Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways
Abstract
:1. Introduction
2. Excitatory Input to Sensorimotor Pathways
3. Spinal Modes of Inhibition
4. Inhibitory Interneurons in Superficial Dorsal Horn
4.1. Parvalbumin INs
4.2. Galanin and Dynorphin INs
4.3. nNOS INs
4.4. Neuropeptide Y (NPY) INs
4.5. Calretinin INs
5. Inhibitory Interneurons in Deep Dorsal Horn
5.1. Early RET + INs
5.2. Rorβ INs
5.3. Satb2 INs
5.4. Tfap2b INs
6. Inhibitory Interneurons in Ventral Horn
6.1. V0 INs
6.2. V1 INs
6.3. V2b INs
6.4. dI6 INs
7. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wall, P.D.; Dubner, R. Somatosensory pathways. Annu. Rev. Physiol. 1972, 34, 315–336. [Google Scholar] [CrossRef]
- Willis, W.D., Jr. The somatosensory system, with emphasis on structures important for pain. Brain Res. Rev. 2007, 55, 297–313. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 2010, 11, 823–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Perl, E.R. Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J. Neurosci. 2005, 25, 3900–3907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowska, E.; Maxwell, D.J.; Bannatyne, B.A. On coupling and decoupling of spinal interneuronal networks. Arch. Ital. Biol. 2007, 145, 235–250. [Google Scholar]
- Calvino, B.; Grilo, R.M. Central pain control. Joint Bone Spine 2006, 73, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J.; Lewallen, K.A.; Pfaff, S.L. Spatial organization of cortical and spinal neurons controlling motor behavior. Curr. Opin. Neurobiol. 2012, 22, 812–821. [Google Scholar] [CrossRef] [Green Version]
- Abraira, V.E.; Kuehn, E.D.; Chirila, A.M.; Springel, M.W.; Toliver, A.A.; Zimmerman, A.L.; Orefice, L.L.; Boyle, K.A.; Bai, L.; Song, B.J.; et al. The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn. Cell 2017, 168, 295–310.e19. [Google Scholar] [CrossRef] [Green Version]
- Peirs, C.; Dallel, R.; Todd, A.J. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia. J. Neural. Transm. 2020, 127, 505–525. [Google Scholar] [CrossRef] [Green Version]
- Prescott, S.A.; Ma, Q.; De Koninck, Y. Normal and abnormal coding of somatosensory stimuli causing pain. Nat. Neurosci. 2014, 17, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Melzack, R.; Wall, P.D. Pain mechanisms: A new theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Bardoni, R.; Takazawa, T.; Tong, C.K.; Choudhury, P.; Scherrer, G.; Macdermott, A.B. Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann. N. Y. Acad. Sci. 2013, 1279, 90–96. [Google Scholar] [CrossRef]
- Hughes, D.I.; Todd, A.J. Central Nervous System Targets: Inhibitory Interneurons in the Spinal Cord. Neurotherapeutics 2020, 17, 874–885. [Google Scholar] [CrossRef]
- Guo, D.; Hu, J. Spinal presynaptic inhibition in pain control. Neuroscience 2014, 283, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Eccles, J.C.; Schmidt, R.F.; Willis, W.D. Presynaptic inhibition of the spinal monosynaptic reflex pathway. J. Physiol. 1962, 161, 282–297. [Google Scholar] [CrossRef]
- Grudt, T.J.; Perl, E.R. Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J. Physiol. 2002, 540 Pt 1, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Goulding, M.; Bourane, S.; Garcia-Campmany, L.; Dalet, A.; Koch, S. Inhibition downunder: An update from the spinal cord. Curr. Opin. Neurobiol. 2014, 26, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, K.A.; Gutierrez-Mecinas, M.; Polgar, E.; Mooney, N.; O’Connor, E.; Furuta, T.; Watanabe, M.; Todd, A.J. A quantitative study of neurochemically defined populations of inhibitory interneurons in the superficial dorsal horn of the mouse spinal cord. Neuroscience 2017, 363, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Sathyamurthy, A.; Johnson, K.R.; Matson, K.J.E.; Dobrott, C.I.; Li, L.; Ryba, A.R.; Bergman, T.B.; Kelly, M.C.; Kelley, M.W.; Levine, A.J. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior. Cell Rep. 2018, 22, 2216–2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haring, M.; Zeisel, A.; Hochgerner, H.; Rinwa, P.; Jakobsson, J.E.T.; Lonnerberg, P.; La Manno, G.; Sharma, N.; Borgius, L.; Kiehn, O.; et al. Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat. Neurosci. 2018, 21, 869–880. [Google Scholar] [CrossRef]
- Abraira, V.E.; Ginty, D.D. The sensory neurons of touch. Neuron 2013, 79, 618–639. [Google Scholar] [CrossRef] [Green Version]
- Lai, H.C.; Seal, R.P.; Johnson, J.E. Making sense out of spinal cord somatosensory development. Development 2016, 143, 3434–3448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horch, K.W.; Tuckett, R.P.; Burgess, P.R. A key to the classification of cutaneous mechanoreceptors. J. Investig. Dermatol. 1977, 69, 75–82. [Google Scholar] [CrossRef]
- Harper, A.A.; Lawson, S.N. Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones. J. Physiol. 1985, 359, 31–46. [Google Scholar] [CrossRef]
- Leem, J.W.; Willis, W.D.; Chung, J.M. Cutaneous sensory receptors in the rat foot. J. Neurophysiol. 1993, 69, 1684–1699. [Google Scholar] [CrossRef]
