 78, 1550–1557. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.S.; Ryu, S.Y.; Kim, Y.S.; Lee, B.H. Large conductance Ca2+-activated K+ (BKCa) channels are involved in the vascular relaxations elicited by piceatannol isolated from Rheum undulatum rhizome. Planta Med. 2007, 73, 1441–1446. [Google Scholar] [CrossRef]
- Yoo, M.Y.; Oh, K.S.; Lee, J.W.; Seo, H.W.; Yon, G.H.; Kwon, D.Y.; Kim, Y.S.; Ryu, S.Y.; Lee, B.H. Vasorelaxant effect of stilbenes from rhizome extract of rhubarb (Rheum undulatum) on the contractility of rat aorta. Phytother. Res. 2007, 21, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.S.; Choi, Y.H.; Ryu, S.Y.; Oh, B.K.; Seo, H.W.; Yon, G.H.; Kim, Y.S.; Lee, B.H. Cardiovascular effects of lignans isolated from Saururus chinensis. Planta Med. 2008, 74, 233–238. [Google Scholar] [CrossRef]
- Kang, D.G.; Yin, M.H.; Oh, H.; Lee, D.H.; Lee, H.S. Vasorelaxation by amentoflavone isolated from Selaginella tamariscina. Planta Med. 2004, 70, 718–722. [Google Scholar] [CrossRef]
- Yu, S.; Yan, H.; Zhang, L.; Shan, M.; Chen, P.; Ding, A.; Li, S.F. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules 2017, 22, 299. [Google Scholar] [CrossRef] [Green Version]
- Vinet, R.; Alvarez, R.; Knox, M.; Guzman, L.; Martinez, J.L.; Flores, E. Vasodilatory properties of Solanum crispum Ruiz & Pav. a South American native plant. Bol. Latinoam. Caribe Plantas Med. Aromat 2016, 15, 94–98. [Google Scholar]
- Zaima, K.; Koga, I.; Iwasawa, N.; Hosoya, T.; Hirasawa, Y.; Kaneda, T.; Ismail, I.S.; Lajis, N.H.; Morita, H. Vasorelaxant activity of indole alkaloids from Tabernaemontana dichotoma. J. Nat. Med. 2013, 67, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.M.; Guimarães, D.O.; Konno, T.U.; Tinoco, L.W.; Barth, T.; Aguiar, F.A.; Lopes, N.P.; Leal, I.C.; Raimundo, J.M.; Muzitano, M.F. Phytochemical Study of Tapirira guianensis Leaves Guided by Vasodilatory and Antioxidant Activities. Molecules 2017, 22, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeter, H.; Heiss, C.; Balzer, J.; Kleinbongard, P.; Keen, C.L.; Hollenberg, N.K.; Sies, H.; Kwik-Uribe, C.; Schmitz, H.H.; Kelm, M. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA 2006, 103, 1024–1029. [Google Scholar] [CrossRef] [Green Version]
- Grassi, D.; Necozione, S.; Lippi, C.; Croce, G.; Valeri, L.; Pasqualetti, P.; Desideri, G.; Blumberg, J.B.; Ferri, C. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 2005, 46, 398–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faridi, Z.; Njike, V.Y.; Dutta, S.; Ali, A.; Katz, D.L. Acute dark chocolate and cocoa ingestion and endothelial function: A randomized controlled crossover trial. Am. J. Clin. Nutr. 2008, 88, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Karim, M.; McCormick, K.; Kappagoda, C.T. Effects of cocoa extracts on endothelium-dependent relaxation. J. Nutr. 2000, 130, 2105S–2108S. [Google Scholar] [CrossRef]
- Seya, K.; Furukawa, K.; Taniguchi, S.; Kodzuka, G.; Oshima, Y.; Niwa, M.; Motomura, S. Endothelium-dependent vasodilatory effect of vitisin C, a novel plant oligostilbene from Vitis plants (Vitaceae), in rabbit aorta. Clin. Sci. 2003, 105, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares De Moura, R.; Costa Viana, F.S.; Souza, M.A.; Kovary, K.; Guedes, D.C.; Oliveira, E.P.; Rubenich, L.M.; Carvalho, L.C.; Oliveira, R.M.; Tano, T.; et al. Antihypertensive, vasodilator and antioxidant effects of a vinifera grape skin extract. J. Pharm. Pharmacol. 2002, 54, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Leifert, W.R.; Abeywardena, M.Y. Cardioprotective actions of grape polyphenols. Nutr. Res. 2008, 28, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.; Niwa, M. Absolute structures of new hydroxystilbenoids, vitisin C and viniferal, from Vitis vinifera ‘Kyohou’. Tetrahedron 1996, 52, 9991–9998. [Google Scholar] [CrossRef]
- Da Costa, G.F.; Ognibene, D.T.; da Costa, C.A.; Teixeira, M.T.; Cordeiro, V.D.S.C.; de Bem, G.F.; Moura, A.S.; Resende, A.C.; de Moura, R.S.L. Grape Skin Extract Prevents Development of Hypertension and Altered Lipid Profile in Spontaneously Hypertensive Rats: Role of Oxidative Stress. Prev. Nutr. Food Sci. 2020, 25, 25–31. [Google Scholar] [CrossRef]
- Andriambeloson, E.; Stoclet, J.C.; Andriantsitohaina, R. Mechanism of endothelial nitric oxide-dependent vasorelaxation induced by wine polyphenols in rat thoracic aorta. J. Cardiovasc. Pharmacol. 1999, 33, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Steinkamp-Fenske, K.; Bollinger, L.; Xu, H.; Yao, Y.; Horke, S.; Förstermann, U.; Li, H. Reciprocal regulation of endothelial nitric-oxide synthase and NADPH oxidase by betulinic acid in human endothelial cells. J. Pharmacol. Exp. Ther. 2007, 322, 836–842. [Google Scholar] [CrossRef] [Green Version]
- Othman, R.; Ibrahim, H.; Mohd, M.A.; Awang, K.; Gilani, A.U.; Mustafa, M.R. Vasorelaxant effects of ethyl cinnamate isolated from Kaempferia galanga on smooth muscles of the rat aorta. Planta Med. 2002, 68, 655–657. [Google Scholar] [CrossRef]
- De Oliveira, A.P.; Furtado, F.F.; da Silva, M.S.; Tavares, J.F.; Mafra, R.A.; Araújo, D.A.; Cruz, J.S.; de Medeiros, I.A. Calcium channel blockade as a target for the cardiovascular effects induced by the 8 (17), 12E, 14-labdatrien-18-oic acid (labdane-302). Vascul. Pharmacol. 2006, 44, 338–344. [Google Scholar] [CrossRef]
- Ribeiro, L.A.A.; Tavares, J.F.; Andrade, N.C.d.; Silva, M.S.d.; Silva, B.A.d. The (8)17,12E,14-labdatrien-18-oic acid (labdane302), labdane-type diterpene isolated from Xylopia langsdorffiana St. Hil. & Tul. (Annonaceae) relaxes the guinea-pig trachea Ácido (8)17,12E,14-labdatrieno-18-óico (labdano302), diterpeno tipo labdano isolado de Xylopia langsdorffiana St. Hil. & Tul. (Annonaceae) relaxa a traquéia isolada de cobaia. Rev. Bras. Farmacogn. 2007, 17, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Rivedal, E.; Sanner, T. Caffeine and other phosphodiesterase inhibitors are potent inhibitors of the promotional effect of TPA on morphological transformation of hamster embryo cells. Cancer Lett. 1985, 28, 9–17. [Google Scholar] [CrossRef]
