Characterization and Genetic Mapping of Black Root Rot Resistance in Gossypium arboreum L.
Abstract
:1. Introduction
2. Results
2.1. Classification of BRR Fungal Species Infecting Australian Cotton
2.2. Microscopic Characterization of BRR Infection in BM13H and YZ
2.3. Comparative Transcriptome Analysis in BM13H and YZ Accessions
2.4. Inheritance of BBR Resistance
2.5. Genetic Mapping of Black Root Rot Resistance
2.6. Fine Mapping of BRR01
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Identification of BRR Isolate, Inoculum Preparation and Inoculation System
4.3. Plant DNA Sample Preparation and Genotyping
4.4. Linkage and QTL Analysis
4.5. Total RNA Extraction and Transcriptome Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nel, W.J.; Duong, T.A.; Wingfield, B.D.; Wingfield, M.J.; de Beer, Z.W. A new genus and species for the globally important, multihost root pathogen Thielaviopsis basicola. Plant Pathol. 2018, 67, 871–882. [Google Scholar] [CrossRef]
- Tsao, P.H.; Bricker, J.L. Chlamydospores of Thielaviopsis basicola as surviving propagules in natural soils. Phytopathology 1966, 56, 1012–1014. [Google Scholar]
- Hillocks, R.J. Seedling diseases. In Cotton Diseases; Hillocks, R.J., Ed.; CAB International: Wallingford, UK, 1992; pp. 1–39. [Google Scholar]
- Allen, S.J. Black Root Rot. In Compendium of Cotton Diseases, 2nd ed.; Kirkpatrick, T., Rothrock, C., Eds.; APS Press: St Paul, MN, USA, 2001; pp. 16–17. [Google Scholar]
- Nehl, D.B.; Allen, S.J.; Mondal, A.H.; Lonergan, P.A. Black root rot: A pandemic in Australian cotton. Australas. Plant Pathol. 2004, 33, 87–95. [Google Scholar] [CrossRef]
- Pereg, L.L. Black root rot of cotton in Australia: The host, the pathogen and disease management. Crop Pasture Sci. 2013, 64, 1112–1126. [Google Scholar] [CrossRef]
- Walker, N.R.; Kirkpatrick, T.L.; Rothrock, C.S. Interaction between Meloidogyne incognita and Thielaviopsis basicola on cotton (Gossypium hirsutum). J. Nematol. 1998, 30, 415–422. [Google Scholar] [PubMed]
- Honess, T. Atiological Aspects of Black Root Rot of Cotton. Ph.D. Thesis, University of New England, Armidale, Australia, 1994. [Google Scholar]
- Wang, H.P.; Davis, R.M. Susceptibility of selected cotton cultivars to seedling disease pathogens and benefits of chemical seed treatments. Plant Dis. 1997, 81, 1085–1088. [Google Scholar] [CrossRef]
- Wheeler, T.; Gannaway, J. 1644 Identification of germplasm resistant to Thielaviopsis basicola in the USDA cotton germplasm collection. In Proceedings of the 4th World Cotton Research Conference, Lubbock, TX, USA, 10–14 September 2007; International Cotton Advisory Committee: Washington, DC, USA; Lubbock, TX, USA, 2007. [Google Scholar]
- Wheeler, T.A.; Gannaway, J.R.; Keating, K. Identification of resistance to Thielaviopsis basicola in diploid cotton. Plant Dis. 1999, 83, 831–833. [Google Scholar] [CrossRef] [Green Version]
- Niu, C.; Lister, H.E.; Nguyen, B.; Wheeler, T.A.; Wright, R.J. Resistance to Thielaviopsis basicola in the cultivated A genome cotton. Theor. Appl. Genet. 2008, 117, 1313–1323. [Google Scholar] [CrossRef]
- Miyazaki, J.; Stiller, W.N.; Wilson, L.J. Novel cotton germplasm with host plant resistance to twospotted spider mite. Field Crop. Res. 2012, 134, 114–121. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications—A Laboratory Manual; Innis, M., Gelfand, D., Sninsky, J., White, T., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Coumans, J.V.F.; Harvey, J.; Backhouse, D.; Poljak, A.; Raftery, M.J.; Nehl, D.; Katz, M.E.; Pereg, L. Proteomic assessment of host-associated microevolution in the fungus Thielaviopsis basicola. Environ. Microbiol. 2011, 13, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Huang, G.; He, S.; Yang, Z.; Sun, G.; Ma, X.; Li, N.; Zhang, X.; Sun, J.; Liu, M.; et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat. Genet. 2018, 50, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Van Ooijen, J.W. MapQTL® 5, Software for Mapping of Quantitative Triat Loci in Experimental Populations, 5th ed.; Kyazma, B.V.: Wageningen, The Netherlands, 2004. [Google Scholar]
