Transcriptional Responses of Resistant and Susceptible Wheat Exposed to Wheat Curl Mite
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mapping Results and Differentially Expressed Genes (DEGs) in the Resistant and Susceptible Wheat Exposed to WCM Herbivory
2.2. Metabolism Overview
2.3. Gene Ontology (GO) Analysis
2.4. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis
2.5. RT-qPCR of the Selected DEGs
3. Materials and Methods
3.1. Plant Materials and WCM Colonies
3.2. Sample Collection, RNA Isolation, and Sequencing
3.3. Gene Expression Analysis
3.4. RT-qPCR Analysis of the Selected DEGs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navia, D.; de Mendonça, R.S.; Skoracka, A.; Szydło, W.; Knihinicki, D.; Hein, G.L.; da Silva Pereira, P.R.V.; Truol, G.; Lau, D. Wheat curl mite, Aceria tosichella, and transmitted viruses: An expanding pest complex affecting cereal crops. Exp. Appl. Acarol. 2013, 59, 95–143. [Google Scholar] [CrossRef] [Green Version]
- Royalty, R.; Perring, T. Nature of damage and its assessment. In Eriophyoid Mites. Their Bioloy, Natural Enemies and Control; Sabelis, E.E., Bruin, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 6, pp. 493–512. [Google Scholar]
- Schiffer, M.; Umina, P.; Carew, M.; Hoffmann, A.; Rodoni, B.; Miller, A. The distribution of wheat curl mite (Aceria tosichella) lineages in Australia and their potential to transmit wheat streak mosaic virus. Ann. Appl. Biol. 2009, 155, 371–379. [Google Scholar] [CrossRef]
- Hein, G.L.; French, R.; Siriwetwiwat, B.; Amrine, J.W. Genetic characterization of North American populations of the wheat curl mite and dry bulb mite. J. Econ. Entomol. 2012, 105, 1801–1808. [Google Scholar] [CrossRef]
- Skoracka, A.; Lewandowski, M.; Rector, B.G.; Szydło, W.; Kuczyński, L. Spatial and host-related variation in prevalence and population density of wheat curl mite (Aceria tosichella) cryptic genotypes in agricultural landscapes. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Skoracka, A.; Rector, B.G.; Hein, G.L. The interface between wheat and the wheat curl mite, Aceria tosichella, the primary vector of globally important viral diseases. Front. Plant Sci. 2018, 9, 1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifers, D.L.; Harvey, T.L.; Martin, T.; Jensen, S.G. Identification of the wheat curl mite as the vector of the High Plains virus of corn and wheat. Plant Dis. 1997, 81, 1161–1166. [Google Scholar] [CrossRef] [Green Version]
- Stephan, D.; Moeller, I.; Skoracka, A.; Ehrig, F.; Maiss, E. Eriophyid mite transmission and host range of a Brome streak mosaic virus isolate derived from a full-length cDNA clone. Arch. Virol. 2008, 153, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Seifers, D.L.; Martin, T.; Harvey, T.L.; Fellers, J.P.; Michaud, J. Identification of the wheat curl mite as the vector of Triticum mosaic virus. Plant Dis. 2009, 93, 25–29. [Google Scholar] [CrossRef]
- Slykhuis, J.T. Aceria tulipae keifer (Acarina: Eriophyidae) in relation to the spread of Wheat streak mosaic. Phytopathology 1955, 56, 116–128. [Google Scholar]
- Bryan, B.; Paetzold, L.; Workneh, F.; Rush, C. Incidence of mite-vectored viruses of wheat in the Texas High Plains and interactions with their host and vector. Plant Dis. 2019, 103, 2996–3001. [Google Scholar] [CrossRef]
- Stenger, D.C.; Hein, G.L.; Tatineni, S.; French, R. Eriophyid mite vectors of plant viruses. In Vector-Mediated Transmission of Plant Pathogens; Brown, J.K., Ed.; The American Phytopathological Society: St. Paul, MN, USA, 2016; pp. 263–274. [Google Scholar]