- Boswell-Smith, V.; Spina, D.; Page, C.P. Phosphodiesterase inhibitors. Br. J. Pharmacol. 2006, 147 (Suppl. 1), S252–S257. [Google Scholar] [CrossRef] [PubMed]
- Patay, É.; Bencsik, T.; Papp, N. Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pac. J. Trop Med. 2016, 9, 1127–1135. [Google Scholar] [CrossRef] [Green Version]
- Shindel, A.W.; Xin, Z.C.; Lin, G.; Fandel, T.M.; Huang, Y.C.; Banie, L.; Breyer, B.N.; Garcia, M.M.; Lin, C.S.; Lue, T.F. Erectogenic and neurotrophic effects of icariin, a purified extract of horny goat weed (Epimedium spp.) in vitro and in vivo. J. Sex. Med. 2010, 7, 1518–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.B.; Huang, Z.Q. Icariin enhances endothelial nitric-oxide synthase expression on human endothelial cells in vitro. Vascul. Pharmacol. 2007, 47, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.B.; Huang, Z.Q. Vasorelaxant effects of icariin on isolated canine coronary artery. J. Cardiovasc. Pharmacol. 2007, 49, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Takır, S.; Sezgi, B.; Süzgeç-Selçuk, S.; Eroğlu-Özkan, E.; Beukelman, K.J.; Mat, A.; Uydeş-Doğan, B.S. Endothelium-dependent vasorelaxant effect of Alchemilla vulgaris methanol extract: A comparison with the aqueous extract in rat aorta. Nat. Prod. Res. 2014, 28, 2182–2185. [Google Scholar] [CrossRef]
- Takır, S.; Altun, I.H.; Sezgi, B.; Süzgeç-Selçuk, S.; Mat, A.; Uydeş-Doǧan, B.S. Vasorelaxant and blood pressure lowering effects of alchemilla vulgaris: A comparative study of methanol and aqueous extracts. Pharmacogn. Mag. 2015, 11, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Duarte, J.; Pérez-Vizcaíno, F.; Torres, A.I.; Zarzuelo, A.; Jiménez, J.; Tamargo, J. Vasodilator effects of visnagin in isolated rat vascular smooth muscle. Eur. J. Pharmacol. 1995, 286, 115–122. [Google Scholar] [CrossRef]
- Lima, T.C.; de Jesus Souza, R.; da Silva, F.A.; Biavatti, M.W. The genus Calea L.: A review on traditional uses, phytochemistry, and biological activities. Phytother. Res. 2018, 32, 769–795. [Google Scholar] [CrossRef] [PubMed]
- Somoza, B.; de Rojas, V.R.S.; Ortega, T.; Villar, A.M. Vasodilator effects of the extract of the leaves of Cistus populifolius on rat thoracic aorta. Phytother. Res. 1996, 10, 304–308. [Google Scholar] [CrossRef]
- Jiang, H.; Xia, Q.; Wang, X.; Song, J.; Bruce, I.C. Luteolin induces vasorelaxion in rat thoracic aorta via calcium and potassium channels. Pharmazie 2005, 60, 444–447. [Google Scholar] [PubMed]
- Janbaz, K.H.; Qayyum, A.; Saqib, F.; Imran, I.; Zia-Ul-Haq, M.; de Feo, V. Bronchodilator, vasodilator and spasmolytic activities of Cymbopogon martinii. J. Physiol. Pharmacol. 2014, 65, 859–866. [Google Scholar]
- Adaramoye, O.A.; Medeiros, I.A. Endothelium-independent vasodilation induced by kolaviron, a biflavonoid complex from Garcinia kola seeds, in rat superior mesenteric arteries. J. Smooth Muscle Res. 2009, 45, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Chericoni, S.; Testai, L.; Calderone, V.; Flamini, G.; Nieri, P.; Morelli, I.; Martinotti, E. The xanthones gentiacaulein and gentiakochianin are responsible for the vasodilator action of the roots of Gentiana kochiana. Planta Med. 2003, 69, 770–772. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, J.G.; Wang, M.Z.; Che, C.T.; Yeung, J.H. Vasodilatory actions of xanthones isolated from a Tibetan herb, Halenia elliptica. Phytomedicine 2009, 16, 1144–1150. [Google Scholar] [CrossRef]
- Zheoat, A.M.; Gray, A.I.; Igoli, J.O.; Ferro, V.A.; Drummond, R.M. Hibiscus acid from Hibiscus sabdariffa (Malvaceae) has a vasorelaxant effect on the rat aorta. Fitoterapia 2019, 134, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, M.G.; Oropeza, M.V.; Villanueva, T.; Aguilar, M.I.; Delgado, G.; Ponce, H.A. Xanthorrhizol induces endothelium-independent relaxation of rat thoracic aorta. Life Sci. 2000, 67, 327–333. [Google Scholar] [CrossRef]
- Kim, B.; Lee, K.; Chinannai, K.S.; Ham, I.; Bu, Y.; Kim, H.; Choi, H.Y. Endothelium-Independent Vasorelaxant Effect of Ligusticum jeholense Root and Rhizoma on Rat Thoracic Aorta. Molecules 2015, 20, 10721–10733. [Google Scholar] [CrossRef] [Green Version]
- El Bardai, S.; Morel, N.; Wibo, M.; Fabre, N.; Llabres, G.; Lyoussi, B.; Quetin-Leclercq, J. The vasorelaxant activity of marrubenol and marrubiin from Marrubium vulgare. Planta Med. 2003, 69, 75–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Bardai, S.; Wibo, M.; Hamaide, M.C.; Lyoussi, B.; Quetin-Leclercq, J.; Morel, N. Characterisation of marrubenol, a diterpene extracted from Marrubium vulgare, as an L-type calcium channel blocker. Br. J. Pharmacol. 2003, 140, 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- Rendón-Vallejo, P.; Hernández-Abreu, O.; Vergara-Galicia, J.; Millán-Pacheco, C.; Mejía, A.; Ibarra-Barajas, M.; Estrada-Soto, S. Ex vivo study of the vasorelaxant activity induced by phenanthrene derivatives isolated from Maxillaria densa. J. Nat. Prod. 2012, 75, 2241–2245. [Google Scholar] [CrossRef]
- Gilani, A.H.; Mandukhail, S.U.; Iqbal, J.; Yasinzai, M.; Aziz, N.; Khan, A. Antispasmodic and vasodilator activities of Morinda citrifolia root extract are mediated through blockade of voltage dependent calcium channels. BMC Complement. Altern. Med. 2010, 10, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanni, D.M.; Fatoki, T.H.; Kolawole, A.O.; Akinmoladun, A.C. Xeronine structure and function: Computational comparative mastery of its mystery. In Silico Pharmacol 2017, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Liew, S.Y.; Mukhtar, M.R.; Hadi, A.H.; Awang, K.; Mustafa, M.R.; Zaima, K.; Morita, H.; Litaudon, M. Naucline, a new indole alkaloid from the bark of Nauclea officinalis. Molecules 2012, 17, 4028–4036. [Google Scholar] [CrossRef] [Green Version]
- Ishizuka, M.; Koga, I.; Zaima, K.; Kaneda, T.; Hirasawa, Y.; Hadi, A.H.; Morita, H. Vasorelaxant effects on rat aortic artery by two types of indole alkaloids, naucline and cadamine. J. Nat. Med. 2013, 67, 399–403. [Google Scholar] [CrossRef]