- Light, A.R.; Perl, E.R. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J. Comp. Neurol. 1979, 186, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Edgley, S.A.; Jankowska, E. Field potentials generated by group II muscle afferents in the middle lumbar segments of the cat spinal cord. J. Physiol. 1987, 385, 393–413. [Google Scholar] [CrossRef] [PubMed]
- Mense, S.; Craig, A.D., Jr. Spinal and supraspinal terminations of primary afferent fibers from the gastrocnemius-soleus muscle in the cat. Neuroscience 1988, 26, 1023–1035. [Google Scholar] [CrossRef]
- Neumann, S.; Braz, J.M.; Skinner, K.; Llewellyn-Smith, I.J.; Basbaum, A.I. Innocuous, not noxious, input activates PKCgamma interneurons of the spinal dorsal horn via myelinated afferent fibers. J. Neurosci. 2008, 28, 7936–7944. [Google Scholar] [CrossRef]
- Sugiura, Y.; Lee, C.L.; Perl, E.R. Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 1986, 234, 358–361. [Google Scholar] [CrossRef]
- Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell 2009, 139, 267–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braz, J.; Solorzano, C.; Wang, X.; Basbaum, A.I. Transmitting pain and itch messages: A contemporary view of the spinal cord circuits that generate gate control. Neuron 2014, 82, 522–536. [Google Scholar] [CrossRef] [Green Version]
- Woolf, C.J.; Ma, Q. Nociceptors—Noxious stimulus detectors. Neuron 2007, 55, 353–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanaugh, D.J.; Lee, H.; Lo, L.; Shields, S.D.; Zylka, M.J.; Basbaum, A.I.; Anderson, D.J. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc. Natl. Acad. Sci. USA 2009, 106, 9075–9080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Cavanaugh, D.J.; Nemenov, M.I.; Basbaum, A.I. The modality-specific contribution of peptidergic and non-peptidergic nociceptors is manifest at the level of dorsal horn nociresponsive neurons. J. Physiol. 2013, 591, 1097–1110. [Google Scholar] [CrossRef] [PubMed]
- Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 2013, 29, 355–384. [Google Scholar] [CrossRef] [Green Version]
- Seal, R.P.; Wang, X.; Guan, Y.; Raja, S.N.; Woodbury, C.J.; Basbaum, A.I.; Edwards, R.H. Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 2009, 462, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.; Broman, J. Synaptic Organization of VGLUT3 Expressing Low-Threshold Mechanosensitive C Fiber Terminals in the Rodent Spinal Cord. eNeuro 2019, 6, ENEURO.0007-19.2019. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Q. Generation of somatic sensory neuron diversity and implications on sensory coding. Curr. Opin. Neurobiol. 2011, 21, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usoskin, D.; Furlan, A.; Islam, S.; Abdo, H.; Lonnerberg, P.; Lou, D.; Hjerling-Leffler, J.; Haeggstrom, J.; Kharchenko, O.; Kharchenko, P.V.; et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 2015, 18, 145–153. [Google Scholar] [CrossRef]
- Ranade, S.S.; Woo, S.H.; Dubin, A.E.; Moshourab, R.A.; Wetzel, C.; Petrus, M.; Mathur, J.; Begay, V.; Coste, B.; Mainquist, J.; et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 2014, 516, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.Z.; Bautista, D.M. Getting in Touch with Mechanical Pain Mechanisms. Trends Neurosci. 2020, 43, 311–325. [Google Scholar] [CrossRef]
- Betley, J.N.; Wright, C.V.; Kawaguchi, Y.; Erdelyi, F.; Szabo, G.; Jessell, T.M.; Kaltschmidt, J.A. Stringent specificity in the construction of a GABAergic presynaptic inhibitory circuit. Cell 2009, 139, 161–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, A.J.; Hinckley, C.A.; Hilde, K.L.; Driscoll, S.P.; Poon, T.H.; Montgomery, J.M.; Pfaff, S.L. Identification of a cellular node for motor control pathways. Nat. Neurosci. 2014, 17, 586–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Nooij, J.C.; Doobar, S.; Jessell, T.M. Etv1 inactivation reveals proprioceptor subclasses that reflect the level of NT3 expression in muscle targets. Neuron 2013, 77, 1055–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Schieren, I.; Qian, Y.; Zhang, C.; Jessell, T.M.; de Nooij, J.C. A Role for Sensory end Organ-Derived Signals in Regulating Muscle Spindle Proprioceptor Phenotype. J. Neurosci. 2019, 39, 4252–4267. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Petitpre, C.; Fontanet, P.; Sharma, A.; Bellardita, C.; Quadros, R.M.; Jannig, P.R.; Wang, Y.; Heimel, J.A.; Cheung, K.K.Y.; et al. Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice. Nat. Commun. 2021, 12, 1026. [Google Scholar] [CrossRef] [PubMed]
- Koch, S.C.; Acton, D.; Goulding, M. Spinal Circuits for Touch, Pain, and Itch. Annu. Rev. Physiol. 2018, 80, 189–217. [Google Scholar] [CrossRef] [PubMed]
- Gatto, G.; Smith, K.M.; Ross, S.E.; Goulding, M. Neuronal diversity in the somatosensory system: Bridging the gap between cell type and function. Curr. Opin. Neurobiol. 2019, 56, 167–174. [Google Scholar] [CrossRef]