- Siriwetwiwat, B. Interactions between the Wheat Curl Mite, Aceria tosichella Keifer (Eriophyidae), and Wheat Streak mosaic virus and Distribution of Wheat Curl Mite Biotypes in the Field. Ph.D Thesis, The University of Nebraska-Lincoln, Lincoln, NE, USA, 2006. [Google Scholar]
- Seifers, D.L.; Harvey, T.L.; Louie, R.; Gordon, D.; Martin, T. Differential transmission of isolates of the High Plains virus by different sources of wheat curl mites. Plant Dis. 2002, 86, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Oliveira-Hofman, C.; Wegulo, S.N.; Tatineni, S.; Hein, G. Impact of Wheat streak mosaic virus and Triticum mosaic virus coinfection of wheat on transmission rates by wheat curl mites. Plant Dis. 2015, 99, 1170–1174. [Google Scholar] [CrossRef] [Green Version]
- Tatineni, S.; Graybosch, R.A.; Hein, G.L.; Wegulo, S.N.; French, R. Wheat cultivar-specific disease synergism and alteration of virus accumulation during co-infection with Wheat streak mosaic virus and Triticum mosaic virus. Phytopathology 2010, 100, 230–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byamukama, E.; Tatineni, S.; Hein, G.; Graybosch, R.; Baenziger, P.S.; French, R.; Wegulo, S.N. Effects of single and double infections of winter wheat by Triticum mosaic virus and Wheat streak mosaic virus on yield determinants. Plant Dis. 2012, 96, 859–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byamukama, E.; Wegulo, S.; Tatineni, S.; Hein, G.; Graybosch, R.; Baenziger, P.S.; French, R. Quantification of yield loss caused by Triticum mosaic virus and Wheat streak mosaic virus in winter wheat under field conditions. Plant Dis. 2014, 98, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Scully, E.D.; Palmer, N.A.; Geib, S.M.; Sarath, G.; Hein, G.L.; Tatineni, S. Wheat streak mosaic virus alters the transcriptome of its vector, wheat curl mite (Aceria tosichella Keifer), to enhance mite development and population expansion. J. Gen. Virol. 2019, 100, 889–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, T.; Seifers, D.; Martin, T.; Brown-Guedira, G.; Gill, B. Survival of wheat curl mites on different sources of resistance in wheat. Crop Sci. 1999, 39, 1887–1889. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.B.; Conner, R. Resistance to colonization by the wheat curl mite in Aegilops squarrosa and its inheritance after transfer to common wheat. Crop Sci. 1986, 26, 527–530. [Google Scholar] [CrossRef]
- Whelan, E.; Thomas, J. Chromosomal location in common wheat of a gene (Cmcl) from Aegilops squarrosa that conditions resistance to colonization by the wheat curl mite. Genome 1989, 32, 1033–1036. [Google Scholar] [CrossRef]
- Conner, R.; Thomas, J.; Whelan, E. Comparison of mite resistance for control of Wheat streak mosaic. Crop Sci. 1991, 31, 315–318. [Google Scholar] [CrossRef]
- Malik, R.; Smith, C.M.; Brown-Guedira, G.L.; Harvey, T.L.; Gill, B.S. Assessment of Aegilops tauschii for resistance to biotypes of wheat curl mite (Acari: Eriophyidae). J. Econ. Entomol. 2003, 96, 1329–1333. [Google Scholar] [CrossRef]
- Whelan, E.; Hart, G. A spontaneous translocation that transfers wheat curl mite resistance from decaploid Agropyron elongatum to common wheat. Genome 1988, 30, 289–292. [Google Scholar] [CrossRef]
- Harvey, T.; Livers, R. Resistance to wheat curl mite, Aceria tulipae Keifer, in rye and wheat-rye addition lines. Environ. Entomol. 1975, 4, 523–526. [Google Scholar] [CrossRef]
- Harvey, T.; Martin, T.; Seifers, D. Wheat curl mite and wheat streak mosaic in moderate trichome density wheat cultivars. Crop Sci. 1990, 30, 534–536. [Google Scholar] [CrossRef]