- Berrougui, H.; Herrera-Gonzalez, M.D.; Marhuenda, E.; Ettaib, A.; Hmamouchi, M. Relaxant activity of methanolic extract from seeds of Peganum harmala on isolated rat aorta. Therapie 2002, 57, 236–241. [Google Scholar] [PubMed]
- Shi, C.C.; Liao, J.F.; Chen, C.F. Comparative study on the vasorelaxant effects of three harmala alkaloids in vitro. Jpn. J. Pharmacol. 2001, 85, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Berrougui, H.; Martín-Cordero, C.; Khalil, A.; Hmamouchi, M.; Ettaib, A.; Marhuenda, E.; Herrera, M.D. Vasorelaxant effects of harmine and harmaline extracted from Peganum harmala L. seeds in isolated rat aorta. Pharmacol. Res. 2006, 54, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.L.; Huang, F.; Chen, S.B.; Yang, D.J.; Chen, S.L.; Yang, J.S.; Xiao, P.G. Xanthones from the roots of Polygala caudata and their antioxidation and vasodilatation activities in vitro. Planta Med. 2005, 71, 372–375. [Google Scholar] [CrossRef]
- Fang, L.H.; Mu, Y.M.; Lin, L.L.; Xiao, P.G.; Du, G.H. Vasorelaxant effect of euxanthone in the rat thoracic aorta. Vascul. Pharmacol. 2006, 45, 96–101. [Google Scholar] [CrossRef]
- Lee, K.; Ham, I.; Yang, G.; Lee, M.; Bu, Y.; Kim, H.; Choi, H.Y. Vasorelaxant effect of Prunus yedoensis bark. BMC Complement. Altern. Med. 2013, 13, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Jo, C.; Choi, H.Y.; Lee, K. Prunetin Relaxed Isolated Rat Aortic Rings by Blocking Calcium Channels. Molecules 2018, 23, 2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghayur, M.N.; Gilani, A.H. Studies on cardio-suppressant, vasodilator and tracheal relaxant effects of Sarcococca saligna. Arch. Pharm. Res. 2006, 29, 990–997. [Google Scholar] [CrossRef]
- Sargazi Zadeh, G.; Panahi, N. Endothelium-independent vasorelaxant activity of Trachyspermum ammi essential oil on rat aorta. Clin. Exp. Hypertens. 2017, 39, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.B.; Chen, C.X.; Sim, S.M.; Kwan, C.Y. In vitro vasodilator mechanisms of the indole alkaloids rhynchophylline and isorhynchophylline, isolated from the hook of Uncaria rhynchophylla (Miquel). Naunyn Schmiedebergs Arch. Pharmacol. 2004, 369, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Horie, S.; Yano, S.; Aimi, N.; Sakai, S.; Watanabe, K. Effects of hirsutine, an antihypertensive indole alkaloid from Uncaria rhynchophylla, on intracellular calcium in rat thoracic aorta. Life Sci. 1992, 50, 491–498. [Google Scholar] [CrossRef]
- Hernández-Abreu, O.; Castillo-España, P.; León-Rivera, I.; Ibarra-Barajas, M.; Villalobos-Molina, R.; González-Christen, J.; Vergara-Galicia, J.; Estrada-Soto, S. Antihypertensive and vasorelaxant effects of tilianin isolated from Agastache mexicana are mediated by NO/cGMP pathway and potassium channel opening. Biochem. Pharmacol. 2009, 78, 54–61. [Google Scholar] [CrossRef]
- Flores-Flores, A.; Hernández-Abreu, O.; Rios, M.Y.; León-Rivera, I.; Aguilar-Guadarrama, B.; Castillo-España, P.; Perea-Arango, I.; Estrada-Soto, S. Vasorelaxant mode of action of dichloromethane-soluble extract from Agastache mexicana and its main bioactive compounds. Pharm. Biol. 2016, 54, 2807–2813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.T.; Lau, C.W.; Chan, F.L.; Yao, X.; Chen, Z.Y.; He, Z.D.; Huang, Y. Vasorelaxant effects of cardamonin and alpinetin from Alpinia henryi K. Schum. J. Cardiovasc. Pharmacol. 2001, 37, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Fusi, F.; Cavalli, M.; Mulholland, D.; Crouch, N.; Coombes, P.; Dawson, G.; Bova, S.; Sgaragli, G.; Saponara, S. Cardamonin is a bifunctional vasodilator that inhibits Ca(v)1.2 current and stimulates K(Ca)1.1 current in rat tail artery myocytes. J. Pharmacol. Exp. Ther. 2010, 332, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Channa, S.; Dar, A.; Ahmed, S. Evaluation of Alstonia scholaris leaves for broncho-vasodilatory activity. J. Ethnopharmacol. 2005, 97, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Bello, I.; Usman, N.S.; Mahmud, R.; Asmawi, M.Z. Mechanisms underlying the antihypertensive effect of Alstonia scholaris. J. Ethnopharmacol. 2015, 175, 422–431. [Google Scholar] [CrossRef]
- Arai, H.; Zaima, K.; Mitsuta, E.; Tamamoto, H.; Saito, A.; Hirasawa, Y.; Rahman, A.; Kusumawati, I.; Zaini, N.C.; Morita, H. Alstiphyllanines I-O, ajmaline type alkaloids from Alstonia macrophylla showing vasorelaxant activity. Bioorg. Med. Chem. 2012, 20, 3454–3459. [Google Scholar] [CrossRef]
- Ozolua, R.I.; Adejayan, A.; Aigbe, O.P.; Uwaya, D.O.; Argawal, A. Some characteristic relaxant effects of aqueous leaf extract of Andrographis paniculata and andrographolide on guinea pig tracheal rings. Niger. J. Physiol. Sci. 2011, 26, 119–124. [Google Scholar]
- Zhang, C.Y.; Tan, B.K. Hypotensive activity of aqueous extract of Andrographis paniculata in rats. Clin. Exp. Pharmacol. Physiol. 1996, 23, 675–678. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Tan, B.K. Vasorelaxation of rat thoracic aorta caused by 14-deoxyandrographolide. Clin. Exp. Pharmacol. Physiol. 1998, 25, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Awang, K.; Abdullah, N.H.; Hadi, A.H.; Fong, Y.S. Cardiovascular activity of labdane diterpenes from Andrographis paniculata in isolated rat hearts. J. Biomed. Biotechnol. 2012, 2012, 876458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Shin, M.S.; Ham, I.; Choi, H.Y. Investigation of the mechanisms of Angelica dahurica root extract-induced vasorelaxation in isolated rat aortic rings. BMC Complement. Altern. Med. 2015, 15, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, G.G.; Wei, W.; Yang, X.W.; Zhang, Y.B.; Xu, W.; Gong, N.B.; Lü, Y.; Wang, F.F. New coumarins from the roots of Angelica dahurica var. formosana cv. Chuanbaizhi and their inhibition on NO production in LPS-activated RAW264.7 cells. Fitoterapia 2015, 101, 194–200. [Google Scholar] [CrossRef]
- He, J.Y.; Zhang, W.; He, L.C.; Cao, Y.X. Imperatorin induces vasodilatation possibly via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release. Eur. J. Pharmacol. 2007, 573, 170–175. [Google Scholar] [CrossRef]