- Nakane, R.; Miki, S.; Ikeda, K.; Sakai, H.; Hayashi, K.; Usami, T. First report of black root rot of lettuce in Japan caused by Berkeleyomyces rouxiae. J. Gen. Plant Pathol. 2019, 85, 436–439. [Google Scholar] [CrossRef]
- King, C.J.; Presley, J.T. A root rot of cotton caused by Thielaviopsis basicola. Phytopathology 1942, 32, 752–761. [Google Scholar]
- Mathre, D.E.; Ravenscroft, A.V.; Garber, R.H. The role of Thielaviopsis basicola as a primary cause of yield reduction in cotton in California. Phytopathology 1966, 56, 1213–1216. [Google Scholar]
- Conant, G. Histological studies of resistance in tobacco to Thielaviopsis basicola. Am. J. Bot. 1927, 14, 457–480. [Google Scholar] [CrossRef]
- Hood, M.E.; Shew, H.D. Pathogenesis of Thielaviopsis basicola on a susceptible and a resistant cultivar of burley tobacco. Phytopathology 1996, 86, 38–44. [Google Scholar] [CrossRef]
- Hood, M.E.; Shew, H.D. Initial cellular interactions between Thielaviopsis basicola and tobacco root hairs. Phytopathology 1997, 87, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Christou, T. Penetration and host-parasite relationship of Thielaviopsis basicola in the bean plant. Phytopathology 1962, 52, 194–198. [Google Scholar]
- Mims, C.W.; Copes, W.E.; Richardson, E.A. Ultrastructure of the penetration and infection of pansy roots by Thielaviopsis basicola. Phytopathology 2000, 90, 843–850. [Google Scholar] [CrossRef]
- Mosma, S.; Struck, C. Studies on penetration, infection and colonization of lupin roots infected by Thielaviopsis basicola. Sci. Res. Rep. 2013, 3, 97–101. [Google Scholar]
- Clayton, E.E. The study of resistance to the black root rot disease of tobacco. Tob. Sci. 1969, 13, 30–37. [Google Scholar]
- Haji, H.M.; Brammall, R.A.; Van Hooren, D.L. Effect of the Nicotiana debneyi black root rot resistance gene on the yield and quality characteristics of flue-cured tobacco in Ontario. Can. J. Plant Sci. 2003, 83, 939–942. [Google Scholar] [CrossRef]
- Coumans, J.V.F.; Polijak, A.; Raftery, M.J.; Backhouse, D.; Pereg-Gerk, L. Analysis of cotton (Gossypium hirsutum) root proteomes during a compatible interaction with the black root rot fungus Thielaviopsis basicola. Proteomics 2009, 9, 335–349. [Google Scholar] [CrossRef]
- Yang, Z.E.; Ge, X.Y.; Yang, Z.R.; Qin, W.Q.; Sun, G.F.; Wang, Z.; Li, Z.; Liu, J.; Wu, J.; Wang, Y.; et al. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, C.L.; Brown, A.H.D.; Stewart, J.M.; Kilby, M.J.; Grace, J.P. Production of fertile hybrid germplasm with diploid Australian Gossypium species for cotton improvement. Euphytica 1999, 108, 199–213. [Google Scholar] [CrossRef]
- Sacks, E.J.; Robinson, A.F. Introgression of resistance to reniform nematode (Rotylenchulus reniformis) into upland cotton (Gossypium hirsutum) from Gossypium arboreum and a G. hirsutum/Gossypium aridum bridging line. Field Crop. Res. 2009, 112, 1–6. [Google Scholar] [CrossRef]
- Wendel, J.F.; Cronn, R.C. Polyploidy and the evolutionary history of cotton. Adv. Agron. 2003, 78, 139–186. [Google Scholar]
- Robinson, A.F.; Bell, A.A.; Dighe, N.D.; Menz, M.A.; Nichols, P.L.; Stelly, D.M. Introgression of resistance to nematode Rotylenchulus reniformis into upland cotton (Gossypium hirsutum) from Gossypium longicalyx. Crop Sci. 2007, 47, 1865–1877. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Fan, L.; Liu, Y.; Xu, H.; Llewellyn, D.; Wilson, I. miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLoS ONE 2013, 8, e84390. [Google Scholar] [CrossRef] [Green Version]
- Stelfox, D.; Herbut, M. Growth of a Phytophthora Sp on Carrot Agar. Can. Plant Dis. Surv. 1979, 59, 61–62. [Google Scholar]
- de Beer, Z.W.; Duong, T.A.; Barnes, I.; Wingfield, B.D.; Wingfield, M.J. Redefining Ceratocystis and allied genera. Stud. Mycol. 2014, 79, 187–219. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Ellis, M.H.; Stiller, W.N.; Phongkham, T.; Tate, W.A.; Gillespie, V.J.; Gapare, W.J.; Zhu, Q.H.; Llewellyn, D.J.; Wilson, I.W. Molecular mapping of bunchy top disease resistance in Gossypium hirsutum L. Euphytica 2016, 210, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Lavalle, L.A.B.; Gillespie, V.J.; Tate, W.A.; Ellis, M.H.; Stiller, W.N.; Llewellyn, D.L.; Wilson, I.W. Molecular mapping of a new source of Fusarium wilt resistance in tetraploid cotton (Gossypium hirsutum L.). Mol. Breed. 2012, 30, 1181–1191. [Google Scholar] [CrossRef]