- Bourane, S.; Grossmann, K.S.; Britz, O.; Dalet, A.; Del Barrio, M.G.; Stam, F.J.; Garcia-Campmany, L.; Koch, S.; Goulding, M. Identification of a spinal circuit for light touch and fine motor control. Cell 2015, 160, 503–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, D.; Deng, J.; Liu, K.F.; Wu, Z.Y.; Shi, Y.F.; Guo, W.M.; Mao, Q.Q.; Liu, X.J.; Li, H.; Sun, Y.G. A central neural circuit for itch sensation. Science 2017, 357, 695–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.; Fatima, M.; Li, A.; Lee, H.; Cai, W.; Horwitz, L.; Hor, C.C.; Zaher, N.; Cin, M.; Slade, H.; et al. Identification of a Spinal Circuit for Mechanical and Persistent Spontaneous Itch. Neuron 2019, 103, 1135–1149.e6. [Google Scholar] [CrossRef] [PubMed]
- Petitjean, H.; Bourojeni, F.B.; Tsao, D.; Davidova, A.; Sotocinal, S.G.; Mogil, J.S.; Kania, A.; Sharif-Naeini, R. Recruitment of Spinoparabrachial Neurons by Dorsal Horn Calretinin Neurons. Cell Rep. 2019, 28, 1429–1438.e4. [Google Scholar] [CrossRef]
- Artola, A.; Voisin, D.; Dallel, R. PKCgamma interneurons, a gateway to pathological pain in the dorsal horn. J. Neural Transm. 2020, 127, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.; Polgar, E.; Gutierrez-Mecinas, M.; Gomez-Lima, M.; Watanabe, M.; Todd, A.J. The organisation of spinoparabrachial neurons in the mouse. Pain 2015, 156, 2061–2071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachisuka, J.; Koerber, H.R.; Ross, S.E. Selective-cold output through a distinct subset of lamina I spinoparabrachial neurons. Pain 2020, 161, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Labeled lines meet and talk: Population coding of somatic sensations. J. Clin. Investig. 2010, 120, 3773–3778. [Google Scholar] [CrossRef] [Green Version]
- Prescott, S.A.; Ratte, S. Pain processing by spinal microcircuits: Afferent combinatorics. Curr. Opin. Neurobiol. 2012, 22, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Bui, T.V.; Stifani, N.; Panek, I.; Farah, C. Genetically identified spinal interneurons integrating tactile afferents for motor control. J. Neurophysiol. 2015, 114, 3050–3063. [Google Scholar] [CrossRef] [Green Version]
- Polgar, E.; Thomson, S.; Maxwell, D.J.; Al-Khater, K.; Todd, A.J. A population of large neurons in laminae III and IV of the rat spinal cord that have long dorsal dendrites and lack the neurokinin 1 receptor. Eur. J. Neurosci. 2007, 26, 1587–1598. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, E.C.; Santos, I.C.; Kokai, E.; Luz, L.L.; Szucs, P.; Safronov, B.V. Low- and high-threshold primary afferent inputs to spinal lamina III antenna-type neurons. Pain 2018, 159, 2214–2222. [Google Scholar] [CrossRef]
- Wercberger, R.; Basbaum, A.I. Spinal cord projection neurons: A superficial, and also deep, analysis. Curr. Opin. Physiol. 2019, 11, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Hantman, A.W.; Jessell, T.M. Clarke’s column neurons as the focus of a corticospinal corollary circuit. Nat. Neurosci. 2010, 13, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Azim, E.; Seki, K. Gain control in the sensorimotor system. Curr. Opin. Physiol. 2019, 8, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Kiehn, O. Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 2016, 17, 224–238. [Google Scholar] [CrossRef]
- Gosgnach, S.; Bikoff, J.B.; Dougherty, K.J.; El Manira, A.; Lanuza, G.M.; Zhang, Y. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits. J. Neurosci. 2017, 37, 10835–10841. [Google Scholar] [CrossRef] [Green Version]
- Cote, M.P.; Murray, L.M.; Knikou, M. Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions. Front. Physiol. 2018, 9, 784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dougherty, K.J.; Ha, N.T. The rhythm section: An update on spinal interneurons setting the beat for mammalian locomotion. Curr. Opin. Physiol. 2019, 8, 84–93. [Google Scholar] [CrossRef]
- Goulding, M. Circuits controlling vertebrate locomotion: Moving in a new direction. Nat. Rev. Neurosci. 2009, 10, 507–518. [Google Scholar] [CrossRef]
- Frigon, A. Central pattern generators of the mammalian spinal cord. Neuroscientist 2012, 18, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Akay, T. Sensory Feedback Control of Locomotor Pattern Generation in Cats and Mice. Neuroscience 2020, 450, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, S.; Dubuc, R.; Gossard, J.P. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 2006, 86, 89–154. [Google Scholar] [CrossRef] [PubMed]
- Kriellaars, D.J.; Brownstone, R.M.; Noga, B.R.; Jordan, L.M. Mechanical entrainment of fictive locomotion in the decerebrate cat. J. Neurophysiol. 1994, 71, 2074–2086. [Google Scholar] [CrossRef] [PubMed]
- Forssberg, H.; Grillner, S.; Rossignol, S. Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res. 1977, 132, 121–139. [Google Scholar] [CrossRef]
- Forssberg, H. Stumbling corrective reaction: A phase-dependent compensatory reaction during locomotion. J. Neurophysiol. 1979, 42, 936–953. [Google Scholar] [CrossRef] [PubMed]
- Zeilhofer, H.U.; Wildner, H.; Yevenes, G.E. Fast synaptic inhibition in spinal sensory processing and pain control. Physiol. Rev. 2012, 92, 193–235. [Google Scholar] [CrossRef]