- Nie, H.; Meng, L.Z.; Zhou, J.Y.; Fan, X.F.; Luo-, Y.; Zhang, G.W. Imperatorin is responsible for the vasodilatation activity of Angelica Dahurica var. Formosana regulated by nitric oxide in an endothelium-dependent manner. Chin. J. Integr. Med. 2009, 15, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Rhyu, M.R.; Kim, J.H.; Kim, E.Y. Radix angelica elicits both nitric oxide-dependent and calcium influx-mediated relaxation in rat aorta. J. Cardiovasc. Pharmacol. 2005, 46, 99–104. [Google Scholar] [CrossRef]
- Matsuura, M.; Kimura, Y.; Nakata, K.; Baba, K.; Okuda, H. Artery relaxation by chalcones isolated from the roots of Angelica keiskei. Planta Med. 2001, 67, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Park, Y.S.; Kim, T.J.; Fang, L.H.; Ahn, H.Y.; Hong, J.T.; Kim, Y.; Lee, C.K.; Yun, Y.P. Endothelium-dependent vasorelaxant and antiproliferative effects of apigenin. Gen. Pharmacol. 2000, 35, 341–347. [Google Scholar] [CrossRef]
- Ko, F.N.; Huang, T.F.; Teng, C.M. Vasodilatory action mechanisms of apigenin isolated from Apium graveolens in rat thoracic aorta. Biochim. Biophys. Acta 1991, 1115, 69–74. [Google Scholar] [CrossRef]
- Ma, X.; He, D.; Ru, X.; Chen, Y.; Cai, Y.; Bruce, I.C.; Xia, Q.; Yao, X.; Jin, J. Apigenin, a plant-derived flavone, activates transient receptor potential vanilloid 4 cation channel. Br. J. Pharmacol. 2012, 166, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Dar, A.; Channa, S. Calcium antagonistic activity of Bacopa monniera on vascular and intestinal smooth muscles of rabbit and guinea-pig. J. Ethnopharmacol. 1999, 66, 167–174. [Google Scholar] [CrossRef]
- Channa, S.; Dar, A.; Yaqoob, M.; Anjum, S.; Sultani, Z. Broncho-vasodilatory activity of fractions and pure constituents isolated from Bacopa monniera. J. Ethnopharmacol. 2003, 86, 27–35. [Google Scholar] [CrossRef]
- Kamkaew, N.; Paracha, T.U.; Ingkaninan, K.; Waranuch, N.; Chootip, K. Vasodilatory Effects and Mechanisms of Action of. Molecules 2019, 24, 2243. [Google Scholar] [CrossRef] [Green Version]
- Kamkaew, N.; Scholfield, C.N.; Ingkaninan, K.; Maneesai, P.; Parkington, H.C.; Tare, M.; Chootip, K. Bacopa monnieri and its constituents is hypotensive in anaesthetized rats and vasodilator in various artery types. J. Ethnopharmacol. 2011, 137, 790–795. [Google Scholar] [CrossRef]
- Ko, W.H.; Yao, X.Q.; Lau, C.W.; Law, W.I.; Chen, Z.Y.; Kwok, W.; Ho, K.; Huang, Y. Vasorelaxant and antiproliferative effects of berberine. Eur. J. Pharmacol. 2000, 399, 187–196. [Google Scholar] [CrossRef]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crişan, G.; Buzoianu, A.D. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front. Pharmacol. 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, R.J.; Jackson, K.G.; Minihane, A.M. Green tea (Camellia sinensis) catechins and vascular function. Br. J. Nutr. 2009, 102, 1790–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghayur, M.N.; Khan, H.; Gilani, A.H. Antispasmodic, bronchodilator and vasodilator activities of (+)-catechin, a naturally occurring flavonoid. Arch. Pharm. Res. 2007, 30, 970–975. [Google Scholar] [CrossRef]
- Aggio, A.; Grassi, D.; Onori, E.; D’Alessandro, A.; Masedu, F.; Valenti, M.; Ferri, C. Endothelium/nitric oxide mechanism mediates vasorelaxation and counteracts vasoconstriction induced by low concentration of flavanols. Eur. J. Nutr. 2013, 52, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, E.; Campos-Toimil, M.; Justiniano-Basaran, H.; Lugnier, C.; Orallo, F. Study of the mechanisms involved in the vasorelaxation induced by (-)-epigallocatechin-3-gallate in rat aorta. Br. J. Pharmacol. 2006, 147, 269–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, M.R.; Lograno, M.D. Epigallocatechin-3-gallate relaxes the isolated bovine ophthalmic artery: Involvement of phosphoinositide 3-kinase-Akt-nitric oxide/cGMP signalling pathway. Eur. J. Pharmacol. 2009, 608, 48–53. [Google Scholar] [CrossRef]
- Assaidi, A.; Dib, I.; Tits, M.; Angenot, L.; Bellahcen, S.; Bouanani, N.; Legssyer, A.; Aziz, M.; Mekhfi, H.; Bnouham, M.; et al. Chenopodium ambrosioides induces an endothelium-dependent relaxation of rat isolated aorta. J. Integr. Med. 2019, 17, 115–124. [Google Scholar] [CrossRef]
- Jiang, H.D.; Cai, J.; Xu, J.H.; Zhou, X.M.; Xia, Q. Endothelium-dependent and direct relaxation induced by ethyl acetate extract from Flos Chrysanthemi in rat thoracic aorta. J. Ethnopharmacol. 2005, 101, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Affuso, F.; Mercurio, V.; Fazio, V.; Fazio, S. Cardiovascular and metabolic effects of Berberine. World J. Cardiol. 2010, 2, 71–77. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Lam, K.S.; Li, Y.; Wong, W.T.; Ye, H.; Lau, C.W.; Vanhoutte, P.M.; Xu, A. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc. Res. 2009, 82, 484–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, L.L.; Fang, L.H.; Qin, H.L.; Lv, Y.; Du, G.H. Analysis of the mechanisms underlying the vasorelaxant action of coptisine in rat aortic rings. Am. J. Chin. Med. 2012, 40, 309–320. [Google Scholar] [CrossRef]
- Tan, H.L.; Chan, K.G.; Pusparajah, P.; Duangjai, A.; Saokaew, S.; Mehmood Khan, T.; Lee, L.H.; Goh, B.H. Rhizoma Coptidis: A Potential Cardiovascular Protective Agent. Front. Pharmacol. 2016, 7, 362. [Google Scholar] [CrossRef] [Green Version]
- Qiao, M.M.; Liu, F.; Liu, Y.; Guo, L.; Zhou, Q.M.; Peng, C.; Xiong, L. Curcumane C and (±)-curcumane D, an unusual seco-cadinane sesquiterpenoid and a pair of unusual nor-bisabolane enantiomers with significant vasorelaxant activity from Curcuma longa. Bioorg. Chem. 2019, 92, 103275. [Google Scholar] [CrossRef]
- Yu, S.M.; Cheng, Z.J.; Kuo, S.C. Endothelium-dependent relaxation of rat aorta by butein, a novel cyclic AMP-specific phosphodiesterase inhibitor. Eur. J. Pharmacol. 1995, 280, 69–77. [Google Scholar] [CrossRef]
- Yu, S.M.; Kuo, S.C. Vasorelaxant effect of isoliquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta. Br. J. Pharmacol. 1995, 114, 1587–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, F.Y.; Luo, M.; Zhao, C.J.; Li, C.Y.; Wang, W.; Gu, C.B.; Wei, Z.F.; Zu, Y.G.; Fu, Y.J. Simple and efficient preparation of biochanin A and genistein from Dalbergia odorifera T. Chen leaves using macroporous resin followed by flash chromatography. Sep. Purif. Technol. 2013, 120, 310–318. [Google Scholar] [CrossRef]