- Stam, P. Construction of integrated genetic-linkage maps by means of a new computer package—Joinmap. Plant J. 1993, 3, 739–744. [Google Scholar] [CrossRef]
- Kosambi, D. The estimation of map distance from recombination value. Ann. Hum. Genet. 1944, 12, 172–175. [Google Scholar]
- Churchill, G.A.; Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994, 138, 963–971. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef] [PubMed]
YZ | BM13H | |||
---|---|---|---|---|
Days Post Infection | Upregulated | Downregulated | Upregulated | Downregulated |
2 | 3 | 5 | 43 | 10 |
3 | 57 | 15 | 59 | 74 |
5 | 1606 | 363 | 5 | 3 |
7 | 1660 | 661 | 0 | 2 |
10 | 3740 | 2592 | 2 | 0 |
Description | Ontology | Number of Genes | False Discovery Rate |
---|---|---|---|
glucan metabolic process | Biological process | 35 | 1.3 × 10−5 |
cellular glucan metabolic process | Biological process | 35 | 1.3 × 10−5 |
glucan biosynthetic process | Biological process | 29 | 1.6 × 10−5 |
carbohydrate metabolic process | Biological process | 84 | 2.6 × 10−5 |
polysaccharide biosynthetic process | Biological process | 34 | 3.3 × 10−5 |
cellular carbohydrate metabolic process | Biological process | 43 | 3.3 × 10−5 |
cellular polysaccharide metabolic process | Biological process | 37 | 3.3 × 10−5 |
cellular polysaccharide biosynthetic process | Biological process | 31 | 6.4 × 10−5 |
polysaccharide metabolic process | Biological process | 41 | 6.4 × 10−5 |
cellular carbohydrate biosynthetic process | Biological process | 32 | 0.000 |
starch metabolic process | Biological process | 21 | 0.000 |
starch biosynthetic process | Biological process | 18 | 0.000 |
cellular component organization or biogenesis | Biological process | 113 | 0.002 |
carbohydrate biosynthetic process | Biological process | 37 | 0.003 |
cell wall organization or biogenesis | Biological process | 35 | 0.004 |
cellular component organization | Biological process | 103 | 0.005 |
external encapsulating structure organization | Biological process | 26 | 0.012 |
single-organism carbohydrate metabolic process | Biological process | 53 | 0.012 |
maltose metabolic process | Biological process | 12 | 0.012 |
plant-type cell wall organization or biogenesis | Biological process | 22 | 0.012 |
cell wall organization | Biological process | 25 | 0.014 |
plastid organization | Biological process | 21 | 0.019 |
plant-type cell wall organization | Biological process | 17 | 0.033 |
extracellular region | Cellular component | 39 | 0.001 |
Description | Ontology | Number of Genes | False Discovery Rate |
---|---|---|---|
defense response | Biological process | 68 | 1.1 × 10−6 |
response to organonitrogen compound | Biological process | 26 | 5.0 × 10−6 |
response to biotic stimulus | Biological process | 61 | 2.7 × 10−5 |
regulation of defense response | Biological process | 32 | 2.7 × 10−5 |
response to chitin | Biological process | 23 | 2.7 × 10−5 |
regulation of response to stress | Biological process | 32 | 2.7 × 10−5 |
response to nitrogen compound | Biological process | 34 | 2.8 × 10−5 |
immune system process | Biological process | 44 | 2.9 × 10−5 |
response to stress | Biological process | 138 | 4.7 × 10−5 |
cell death | Biological process | 32 | 0.000 |
regulation of innate immune response | Biological process | 25 | 0.000 |
innate immune response | Biological process | 40 | 0.000 |
regulation of immune response | Biological process | 25 | 0.000 |
response to external biotic stimulus | Biological process | 54 | 0.000 |
regulation of immune system process | Biological process | 25 | 0.000 |
immune response | Biological process | 40 | 0.000 |
response to other organism | Biological process | 54 | 0.000 |
regulation of cell death | Biological process | 24 | 0.000 |
response to external stimulus | Biological process | 70 | 0.000 |
regulation of response to stimulus | Biological process | 42 | 0.000 |