- Price, T.J.; Prescott, S.A. Inhibitory regulation of the pain gate and how its failure causes pathological pain. Pain 2015, 156, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.J.; Sullivan, A.C. Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J. Comp. Neurol. 1990, 296, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, K.J.; Sawchuk, M.A.; Hochman, S. Phenotypic diversity and expression of GABAergic inhibitory interneurons during postnatal development in lumbar spinal cord of glutamic acid decarboxylase 67-green fluorescent protein mice. Neuroscience 2009, 163, 909–919. [Google Scholar] [CrossRef] [Green Version]
- Mackie, M.; Hughes, D.I.; Maxwell, D.J.; Tillakaratne, N.J.; Todd, A.J. Distribution and colocalisation of glutamate decarboxylase isoforms in the rat spinal cord. Neuroscience 2003, 119, 461–472. [Google Scholar] [CrossRef]
- Foster, E.; Wildner, H.; Tudeau, L.; Haueter, S.; Ralvenius, W.T.; Jegen, M.; Johannssen, H.; Hosli, L.; Haenraets, K.; Ghanem, A.; et al. Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron 2015, 85, 1289–1304. [Google Scholar] [CrossRef] [Green Version]
- Inquimbert, P.; Rodeau, J.L.; Schlichter, R. Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord. Eur. J. Neurosci. 2007, 26, 2940–2949. [Google Scholar] [CrossRef]
- Takazawa, T.; MacDermott, A.B. Glycinergic and GABAergic tonic inhibition fine tune inhibitory control in regionally distinct subpopulations of dorsal horn neurons. J. Physiol. 2010, 588 Pt 14, 2571–2587. [Google Scholar] [CrossRef] [PubMed]
- Takazawa, T.; Choudhury, P.; Tong, C.K.; Conway, C.M.; Scherrer, G.; Flood, P.D.; Mukai, J.; MacDermott, A.B. Inhibition Mediated by Glycinergic and GABAergic Receptors on Excitatory Neurons in Mouse Superficial Dorsal Horn Is Location-Specific but Modified by Inflammation. J. Neurosci. 2017, 37, 2336–2348. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.A. The role of GABA in primary afferent depolarization. Prog. Neurobiol. 1977, 9, 211–267. [Google Scholar] [CrossRef]
- Rudomin, P.; Schmidt, R.F. Presynaptic inhibition in the vertebrate spinal cord revisited. Exp. Brain Res. 1999, 129, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.I.; Mackie, M.; Nagy, G.G.; Riddell, J.S.; Maxwell, D.J.; Szabo, G.; Erdelyi, F.; Veress, G.; Szucs, P.; Antal, M.; et al. P boutons in lamina IX of the rodent spinal cord express high levels of glutamic acid decarboxylase-65 and originate from cells in deep medial dorsal horn. Proc. Natl. Acad. Sci. USA 2005, 102, 9038–9043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mende, M.; Fletcher, E.V.; Belluardo, J.L.; Pierce, J.P.; Bommareddy, P.K.; Weinrich, J.A.; Kabir, Z.D.; Schierberl, K.C.; Pagiazitis, J.G.; Mendelsohn, A.I.; et al. Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord. Neuron 2016, 90, 1189–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudomin, P. In search of lost presynaptic inhibition. Exp. Brain Res. 2009, 196, 139–151. [Google Scholar] [CrossRef]
- Lee, K.J.; Jessell, T.M. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci. 1999, 22, 261–294. [Google Scholar] [CrossRef] [Green Version]
- Brohl, D.; Strehle, M.; Wende, H.; Hori, K.; Bormuth, I.; Nave, K.A.; Muller, T.; Birchmeier, C. A transcriptional network coordinately determines transmitter and peptidergic fate in the dorsal spinal cord. Dev. Biol. 2008, 322, 381–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glasgow, S.M.; Henke, R.M.; Macdonald, R.J.; Wright, C.V.; Johnson, J.E. Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 2005, 132, 5461–5469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillai, A.; Mansouri, A.; Behringer, R.; Westphal, H.; Goulding, M. Lhx1 and Lhx5 maintain the inhibitory-neurotransmitter status of interneurons in the dorsal spinal cord. Development 2007, 134, 357–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Huang, T.; Xiang, Y.; Xie, Z.; Chen, Y.; Yan, R.; Xu, J.; Cheng, L. Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev. Biol. 2008, 322, 394–405. [Google Scholar] [CrossRef] [Green Version]
- Larsson, M. Pax2 is persistently expressed by GABAergic neurons throughout the adult rat dorsal horn. Neurosci. Lett. 2017, 638, 96–101. [Google Scholar] [CrossRef]
- Polgar, E.; Durrieux, C.; Hughes, D.I.; Todd, A.J. A quantitative study of inhibitory interneurons in laminae I-III of the mouse spinal dorsal horn. PLoS ONE 2013, 8, e78309. [Google Scholar] [CrossRef] [Green Version]
- Benito-Gonzalez, A.; Alvarez, F.J. Renshaw cells and Ia inhibitory interneurons are generated at different times from p1 progenitors and differentiate shortly after exiting the cell cycle. J. Neurosci. 2012, 32, 1156–1170. [Google Scholar] [CrossRef] [PubMed]
- Browne, T.J.; Hughes, D.I.; Dayas, C.V.; Callister, R.J.; Graham, B.A. Projection Neuron Axon Collaterals in the Dorsal Horn: Placing a New Player in Spinal Cord Pain Processing. Front. Physiol. 2020, 11, 560802. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Carr, P.A.; Baimbridge, K.G.; Nagy, J.I. Parvalbumin- and calbindin D28k-immunoreactive neurons in the superficial layers of the spinal cord dorsal horn of rat. Brain Res. Bull. 1989, 23, 493–508. [Google Scholar] [CrossRef]