- Kumar, T.; Sharma, M.; Rana, A.; Lingaraju, M.C.; Parida, S.; Kumar, D.; Singh, T.U. Biochanin-A elicits relaxation in coronary artery of goat through different mechanisms. Res. Vet. Sci 2020, 131, 206–214. [Google Scholar] [CrossRef]
- Wang, H.P.; Mei, R.H.; Li, X.Y.; Zhao, M.H.; Lu, Y.; Xia, Q.; Bruce, I. Endothelium-independent Vasorelaxant Effect of the Phyto-oestrogen Biochanin A on Rat Thoracic Aorta. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; Volume 2005, pp. 2244–2247. [Google Scholar] [CrossRef]
- Choi, S.; Jung, W.S.; Cho, N.S.; Ryu, K.H.; Jun, J.Y.; Shin, B.C.; Chung, J.H.; Yeum, C.H. Mechanisms of phytoestrogen biochanin A-induced vasorelaxation in renovascular hypertensive rats. Kidney Res. Clin. Pract. 2014, 33, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Migkos, T.; Pourová, J.; Vopršalová, M.; Auger, C.; Schini-Kerth, V.; Mladěnka, P. Biochanin A, the Most Potent of 16 Isoflavones, Induces Relaxation of the Coronary Artery Through the Calcium Channel and cGMP-dependent Pathway. Planta Med. 2020, 86, 708–716. [Google Scholar] [CrossRef]
- Sá, R.e.C.; Almeida, R.N.; Bhattacharyya, J. Pharmaceutical properties and toxicology of Dioclea grandiflora. Pharm. Biol. 2013, 51, 659–667. [Google Scholar] [CrossRef] [Green Version]
- Trigueiro, F.; Cortes, S.F.; Almeida, R.N.; Lemos, V.S. Endothelium-independent vasorelaxant effect of dioclein, a new flavonoid isolated from Dioclea grandiflora, in the rat aorta. J. Pharm. Pharmacol. 2000, 52, 1431–1434. [Google Scholar] [CrossRef]
- Côrtes, S.F.; Rezende, B.A.; Corriu, C.; Medeiros, I.A.; Teixeira, M.M.; Lopes, M.J.; Lemos, V.S. Pharmacological evidence for the activation of potassium channels as the mechanism involved in the hypotensive and vasorelaxant effect of dioclein in rat small resistance arteries. Br. J. Pharmacol. 2001, 133, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.L.; Lugnier, C.; Keravis, T.; Lopes, M.J.; Fantini, F.A.; Schmitt, M.; Cortes, S.F.; Lemos, V.S. The flavonoid dioclein is a selective inhibitor of cyclic nucleotide phosphodiesterase type 1 (PDE1) and a cGMP-dependent protein kinase (PKG) vasorelaxant in human vascular tissue. Eur. J. Pharmacol. 2009, 620, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Lemos, V.S.; Côrtes, S.F.; dos Santos, M.H.; Ellena, J.; Moreira, M.E.; Doriguetto, A.C. Structure and vasorelaxant activity of floranol, a flavonoid isolated from the roots of Dioclea grandiflora. Chem. Biodivers. 2006, 3, 635–645. [Google Scholar] [CrossRef]
- Marques, A.M.; Provance, D.W.; Kaplan, M.A.C.; Figueiredo, M.R. Echinodorus grandiflorus: Ethnobotanical, phytochemical and pharmacological overview of a medicinal plant used in Brazil. Food Chem. Toxicol. 2017, 109, 1032–1047. [Google Scholar] [CrossRef]
- Tibiriçá, E.; Almeida, A.; Caillleaux, S.; Pimenta, D.; Kaplan, M.A.; Lessa, M.A.; Figueiredo, M.R. Pharmacological mechanisms involved in the vasodilator effects of extracts from Echinodorus grandiflorus. J. Ethnopharmacol. 2007, 111, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Prando, T.B.; Barboza, L.N.; Araújo, V.e.O.; Gasparotto, F.M.; de Souza, L.M.; Lourenço, E.L.; Gasparotto Junior, A. Involvement of bradykinin B2 and muscarinic receptors in the prolonged diuretic and antihypertensive properties of Echinodorus grandiflorus (Cham. & Schltdl.) Micheli. Phytomedicine 2016, 23, 1249–1258. [Google Scholar] [CrossRef]
- Peng, H.; Xing, Y.; Gao, L.; Zhang, L.; Zhang, G. Simultaneous separation of apigenin, luteolin and rosmarinic acid from the aerial parts of the copper-tolerant plant Elsholtzia splendens. Environ. Sci. Pollut. Res. Int. 2014, 21, 8124–8132. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.P.; Lu, J.F.; Zhang, G.L.; Li, X.Y.; Peng, H.Y.; Lu, Y.; Zhao, L.; Ye, Z.G.; Bruce, I.C.; Xia, Q.; et al. Endothelium-dependent and -independent vasorelaxant actions and mechanisms induced by total flavonoids of Elsholtzia splendens in rat aortas. Environ. Toxicol. Pharmacol. 2014, 38, 453–459. [Google Scholar] [CrossRef]
- Ferreira, H.C.; Serra, C.P.; Endringer, D.C.; Lemos, V.S.; Braga, F.C.; Cortes, S.F. Endothelium-dependent vasodilation induced by Hancornia speciosa in rat superior mesenteric artery. Phytomedicine 2007, 14, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.S.; Choi, A.O.; Jones, R.L.; Lin, G. Mechanisms underlying the vasorelaxing effects of butylidenephthalide, an active constituent of Ligusticum chuanxiong, in rat isolated aorta. Eur. J. Pharmacol. 2006, 537, 111–117. [Google Scholar] [CrossRef]
- Cao, Y.X.; Zhang, W.; He, J.Y.; He, L.C.; Xu, C.B. Ligustilide induces vasodilatation via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release. Vascul. Pharmacol. 2006, 45, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, S.S.; Cheng, T.Y.; Lin, G. Relaxation effects of ligustilide and senkyunolide A, two main constituents of Ligusticum chuanxiong, in rat isolated aorta. J. Ethnopharmacol. 2007, 111, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Kim, J.H.; Rhyu, M.R. Endothelium-independent vasorelaxation by Ligusticum wallichii in isolated rat aorta: Comparison of a butanolic fraction and tetramethylpyrazine, the main active component of Ligusticum wallichii. Biol. Pharm. Bull. 2010, 33, 1360–1363. [Google Scholar] [CrossRef] [Green Version]
- Guedes, D.N.; Silva, D.F.; Barbosa-Filho, J.M.; de Medeiros, I.A. Endothelium-dependent hypotensive and vasorelaxant effects of the essential oil from aerial parts of Mentha x villosa in rats. Phytomedicine 2004, 11, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Guedes, D.N.; Silva, D.F.; Barbosa-Filho, J.M.; Medeiros, I.A. Muscarinic agonist properties involved in the hypotensive and vasorelaxant responses of rotundifolone in rats. Planta Med. 2002, 68, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Guedes, D.N.; Silva, D.F.; Barbosa-Filho, J.M.; Medeiros, I.A. Calcium antagonism and the vasorelaxation of the rat aorta induced by rotundifolone. Braz. J. Med. Biol. Res. 2004, 37, 1881–1887. [Google Scholar] [CrossRef]