response to stimulus | Biological process | 218 | 0.000 |
response to oxygen-containing compound | Biological process | 78 | 0.000 |
response to chemical | Biological process | 125 | 0.000 |
programmed cell death | Biological process | 27 | 0.001 |
regulation of programmed cell death | Biological process | 22 | 0.001 |
negative regulation of cell death | Biological process | 15 | 0.001 |
negative regulation of programmed cell death | Biological process | 15 | 0.001 |
host programmed cell death induced by symbiont | Biological process | 23 | 0.002 |
plant-type hypersensitive response | Biological process | 23 | 0.002 |
cell communication | Biological process | 88 | 0.002 |
salicylic acid mediated signaling pathway | Biological process | 17 | 0.002 |
response to endogenous stimulus | Biological process | 63 | 0.002 |
cellular response to salicylic acid stimulus | Biological process | 17 | 0.003 |
response to salicylic acid | Biological process | 19 | 0.003 |
response to acid chemical | Biological process | 48 | 0.005 |
cellular response to stress | Biological process | 51 | 0.005 |
response to fungus | Biological process | 24 | 0.005 |
regulation of plant-type hypersensitive response | Biological process | 18 | 0.006 |
regulation of cellular response to stress | Biological process | 18 | 0.006 |
response to organic substance | Biological process | 82 | 0.007 |
cellular response to acid chemical | Biological process | 26 | 0.008 |
respiratory burst involved in defense response | Biological process | 10 | 0.009 |
endoplasmic reticulum unfolded protein response | Biological process | 12 | 0.009 |
cellular response to unfolded protein | Biological process | 12 | 0.009 |
cellular response to topologically incorrect protein | Biological process | 12 | 0.009 |
response to unfolded protein | Biological process | 12 | 0.009 |
multi-organism process | Biological process | 61 | 0.009 |
signal transduction | Biological process | 75 | 0.010 |
respiratory burst | Biological process | 10 | 0.010 |
protein targeting to membrane | Biological process | 18 | 0.010 |
single organism signaling | Biological process | 75 | 0.015 |
signaling | Biological process | 75 | 0.016 |
response to organic cyclic compound | Biological process | 27 | 0.025 |
protein localization to membrane | Biological process | 18 | 0.026 |
establishment of protein localization to membrane | Biological process | 18 | 0.026 |
cellular response to stimulus | Biological process | 98 | 0.036 |
defense response to other organism | Biological process | 33 | 0.046 |
phosphotransferase activity, alcohol group as acceptor | Molecular function | 93 | 0.001 |
kinase activity | Molecular function | 103 | 0.003 |
protein kinase activity | Molecular function | 81 | 0.003 |
protein serine/threonine kinase activity | Molecular function | 60 | 0.017 |
catalytic activity | Molecular function | 471 | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, I.W.; Moncuquet, P.; Ellis, M.; White, R.G.; Zhu, Q.-H.; Stiller, W.; Llewellyn, D. Characterization and Genetic Mapping of Black Root Rot Resistance in Gossypium arboreum L. Int. J. Mol. Sci. 2021, 22, 2642. https://doi.org/10.3390/ijms22052642
Wilson IW, Moncuquet P, Ellis M, White RG, Zhu Q-H, Stiller W, Llewellyn D. Characterization and Genetic Mapping of Black Root Rot Resistance in Gossypium arboreum L. International Journal of Molecular Sciences. 2021; 22(5):2642. https://doi.org/10.3390/ijms22052642
Chicago/Turabian StyleWilson, Iain W., Philippe Moncuquet, Marc Ellis, Rosemary G. White, Qian-Hao Zhu, Warwick Stiller, and Danny Llewellyn. 2021. "Characterization and Genetic Mapping of Black Root Rot Resistance in Gossypium arboreum L." International Journal of Molecular Sciences 22, no. 5: 2642. https://doi.org/10.3390/ijms22052642
APA StyleWilson, I. W., Moncuquet, P., Ellis, M., White, R. G., Zhu, Q. -H., Stiller, W., & Llewellyn, D. (2021). Characterization and Genetic Mapping of Black Root Rot Resistance in Gossypium arboreum L. International Journal of Molecular Sciences, 22(5), 2642. https://doi.org/10.3390/ijms22052642