- Tiong, S.Y.; Polgar, E.; van Kralingen, J.C.; Watanabe, M.; Todd, A.J. Galanin-immunoreactivity identifies a distinct population of inhibitory interneurons in laminae I-III of the rat spinal cord. Mol. Pain 2011, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.I.; Sikander, S.; Kinnon, C.M.; Boyle, K.A.; Watanabe, M.; Callister, R.J.; Graham, B.A. Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: A likely source of axo-axonic inputs in the mouse spinal dorsal horn. J. Physiol. 2012, 590, 3927–3951. [Google Scholar] [CrossRef]
- Petitjean, H.; Pawlowski, S.A.; Fraine, S.L.; Sharif, B.; Hamad, D.; Fatima, T.; Berg, J.; Brown, C.M.; Jan, L.Y.; Ribeiro-da-Silva, A.; et al. Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury. Cell Rep. 2015, 13, 1246–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laing, I.; Todd, A.J.; Heizmann, C.W.; Schmidt, H.H. Subpopulations of GABAergic neurons in laminae I-III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase or parvalbumin. Neuroscience 1994, 61, 123–132. [Google Scholar] [CrossRef]
- Heinke, B.; Ruscheweyh, R.; Forsthuber, L.; Wunderbaldinger, G.; Sandkuhler, J. Physiological, neurochemical and morphological properties of a subgroup of GABAergic spinal lamina II neurones identified by expression of green fluorescent protein in mice. J. Physiol. 2004, 560 Pt 1, 249–266. [Google Scholar] [CrossRef]
- Boyle, K.A.; Gradwell, M.A.; Yasaka, T.; Dickie, A.C.; Polgar, E.; Ganley, R.P.; Orr, D.P.H.; Watanabe, M.; Abraira, V.E.; Kuehn, E.D.; et al. Defining a Spinal Microcircuit that Gates Myelinated Afferent Input: Implications for Tactile Allodynia. Cell Rep. 2019, 28, 526–540.e6. [Google Scholar] [CrossRef]
- Tamamaki, N.; Yanagawa, Y.; Tomioka, R.; Miyazaki, J.; Obata, K.; Kaneko, T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 2003, 467, 60–79. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.J. GABA and glycine in synaptic glomeruli of the rat spinal dorsal horn. Eur. J. Neurosci. 1996, 8, 2492–2498. [Google Scholar] [CrossRef]
- Gradwell, M.A.; Boyle, K.A.; Callister, R.J.; Hughes, D.I.; Graham, B.A. Heteromeric alpha/beta glycine receptors regulate excitability in parvalbumin-expressing dorsal horn neurons through phasic and tonic glycinergic inhibition. J. Physiol. 2017, 595, 7185–7202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardella, T.C.; Polgar, E.; Garzillo, F.; Furuta, T.; Kaneko, T.; Watanabe, M.; Todd, A.J. Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn. Mol. Pain 2011, 7, 76. [Google Scholar] [CrossRef] [Green Version]
- Kardon, A.P.; Polgar, E.; Hachisuka, J.; Snyder, L.M.; Cameron, D.; Savage, S.; Cai, X.; Karnup, S.; Fan, C.R.; Hemenway, G.M.; et al. Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord. Neuron 2014, 82, 573–586. [Google Scholar] [CrossRef] [Green Version]
- Simmons, D.R.; Spike, R.C.; Todd, A.J. Galanin is contained in GABAergic neurons in the rat spinal dorsal horn. Neurosci. Lett. 1995, 187, 119–122. [Google Scholar] [CrossRef]
- Huang, J.; Polgar, E.; Solinski, H.J.; Mishra, S.K.; Tseng, P.Y.; Iwagaki, N.; Boyle, K.A.; Dickie, A.C.; Kriegbaum, M.C.; Wildner, H.; et al. Circuit dissection of the role of somatostatin in itch and pain. Nat. Neurosci. 2018, 21, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Duan, B.; Cheng, L.; Bourane, S.; Britz, O.; Padilla, C.; Garcia-Campmany, L.; Krashes, M.; Knowlton, W.; Velasquez, T.; Ren, X.; et al. Identification of spinal circuits transmitting and gating mechanical pain. Cell 2014, 159, 1417–1432. [Google Scholar] [CrossRef] [Green Version]
- Brewer, C.L.; Styczynski, L.M.; Serafin, E.K.; Baccei, M.L. Postnatal maturation of spinal dynorphin circuits and their role in somatosensation. Pain 2020, 161, 1906–1924. [Google Scholar] [CrossRef]
- Liu, M.Z.; Chen, X.J.; Liang, T.Y.; Li, Q.; Wang, M.; Zhang, X.Y.; Li, Y.Z.; Sun, Q.; Sun, Y.G. Synaptic control of spinal GRPR(+) neurons by local and long-range inhibitory inputs. Proc. Natl. Acad. Sci. USA 2019, 116, 27011–27017. [Google Scholar] [CrossRef] [PubMed]
- Albisetti, G.W.; Pagani, M.; Platonova, E.; Hosli, L.; Johannssen, H.C.; Fritschy, J.M.; Wildner, H.; Zeilhofer, H.U. Dorsal Horn Gastrin-Releasing Peptide Expressing Neurons Transmit Spinal Itch But Not Pain Signals. J. Neurosci. 2019, 39, 2238–2250. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, P.S.; Valtschanoff, J.G.; Weinberg, R.J.; Schmidt, H.H.; Rustioni, A. Synaptic interactions between primary afferent terminals and GABA and nitric oxide-synthesizing neurons in superficial laminae of the rat spinal cord. J. Neurosci. 1995, 15, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Polgar, E.; Sardella, T.C.P.; Tiong, S.Y.X.; Locke, S.; Watanabe, M.; Todd, A.J. Functional differences between neurochemically defined populations of inhibitory interneurons in the rat spinal dorsal horn. Pain 2013, 154, 2606–2615. [Google Scholar] [CrossRef] [Green Version]