- Silva, D.F.; Araújo, I.G.; Albuquerque, J.G.; Porto, D.L.; Dias, K.L.; Cavalcante, K.V.; Veras, R.C.; Nunes, X.P.; Barbosa-Filho, J.M.; Araújo, D.A.; et al. Rotundifolone-induced relaxation is mediated by BK(Ca) channel activation and Ca(v) channel inactivation. Basic Clin. Pharmacol. Toxicol. 2011, 109, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Dongmo, A.; Kamanyi, M.A.; Tan, P.V.; Bopelet, M.; Vierling, W.; Wagner, H. Vasodilating properties of the stem bark extract of Mitragyna ciliata in rats and guinea pigs. Phytother. Res. 2004, 18, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Zaima, K.; Takeyama, Y.; Koga, I.; Saito, A.; Tamamoto, H.; Azziz, S.S.; Mukhtar, M.R.; Awang, K.; Hadi, A.H.; Morita, H. Vasorelaxant effect of isoquinoline derivatives from two species of Popowia perakensis and Phaeanthus crassipetalus on rat aortic artery. J. Nat. Med. 2012, 66, 421–427. [Google Scholar] [CrossRef]
- Senejoux, F.; Girard-Thernier, C.; Berthelot, A.; Bévalot, F.; Demougeot, C. New insights into the mechanisms of the vasorelaxant effects of apocynin in rat thoracic aorta. Fundam. Clin. Pharmacol. 2013, 27, 262–270. [Google Scholar] [CrossRef]
- Perassa, L.A.; Graton, M.E.; Potje, S.R.; Troiano, J.A.; Lima, M.S.; Vale, G.T.; Pereira, A.A.; Nakamune, A.C.; Sumida, D.H.; Tirapelli, C.R.; et al. Apocynin reduces blood pressure and restores the proper function of vascular endothelium in SHR. Vascul. Pharmacol. 2016, 87, 38–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Romo-Mancillas, A.; López-Vallejo, F.H.; Solís-Gutiérrez, M.; Rojas-Molina, J.I.; Rivero-Cruz, F. Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Ursolic Acid and Uvaol from Black Cherry Prunus serotina Fruits. Molecules 2016, 21, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.Y.; Shin, H.K.; Lee, Y.J.; Choi, Y.W.; Bae, S.S.; Kim, C.D. The mechanism of vasorelaxation induced by Schisandra chinensis extract in rat thoracic aorta. J. Ethnopharmacol. 2009, 121, 69–73. [Google Scholar] [CrossRef]
- Park, J.Y.; Shin, H.K.; Choi, Y.W.; Lee, Y.J.; Bae, S.S.; Han, J.; Kim, C.D. Gomisin A induces Ca2+-dependent activation of eNOS in human coronary artery endothelial cells. J. Ethnopharmacol. 2009, 125, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Lee, S.J.; Yun, M.R.; Seo, K.W.; Bae, S.S.; Park, J.W.; Lee, Y.J.; Shin, W.J.; Choi, Y.W.; Kim, C.D. Gomisin A from Schisandra chinensis induces endothelium-dependent and direct relaxation in rat thoracic aorta. Planta Med. 2007, 73, 1537–1542. [Google Scholar] [CrossRef]
- Ding, L.; Jia, C.; Zhang, Y.; Wang, W.; Zhu, W.; Chen, Y.; Zhang, T. Baicalin relaxes vascular smooth muscle and lowers blood pressure in spontaneously hypertensive rats. Biomed. Pharmacother. 2019, 111, 325–330. [Google Scholar] [CrossRef]
- Lin, Y.L.; Dai, Z.K.; Lin, R.J.; Chu, K.S.; Chen, I.J.; Wu, J.R.; Wu, B.N. Baicalin, a flavonoid from Scutellaria baicalensis Georgi, activates large-conductance Ca2+-activated K+ channels via cyclic nucleotide-dependent protein kinases in mesenteric artery. Phytomedicine 2010, 17, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Paredes, A.; Palacios, J.; Quispe, C.; Nwokocha, C.R.; Morales, G.; Kuzmicic, J.; Cifuentes, F. Hydroalcoholic extract and pure compounds from Senecio nutans Sch. Bip (Compositae) induce vasodilation in rat aorta through endothelium-dependent and independent mechanisms. J. Ethnopharmacol. 2016, 192, 99–107. [Google Scholar] [CrossRef]
- Auger, C.; Chabert, P.; Lugnier, C.; Mushtaq, M.N.; Schini-Kerth, V.B. Mechanisms underlying vasorelaxation induced in the porcine coronary arteries by Thymus linearis, Benth. J. Ethnopharmacol. 2018, 225, 211–219. [Google Scholar] [CrossRef]
- Getiye, Y.; Tolessa, T.; Engidawork, E. Antihypertensive activity of 80% methanol seed extract of Calpurnia aurea (Ait.) Benth. subsp. aurea (Fabaceae) is mediated through calcium antagonism induced vasodilation. J. Ethnopharmacol 2016, 189, 99–106. [Google Scholar] [CrossRef]
- Khan, M.; Gilani, A.H. Studies on Blood Pressure Lowering, Vasodilator and Cardiac Suppressant Activities of Vitex negundo: Involvement of K+ Channel Activation and Ca++ Channel Blockade. Int. J. Pharmacol. 2015, 11, 137–142. [Google Scholar] [CrossRef]
- Dongmo, A.B.; Ndom, J.C.; Massoma, L.D.; Dzikouk, D.G.; Fomani, M.; Bissoue, N.; Kamanyi, A.; Vierling, W. Vasodilating effect of the root bark extract of Ficus saussureana on guinea pig aorta. Pharmaceutical. Biol. 2003, 41, 371–374. [Google Scholar]
- Kim, B.; Kim, K.W.; Lee, S.; Jo, C.; Lee, K.; Ham, I.; Choi, H.Y. Endothelium-dependent vasorelaxant effect of Prunus persica branch on isolated rat thoracic aorta. Nutrients 2019, 11, 1816. [Google Scholar] [CrossRef] [Green Version]
- Ramón Sánchez de Rojas, V.; Somoza, B.; Ortega, T.; Villar, A.M.; Tejerina, T. Vasodilatory effect in rat aorta of eriodictyol obtained from Satureja obovata. Planta Med. 1999, 65, 234–238. [Google Scholar] [CrossRef]
- Derojas, V.R.S.; Ortega, T.; Villar, A. Pharmacological activity of the extracts of 2 Satureja obovata varieties on isolated smooth-muscle preparations. Phytother. Res. 1994, 8, 212–217. [Google Scholar] [CrossRef]
- Ch‘ng, Y.S.; Loh, Y.C.; Tan, C.S.; Ahmad, M.; Asmawi, M.Z.; Wan Omar, W.M.; Yam, M.F. Vasorelaxant properties of Vernonia amygdalina ethanol extract and its possible mechanism. Pharm. Biol. 2017, 55, 2083–2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gkaliagkousi, E.; Gavriilaki, E.; Triantafyllou, A.; Douma, S. Clinical Significance of Endothelial Dysfunction in Essential Hypertension. Curr. Hypertens. Rep. 2015, 17, 85. [Google Scholar] [CrossRef] [PubMed]
Plant(s) | Primary/Secondary Metabolite(s) | Plant Part(s) Used | Citation(s) |
---|---|---|---|
Allium sativum L. (Amaryllidaceaee Jaume St.-Hil.) | alliin, allicin | aged garlic extract | [63,64,65,66] |
Alpinia purpurata (Vieill.) K. Schum. (Zingiberaceae Lindl.) | rutin, quercetin, kaempferol-3-O-β-D-glucuronide | leaves | [67] |