- Puskar, Z.; Polgar, E.; Todd, A.J. A population of large lamina I projection neurons with selective inhibitory input in rat spinal cord. Neuroscience 2001, 102, 167–176. [Google Scholar] [CrossRef]
- Sardella, T.C.; Polgar, E.; Watanabe, M.; Todd, A.J. A quantitative study of neuronal nitric oxide synthase expression in laminae I-III of the rat spinal dorsal horn. Neuroscience 2011, 192, 708–720. [Google Scholar] [CrossRef] [Green Version]
- Iwagaki, N.; Ganley, R.P.; Dickie, A.C.; Polgar, E.; Hughes, D.I.; Del Rio, P.; Revina, Y.; Watanabe, M.; Todd, A.J.; Riddell, J.S. A combined electrophysiological and morphological study of neuropeptide Y-expressing inhibitory interneurons in the spinal dorsal horn of the mouse. Pain 2016, 157, 598–612. [Google Scholar] [CrossRef] [Green Version]
- Bourane, S.; Duan, B.; Koch, S.C.; Dalet, A.; Britz, O.; Garcia-Campmany, L.; Kim, E.; Cheng, L.; Ghosh, A.; Ma, Q.; et al. Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science 2015, 350, 550–554. [Google Scholar] [CrossRef] [Green Version]
- Tashima, R.; Koga, K.; Yoshikawa, Y.; Sekine, M.; Watanabe, M.; Tozaki-Saitoh, H.; Furue, H.; Yasaka, T.; Tsuda, M. A subset of spinal dorsal horn interneurons crucial for gating touch-evoked pain-like behavior. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef] [PubMed]
- Acton, D.; Ren, X.; Di Costanzo, S.; Dalet, A.; Bourane, S.; Bertocchi, I.; Eva, C.; Goulding, M. Spinal Neuropeptide Y1 Receptor-Expressing Neurons Form an Essential Excitatory Pathway for Mechanical Itch. Cell Rep. 2019, 28, 625–639.e6. [Google Scholar] [CrossRef] [Green Version]
- Polgar, E.; Shehab, S.A.; Watt, C.; Todd, A.J. GABAergic neurons that contain neuropeptide Y selectively target cells with the neurokinin 1 receptor in laminae III and IV of the rat spinal cord. J. Neurosci. 1999, 19, 2637–2646. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.M.; Boyle, K.A.; Madden, J.F.; Dickinson, S.A.; Jobling, P.; Callister, R.J.; Hughes, D.I.; Graham, B.A. Functional heterogeneity of calretinin-expressing neurons in the mouse superficial dorsal horn: Implications for spinal pain processing. J. Physiol. 2015, 593, 4319–4339. [Google Scholar] [CrossRef] [Green Version]
- Ren, K.; Ruda, M.A.; Jacobowitz, D.M. Immunohistochemical localization of calretinin in the dorsal root ganglion and spinal cord of the rat. Brain Res. Bull. 1993, 31, 13–22. [Google Scholar] [CrossRef]
- Gutierrez-Mecinas, M.; Davis, O.; Polgar, E.; Shahzad, M.; Navarro-Batista, K.; Furuta, T.; Watanabe, M.; Hughes, D.I.; Todd, A.J. Expression of Calretinin Among Different Neurochemical Classes of Interneuron in the Superficial Dorsal Horn of the Mouse Spinal Cord. Neuroscience 2019, 398, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.M.; Boyle, K.A.; Mustapa, M.; Jobling, P.; Callister, R.J.; Hughes, D.I.; Graham, B.A. Distinct forms of synaptic inhibition and neuromodulation regulate calretinin-positive neuron excitability in the spinal cord dorsal horn. Neuroscience 2016, 326, 10–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prochazka, A. Sensorimotor gain control: A basic strategy of motor systems? Prog. Neurobiol. 1989, 33, 281–307. [Google Scholar] [CrossRef]
- Panek, I.; Bui, T.; Wright, A.T.; Brownstone, R.M. Cutaneous afferent regulation of motor function. Acta Neurobiol. Exp. 2014, 74, 158–171. [Google Scholar]
- Cui, L.; Miao, X.; Liang, L.; Abdus-Saboor, I.; Olson, W.; Fleming, M.S.; Ma, M.; Tao, Y.X.; Luo, W. Identification of Early RET+ Deep Dorsal Spinal Cord Interneurons in Gating Pain. Neuron 2016, 91, 1137–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, S.C.; Del Barrio, M.G.; Dalet, A.; Gatto, G.; Gunther, T.; Zhang, J.; Seidler, B.; Saur, D.; Schule, R.; Goulding, M. RORbeta Spinal Interneurons Gate Sensory Transmission during Locomotion to Secure a Fluid Walking Gait. Neuron 2017, 96, 1419–1431.e5. [Google Scholar] [CrossRef] [Green Version]
- Andre, E.; Conquet, F.; Steinmayr, M.; Stratton, S.C.; Porciatti, V.; Becker-Andre, M. Disruption of retinoid-related orphan receptor beta changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice. EMBO J. 1998, 17, 3867–3877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilde, K.L.; Levine, A.J.; Hinckley, C.A.; Hayashi, M.; Montgomery, J.M.; Gullo, M.; Driscoll, S.P.; Grosschedl, R.; Kohwi, Y.; Kohwi-Shigematsu, T.; et al. Satb2 Is Required for the Development of a Spinal Exteroceptive Microcircuit that Modulates Limb Position. Neuron 2016, 91, 763–776. [Google Scholar] [CrossRef] [Green Version]
- Brownstone, R.M.; Bui, T.V. Spinal interneurons providing input to the final common path during locomotion. Prog. Brain Res. 2010, 187, 81–95. [Google Scholar]
- Akay, T.; Tourtellotte, W.G.; Arber, S.; Jessell, T.M. Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. Proc. Natl. Acad. Sci. USA 2014, 111, 16877–16882. [Google Scholar] [CrossRef] [Green Version]
- Paixao, S.; Loschek, L.; Gaitanos, L.; Alcala Morales, P.; Goulding, M.; Klein, R. Identification of Spinal Neurons Contributing to the Dorsal Column Projection Mediating Fine Touch and Corrective Motor Movements. Neuron 2019, 104, 749–764.e6. [Google Scholar] [CrossRef]
- Gatto, G.; Bourane, S.; Ren, X.; Di Costanzo, S.; Fenton, P.K.; Halder, P.; Seal, R.P.; Goulding, M.D. A Functional Topographic Map for Spinal Sensorimotor Reflexes. Neuron 2021, 109, 91–104.e5. [Google Scholar] [CrossRef]
- McCrea, D.A.; Shefchyk, S.J.; Stephens, M.J.; Pearson, K.G. Disynaptic group I excitation of synergist ankle extensor motoneurones during fictive locomotion in the cat. J. Physiol. 1995, 487 Pt 2, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Buschges, A.; Manira, A.E. Sensory pathways and their modulation in the control of locomotion. Curr. Opin. Neurobiol. 1998, 8, 733–739. [Google Scholar] [CrossRef]
- Quevedo, J.; Stecina, K.; McCrea, D.A. Intracellular analysis of reflex pathways underlying the stumbling corrective reaction during fictive locomotion in the cat. J. Neurophysiol. 2005, 94, 2053–2062. [Google Scholar] [CrossRef]
- Jessell, T.M. Neuronal specification in the spinal cord: Inductive signals and transcriptional codes. Nat. Rev. Genet. 2000, 1, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Pierani, A.; Moran-Rivard, L.; Sunshine, M.J.; Littman, D.R.; Goulding, M.; Jessell, T.M. Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron 2001, 29, 367–384. [Google Scholar] [CrossRef] [Green Version]
- Lanuza, G.M.; Gosgnach, S.; Pierani, A.; Jessell, T.M.; Goulding, M. Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 2004, 42, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Talpalar, A.E.; Bouvier, J.; Borgius, L.; Fortin, G.; Pierani, A.; Kiehn, O. Dual-mode operation of neuronal networks involved in left-right alternation. Nature 2013, 500, 85–88. [Google Scholar] [CrossRef]
- Griener, A.; Zhang, W.; Kao, H.; Wagner, C.; Gosgnach, S. Probing diversity within subpopulations of locomotor-related V0 interneurons. Dev. Neurobiol. 2015, 75, 1189–1203. [Google Scholar] [CrossRef] [PubMed]
- Shevtsova, N.A.; Talpalar, A.E.; Markin, S.N.; Harris-Warrick, R.M.; Kiehn, O.; Rybak, I.A. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling. J. Physiol. 2015, 593, 2403–2426. [Google Scholar] [CrossRef] [PubMed]
- Bellardita, C.; Kiehn, O. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks. Curr. Biol. 2015, 25, 1426–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danner, S.M.; Wilshin, S.D.; Shevtsova, N.A.; Rybak, I.A. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds. J. Physiol. 2016, 594, 6947–6967. [Google Scholar] [CrossRef] [Green Version]
- Danner, S.M.; Shevtsova, N.A.; Frigon, A.; Rybak, I.A. Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. eLife 2017, 6, e31050. [Google Scholar] [CrossRef] [PubMed]
- Sapir, T.; Geiman, E.J.; Wang, Z.; Velasquez, T.; Mitsui, S.; Yoshihara, Y.; Frank, E.; Alvarez, F.J.; Goulding, M. Pax6 and engrailed 1 regulate two distinct aspects of renshaw cell development. J. Neurosci. 2004, 24, 1255–1264. [Google Scholar] [CrossRef]
- Alvarez, F.J.; Jonas, P.C.; Sapir, T.; Hartley, R.; Berrocal, M.C.; Geiman, E.J.; Todd, A.J.; Goulding, M. Postnatal phenotype and localization of spinal cord V1 derived interneurons. J. Comp. Neurol. 2005, 493, 177–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eccles, J.C.; Fatt, P.; Koketsu, K. Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. 1954, 126, 524–562. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, F.J.; Fyffe, R.E. The continuing case for the Renshaw cell. J. Physiol. 2007, 584 Pt 1, 31–45. [Google Scholar] [CrossRef]
- Mentis, G.Z.; Siembab, V.C.; Zerda, R.; O’Donovan, M.J.; Alvarez, F.J. Primary afferent synapses on developing and adult Renshaw cells. J. Neurosci. 2006, 26, 13297–13310. [Google Scholar] [CrossRef] [PubMed]
- Enjin, A.; Perry, S.; Hilscher, M.M.; Nagaraja, C.; Larhammar, M.; Gezelius, H.; Eriksson, A.; Leao, K.E.; Kullander, K. Developmental Disruption of Recurrent Inhibitory Feedback Results in Compensatory Adaptation in the Renshaw Cell-Motor Neuron Circuit. J. Neurosci. 2017, 37, 5634–5647. [Google Scholar] [CrossRef] [Green Version]
- Hultborn, H.; Brownstone, R.B.; Toth, T.I.; Gossard, J.P. Key mechanisms for setting the input-output gain across the motoneuron pool. Prog. Brain Res. 2004, 143, 77–95. [Google Scholar] [PubMed]
- Siembab, V.C.; Smith, C.A.; Zagoraiou, L.; Berrocal, M.C.; Mentis, G.Z.; Alvarez, F.J. Target selection of proprioceptive and motor axon synapses on neonatal V1-derived Ia inhibitory interneurons and Renshaw cells. J. Comp. Neurol. 2010, 518, 4675–4701. [Google Scholar] [CrossRef]
- Eccles, J.C.; Fatt, P.; Landgren, S. Central pathway for direct inhibitory action of impulses in largest afferent nerve fibres to muscle. J. Neurophysiol. 1956, 19, 75–98. [Google Scholar] [CrossRef]
- Hultborn, H.; Illert, M.; Santini, M. Convergence on interneurones mediating the reciprocal Ia inhibition of motoneurones. III. Effects from supraspinal pathways. Acta Physiol. Scand. 1976, 96, 368–391. [Google Scholar] [CrossRef]