Alpinia zerumbet (Pers.) Burtt & R.M. Sm. (Zingiberaceae Lindl.) | catechin, epicatechin, rutin, quercetin, kaempferol 3-O-rutinoside, kaempferol 3-O-glucuronide, dihydro-5,6-dehydrokawain, 5,6-dehydrokawain | leaves | [67,68] |
Arbutus unedo L. (Ericaceae) | tannins, afzeline, juglamine, avicularine, quercitroside, hyperoside | leaves, roots | [69] |
Caesalpinia sappan L. (Fabaceae Lindl.) | brazilin and hematoxylin | heartwood | [70,71] |
Calicotome villosa (Poir.) Link. (Fabaceae Lindl.) | chrysin | flowers, leaves | [72,73,74] |
Canavalia DC. (Fabaceae Lindl.) | lectins | seeds | [75,76] |
Casimiroa Llave & Lex (Casimirova edulis Llave & Lex and Casimiroa pubescens Ramírez) (Rutaceae Juss.) | hernianin, imperatorin, geranyloxypsoralen 5,6,2′,3′,4′-pentamethoxyflavon | seeds, leaves | [77,78] |
Centaurium cachanlahuen (Mol.) Robinson (Gentianaceae Juss.) | xanthones | stems, flowers, leaves | [79] |
Cistus ladaniferus L. (Cistaceae Juss.) | quercetin, kaempferol, myricetin | leaves | [80] |
Coptosapelta flavescens Korth (Rubiaceae Juss.) | saponin, polyphenols | stems | [81] |
Crithmum maritimum L. (Apiaceae Lindl.) | limonene, terpinen-4-ol, carvacrol, thymol, chlorogenic acid | flowers, stems, leaves | [82] |
Croton schiedeanus Schlecht (Euphorbiaceae Juss.) | quercetin 3,7-dimethyl ether, diterpenoid and fenylbutanoid compounds | aerial parts | [83,84,85] |
Cynara scolymus L. (Asteraceae Martinov) | cymaroside, luteolin, cynarin, chlorogenic acid | leaves | [27] |
Derris (Lonchocarpus) urucu Killip & A. C. Smith (Fabaceae Lindl.) | isotirumalin | leaves | [86,87] |
Euterpe oleracea C. Martius (Arecaceae Bercht & J. Presl) | cyanidin 3-O-arabinoside, cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, epicatechine, catechine homorientin, orientin, isovitexin, taxifolin deoxyhexose | fruits | [88] |
Geum japonicum Thunberg (Rosaceae L.) | penta-O-galloyl-β-glucoside, casuariin, and 5-desgalloylstachyurin | whole plants | [89] |
Ginkgo biloba L. (Ginkgoaceae) | bilobalide | leaves | [90,91] |
Inula viscosa L. (Asteraceae Martinov) | cynarin, chlorogenic acid | leaves | [92] |
Magnolia grandiflora L. (Magnoliaceae Juss.) | vulgarenol | flower petals | [93] |
Microdesmis keayana J. Léonard (Pandanaceae) | keayanidin B, keayanin | roots | [94] |
Ocimum gratissimum L. (Lamiaceae Lindl.) | eugenol | leaves | [95,96] |
Paeonia sect. Moutan DC. (Paeoniaceae) | paeoniflorin, paeonidanin, methylpaeoniflorin, tetragalloylglucose, pentagalloylglucose | rootbark | [97] |
Panax ginseng C. A. Meyer (Araliaceae Juss.) | ginsenoside-Rg1, ginsenoside Rb1 | roots | [28,98,99] |
Prunella vulgaris L. (Lamiaceae Lindl.) | cynaroside, luteolin, ursolic acid, betulinic acid, quercetin | flowering spike | [100,101] |
Raphanus sativus L. (Brassicaceae Burnett) | sinapine thiocyanate, glucosinolates, brassinosteroids, flavonoids | seeds, leaves | [102,103] |
Rheum undulatum L. (Polygonaceae Juss.) | piceatannol, tetrahydroxystilbene, resveratrol, anthraquinone derivates | rhizomes | [104,105,106] |
Saururus chinensis (SC) Baill. (Saururaceae) | saucerneol, saucerneol D, machilin D | roots | [107] |
Selaginella tamariscina (Beauv.) Spring. (Selaginellaceae) | amentoflavone | whole plants | [108,109] |
Solanum crispum Ruiz & Pav (Solanaceae Juss.) | alkaloids, flavonoids, resins, saponins, tannins | stems, leaves | [110] |
Tabernaemontana dichotoma Roxb. ex Wall. (Apocynaceae Juss.) | 10-methoxyaffinisine, cathafoline, alstonisine | bark | [111] |
Tapirira guianensis Aubl. (Anacardiaceae Lindl.) | triterpenoids, quercetin, myricetin glycoside, hyperoside, penta-O-galloyl-β-glucoside | leaves | [112] |
Theobroma cacao L. (Malvaceae Juss.) | epicatechin, oligomeric procyanidins | seeds | [29,113,114,115,116] |
Vitis labrusca L. (Vitaceae Juss.) | vitisin C, phenolic acids, anthocyanins, flavonoids | grape skin, stems | [117,118,119] |
Vitis vinifera L. (Vitaceae Juss.) | vitisin C, phenolic acids, anthocyanins, flavonoids | grape skin, stems | [117,119,120,121,122] |
Ziziphus jujuba (L.) Mill. (Rhamnaceae Juss.) | betulinic acid | seeds | [123] |
Plant(s) | Primary/Secondary Metabolite(s) | Plant Part(s) Used | Citation(s) |
---|---|---|---|
Kaempferia galanga L. (Zingiberaceae Lindl.) | ethyl cinnamate | rhizomes | [124] |
Piper truncatum Vell. (Piperaceae C. A. Agardh) | eudesmin | leaves, stems | [34,35] |
Xylopia langdorffiana A.St.-Hil. & Tul. (Annonaceae Juss.) | labdane-302 | stems | [125,126] |
Plant(s) | Primary/Secondary Metabolite(s) | Plant Part(s) Used | Citation(s) |
---|---|---|---|
Coffea arabica L. (Rubiaceae Juss.) | caffeine, theobromine, theophylline, chlorogenic acid, quercetin, ferulic acid, kaempferol, rutin | seeds | [127,128,129] |
Epimedium L. (Berberidaceae Juss.) | icariin | young stems | [36,37,130,131,132] |
Plant(s) | Primary/Secondary Metabolite(s) | Plant Part(s) Used | Citation(s) |
---|---|---|---|
Alchemilla vulgaris L. (Rosaceae L.) | quercetin | aerial parts | [133,134] |
Ammi visnaga (L.) Lam. (Apiaceae Lindl.) | visnagin | fruits | [135] |
Calea glomerata Klatt. (Asteraceae Martinov) | flavonoids, terpenoids | aerial parts | [83,136] |
Cistus populifolius L. (Cistaceae Juss.) | diterpenoids, luteolin | leaves | [137,138] |
Cymbopogon martini (Roxb.) W.Watson (Poaceae Barnhart) | geraniol | leaves | [139] |
Garcinia kola Heckel (Guttiferae Juss.) | kolaviron | seeds | [140] |
Gentiana kochiana J.O.E. Perrier & Songeon (Gentianaceae Juss.) | gentiacaulein, gentiakochianin | roots | [141] |
Halenia elliptica D. Don (Gentianaceae Juss.) | 1-hydroxy-2,3,5-trimethoxy-xanthone (HM-1) | whole plants | [142] |
Hibiscus sabdariffa L. (Malvaceae Juss.) | hibiscus acid, garcinia acid | calyces | [143] |
Iostephane heterophylla (Cav.) Benth. (Asteraceae Martinov) | xanthorrhizol | whole plants | [144] |
Ligusticum jeholense Nakai et Kitagawa (Apiaceae Lindl.) | linoleic acid, ferulic acid, ligustilide | roots, rhizomes | [145] |
Marrubium vulgare L. (Lamiaceae Lindl.) | marrubiin, marrubenol | aerial parts | [146,147] |
Maxillaria densa Lindl. (Orchidaceae Juss.) | gymnopusin, fimbriol A, erianthridin | whole plants | [148] |