- Zhang, J.; Lanuza, G.M.; Britz, O.; Wang, Z.; Siembab, V.C.; Zhang, Y.; Velasquez, T.; Alvarez, F.J.; Frank, E.; Goulding, M. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 2014, 82, 138–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosgnach, S.; Lanuza, G.M.; Butt, S.J.; Saueressig, H.; Zhang, Y.; Velasquez, T.; Riethmacher, D.; Callaway, E.M.; Kiehn, O.; Goulding, M. V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 2006, 440, 215–219. [Google Scholar] [CrossRef]
- Britz, O.; Zhang, J.; Grossmann, K.S.; Dyck, J.; Kim, J.C.; Dymecki, S.; Gosgnach, S.; Goulding, M. A genetically defined asymmetry underlies the inhibitory control of flexor-extensor locomotor movements. eLife 2015, 4, 04718. [Google Scholar] [CrossRef]
- Lundfald, L.; Restrepo, C.E.; Butt, S.J.; Peng, C.Y.; Droho, S.; Endo, T.; Zeilhofer, H.U.; Sharma, K.; Kiehn, O. Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord. Eur. J. Neurosci. 2007, 26, 2989–3002. [Google Scholar] [CrossRef] [PubMed]
- Shevtsova, N.A.; Rybak, I.A. Organization of flexor-extensor interactions in the mammalian spinal cord: Insights from computational modelling. J. Physiol. 2016, 594, 6117–6131. [Google Scholar] [CrossRef]
- Andersson, L.S.; Larhammar, M.; Memic, F.; Wootz, H.; Schwochow, D.; Rubin, C.J.; Patra, K.; Arnason, T.; Wellbring, L.; Hjalm, G.; et al. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature 2012, 488, 642–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griener, A.; Zhang, W.; Kao, H.; Haque, F.; Gosgnach, S. Anatomical and electrophysiological characterization of a population of dI6 interneurons in the neonatal mouse spinal cord. Neuroscience 2017, 362, 47–59. [Google Scholar] [CrossRef]
- Haque, F.; Rancic, V.; Zhang, W.; Clugston, R.; Ballanyi, K.; Gosgnach, S. WT1-Expressing Interneurons Regulate Left-Right Alternation during Mammalian Locomotor Activity. J. Neurosci. 2018, 38, 5666–5676. [Google Scholar] [CrossRef] [Green Version]
- Perry, S.; Larhammar, M.; Vieillard, J.; Nagaraja, C.; Hilscher, M.M.; Tafreshiha, A.; Rofo, F.; Caixeta, F.V.; Kullander, K. Characterization of Dmrt3-Derived Neurons Suggest a Role within Locomotor Circuits. J. Neurosci. 2019, 39, 1771–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyck, J.; Lanuza, G.M.; Gosgnach, S. Functional characterization of dI6 interneurons in the neonatal mouse spinal cord. J. Neurophysiol. 2012, 107, 3256–3266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wildner, H.; Das Gupta, R.; Brohl, D.; Heppenstall, P.A.; Zeilhofer, H.U.; Birchmeier, C. Genome-wide expression analysis of Ptf1a- and Ascl1-deficient mice reveals new markers for distinct dorsal horn interneuron populations contributing to nociceptive reflex plasticity. J. Neurosci. 2013, 33, 7299–7307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Weinrich, J.A.P.; Russ, J.B.; Comer, J.D.; Bommareddy, P.K.; DiCasoli, R.J.; Wright, C.V.E.; Li, Y.; van Roessel, P.J.; Kaltschmidt, J.A. A Role for Dystonia-Associated Genes in Spinal GABAergic Interneuron Circuitry. Cell Rep. 2017, 21, 666–678. [Google Scholar] [CrossRef] [Green Version]
- Bikoff, J.B.; Gabitto, M.I.; Rivard, A.F.; Drobac, E.; Machado, T.A.; Miri, A.; Brenner-Morton, S.; Famojure, E.; Diaz, C.; Alvarez, F.J.; et al. Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits. Cell 2016, 165, 207–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zholudeva, L.V.; Abraira, V.E.; Satkunendrarajah, K.; McDevitt, T.C.; Goulding, M.D.; Magnuson, D.S.K.; Lane, M.A. Spinal Interneurons as Gatekeepers to Neuroplasticity after Injury or Disease. J. Neurosci. 2021, 41, 845–854. [Google Scholar] [CrossRef]
- Cregg, J.M.; Leiras, R.; Montalant, A.; Wanken, P.; Wickersham, I.R.; Kiehn, O. Brainstem neurons that command mammalian locomotor asymmetries. Nat. Neurosci. 2020, 23, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Ruder, L.; Schina, R.; Kanodia, H.; Valencia-Garcia, S.; Pivetta, C.; Arber, S. A functional map for diverse forelimb actions within brainstem circuitry. Nature 2021, 590, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Usseglio, G.; Gatier, E.; Heuze, A.; Herent, C.; Bouvier, J. Control of Orienting Movements and Locomotion by Projection-Defined Subsets of Brainstem V2a Neurons. Curr. Biol. 2020, 30, 4665–4681. [Google Scholar] [CrossRef] [PubMed]
- Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281–1289. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stachowski, N.J.; Dougherty, K.J. Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. Int. J. Mol. Sci. 2021, 22, 2667. https://doi.org/10.3390/ijms22052667
Stachowski NJ, Dougherty KJ. Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. International Journal of Molecular Sciences. 2021; 22(5):2667. https://doi.org/10.3390/ijms22052667
Chicago/Turabian StyleStachowski, Nicholas J., and Kimberly J. Dougherty. 2021. "Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways" International Journal of Molecular Sciences 22, no. 5: 2667. https://doi.org/10.3390/ijms22052667
APA StyleStachowski, N. J., & Dougherty, K. J. (2021). Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. International Journal of Molecular Sciences, 22(5), 2667. https://doi.org/10.3390/ijms22052667