Morinda citrifolia L. (Rubiaceae Juss.) | alkaloid xeronine, phenolic compounds, sterols, flavonoids, tannins, coumarins, anthraquinones | roots | [149,150] |
Nauclea officinalis (Pierre ex Pit.) Merr. & Chun (Rubiaceae Juss.) | naucline, angustine, nauclefine, naucletine | bark | [151,152] |
Peganum harmala L. (Zygophyllaceae) | harmaline, harmine, harmalol | seeds | [153,154,155] |
Polygala caudata Rehder & E.H.Wilson (Polygalaceae Juss.) | euxanthone | roots | [156,157] |
Prunus yedoensis Matsum (Rosaceae L.) | prunetin | bark | [158,159] |
Sarcococca saligna (D. Don) Muell.-Arg. (Buxaceae Dumort.) | flavonoids | whole plants | [160] |
Trachyspermum ammi (L.) Sprague (Apiaceae Lindl.) | thymol, gamma-terpinene, p-cymene | seeds | [161] |
Uncaria rhynchophylla (Miquel) Jack (Rubiaceae Juss.) | rhynchophylline, isorhynchophylline, hirsutine | hooks | [162,163] |
Plant(s) | Primary/Secondary Metabolite(s) | Plant Part(s) Used | Citation(s) |
---|---|---|---|
Agastache Mexicana (Kunth.) Link. & Epling (Lamiaceae Lindl.) | tilianin, acecatin | aerial parts | [164,165] |
Alpinia henryi K. Schum. (Zingiberaceae Lindl.) | cardamonin, alpinetin | seeds | [166,167] |
Alstonia scholaris (L.) R. Br. (Apocynaceae Juss.) | picrinine, schloaricine, alstonamine, rhazimanine, botulin, ursolic acid, β-sitosterol | bark, leaves | [168,169] |
Alstonia macrophylla Wall. ex G. Don (Apocynaceae Juss.) | vincamedine | leaves | [170] |
Andrographis paniculata (burm. F.) Nees (Acanthaceae Juss.) | 14-deoxyandrographolide, 14-deoxy-11,12-dihydroandrographolide | leaves | [171,172,173,174] |
Angelica dahurica Benthman et Hooker (Apiaceae Lindl.) | pyranocoumarin, biscoumarin, isoimperatorin, imperatorin, phellopterin, isodemethylfuropinarine, demethylfuropinarine, decursinol | roots, rhizomes | [175,176,177,178] |
Angelica gigas Nakai (Apiaceae Lindl.) | ferulic acid | roots | [179] |
Angelica keiskei Koidz. (Apiaceae Lindl.) | xanthoangelol, 4-hydroxyderricin, xanthoangelol B, xanthoangelol E, xanthoangelol F | roots | [180] |
Apium graveolens L. var. dulce DC (Apiaceae Lindl.) | apigenin | leaves, roots | [181,182,183] |
Bacopa monnieri (L.) Pennel (Plantaginaceae Juss.) | bacoside A, bacopaside I, luteolin, apigenin | whole plants | [184,185,186,187] |
Berberis vulgaris L. (Berberidaceae Juss.) | berberine | fruits, stems bark, roots | [188,189] |
Camellia sinensis (L.) Kunzte (Theaceae D. Don) | epigallocatechin-3-gallate, epicatechin, epigallocatechin, epicatechin-3-gallate | green tea (leaves) | [190,191,192,193,194] |
Chenopodium ambrosioides L.(Amaranthaceae Juss.) | kaempferol, quercetin, isorhamnetin, catechins, delphinidin | leaves | [195] |
Chrysanthemum morifolium Ramat (Asteraceae Martinov) | luteolin-7-O-β-d-glucoside, apigenin-7-O-β-d-glucoside, acacetin-7-O-β-d-glucoside | flowers | [196] |
Coptis chinensis Franch. (Ranunculaceae Arnott) | berberine, coptisine | rhizomes | [197,198,199,200] |
Curcuma longa L. (Zingiberaceae Lindl.) | curcumane C, curcumane D, 4,5-seco-cadinane sesquiterpenoid | rhizomes | [201] |
Dalbergia odorifera T. Chen (Fabaceae Lindl.) | butein, isoliquiritigenin, biochanin A | roots, leaves | [202,203,204,205,206,207,208] |
Dioclea grandiflora Mart. ex Benth (Fabaceae Lindl.) | dioclein, floranol | roots | [209,210,211,212,213] |
Echinodorus grandiflorus (Cham. & Schltdl.) Micheli) (Alismataceae Vent.) | flavonoids, diterpenes, triterpenes | leaves | [214,215,216] |
Elsholtzia splendens Nakai (Lamiaceae Lindl.) | apigenin, luteolin | aerial parts | [217,218] |
Hancornia speciosa B. A. Gomes (Apocynaceae Juss.) | rutin | leaves | [219] |
Liqusticum wallichii Franchat (Apiaceae Lindl.) | butylidenephthalide, ligustilide, senkyunolide A, tetramethylpyrazine | rhizomes | [220,221,222,223] |
Mentha X villosa Hudson (Lamiaceae Lindl.) | rotundifolone | leaves | [224,225,226,227] |
Mitragyna ciliata aubrev. & Pellegr.(Rubiaceae Juss.) | mitragynine, mitraphylline, rhynophylline, flavonoids | stem bark | [228] |
Phaeanthus crassipetalus Becc. (Annonaceae Juss.) | limacine, pecrassipine A, backebergine | bark, leaves | [229] |
Picrorhiza kurroa L. (Plantaginaceae Juss.) | apocynin | roots | [230,231] |
Prunus serotina Ehrh (Rosaceae L.) | ursolic acid, uvaol | fruits | [232] |
Schisandra chinensis (Turcz.) Baill. (Schisandraceae Bl.) | schizandrin, γ-schizandrin, gomisin A | fruits (seeds) | [233,234,235] |
Scutellaria baicalensis Georgi (Lamiaceae Lindl.) | baicalin | roots | [236,237] |
Senecio nutans Sch. Bip. (Asteraceae Martinov) | 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone, 5-acetyl-6-hydroxy-2-isopropenyl-2,3-dihydrobenzofurane | aerial parts | [238] |
Thymus linearis Benth. (Lamiaceae Lindl.) | thymol, carvacrol | aerial parts | [239] |
Plant | Primary/Secondary Metabolite | Plant Part Used | Citation |
---|---|---|---|
Calpurnia aurea (Ait.) Benth. (Fabaceae Lindl.) | seeds | [240] | |
Vitex negundo L. (Lamiaceae Lindl.) | aerial parts | [241] | |
Ficcus saussureana DC (Moraceae Dumort.) | root bark | [242] | |
Prunus persica (L.) (Rosaceae L.) | branches | [243] | |
Satureja obovata Lag. (Lamiaceae Lindl.) | eriodictyol | [244,245] | |
Vernonia amygdalina Del. (Asteraceae Martinov) | alkaloids, flavonoids, saponins | leaves | [246] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartáková, A.; Nováková, M. Secondary Metabolites of Plants as Modulators of Endothelium Functions. Int. J. Mol. Sci. 2021, 22, 2533. https://doi.org/10.3390/ijms22052533
Bartáková A, Nováková M. Secondary Metabolites of Plants as Modulators of Endothelium Functions. International Journal of Molecular Sciences. 2021; 22(5):2533. https://doi.org/10.3390/ijms22052533
Chicago/Turabian StyleBartáková, Anna, and Marie Nováková. 2021. "Secondary Metabolites of Plants as Modulators of Endothelium Functions" International Journal of Molecular Sciences 22, no. 5: 2533. https://doi.org/10.3390/ijms22052533
APA StyleBartáková, A., & Nováková, M. (2021). Secondary Metabolites of Plants as Modulators of Endothelium Functions. International Journal of Molecular Sciences, 22(5), 2533. https://doi.org/10.3390/ijms22052533