- Harvey, T.L.; Seifers, D.L.; Martin, T.J.; Michaud, J.P. Effect of resistance to Wheat streak mosaic virus on transmission efficiency of wheat curl mites. J. Agric. Urban Entomol. 2005, 22, 1–6. [Google Scholar]
- Seifers, D.; Martin, T.; Harvey, T.; Haber, S. Temperature-sensitive Wheat streak mosaic virus resistance identified in KS03HW12 wheat. Plant Dis. 2007, 91, 1029–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graybosch, R.A.; Peterson, C.; Baenziger, P.S.; Baltensperger, D.D.; Nelson, L.A.; Jin, Y.; Kolmer, J.; Seabourn, B.; French, R.; Hein, G. Registration of ‘Mace’hard red winter wheat. J. Plant Regist. 2009, 3, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Friebe, B.; Qi, L.; Wilson, D.; Chang, Z.; Seifers, D.; Martin, T.; Fritz, A.; Gill, B. Wheat–Thinopyrum intermedium recombinants resistant to Wheat streak mosaic virus and Triticum mosaic virus. Crop Sci. 2009, 49, 1221–1226. [Google Scholar] [CrossRef]
- Dhakal, S.; Tan, C.-T.; Anderson, V.; Yu, H.; Fuentealba, M.P.; Rudd, J.C.; Haley, S.D.; Xue, Q.; Ibrahim, A.M.; Garza, L. Mapping and KASP marker development for wheat curl mite resistance in “TAM 112” wheat using linkage and association analysis. Mol. Breed. 2018, 38, 119–131. [Google Scholar] [CrossRef]
- Harvey, T.; Martin, T.; Seifers, D. Survival of five wheat curl mite, Aceria tosichilla Keifer (Acari: Eriophyidae), strains on mite resistant wheat. Exp. Appl. Acarol. 1995, 19, 459–463. [Google Scholar]
- Blasi, É.A.; Buffon, G.; da Silva, R.Z.; Stein, C.; Dametto, A.; Ferla, N.J.; Beys-da-Silva, W.O.; Sperotto, R.A. Alterations in rice, corn and wheat plants infested by phytophagous mite. Int. J. Acarol. 2015, 41, 10–18. [Google Scholar] [CrossRef]
- Martin, T.; Harvey, T.; Bender, C.; Seifers, D.; Hatchett, J. Wheat curl mite resistant wheat germplasm. Crop Sci. 1983, 23, 809. [Google Scholar] [CrossRef]
- Dhakal, S.; Tan, C.T.; Paezold, L.; Fuentealba, M.P.; Rudd, J.C.; Blaser, B.C.; Xue, Q.; Rush, C.M.; Devkota, R.N.; Liu, S. Wheat curl mite resistance in hard winter wheat in the US Great Plains. Crop Sci. 2017, 57, 53–61. [Google Scholar] [CrossRef]
- Lu, H.; Price, J.; Devkota, R.; Rush, C.; Rudd, J. A dominant gene for resistance to Wheat streak mosaic virus in winter wheat line CO960293-2. Crop Sci. 2011, 51, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, Y.; Liu, Y.; Xu, H.; Zhang, T.; Hu, Z.; Lou, L.; Cai, Q. Ectopic expression of wheat aquaglyceroporin TaNIP2; 1 alters arsenic accumulation and tolerance in Arabidopsis thaliana. Ecotoxicol. Environ. Saf. 2020, 205, 111131. [Google Scholar] [CrossRef]
- De Mello, U.S.; Vidigal, P.M.P.; Vital, C.E.; Tomaz, A.C.; de Figueiredo, M.; Peternelli, L.A.; Barbosa, M.H.P. An overview of the transcriptional responses of two tolerant and susceptible sugarcane cultivars to borer (Diatraea saccharalis) infestation. Funct. Integr. Genom. 2020, 20, 839–855. [Google Scholar] [CrossRef]
- Kiani, M.; Szczepaniec, A. Effects of sugarcane aphid herbivory on transcriptional responses of resistant and susceptible sorghum. BMC Genom. 2018, 19, 774. [Google Scholar] [CrossRef] [PubMed]
- Thimm, O.; Bläsing, O.; Gibon, Y.; Nagel, A.; Meyer, S.; Krüger, P.; Selbig, J.; Müller, L.A.; Rhee, S.Y.; Stitt, M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004, 37, 914–939. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.K.; Weng, Y.; Rudd, J.C.; Akhunova, A.; Liu, S. Transcriptomics of induced defense responses to greenbug aphid feeding in near isogenic wheat lines. Plant Sci. 2013, 212, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, L.; Pan, L.; Zeng, W.; Lu, Z.; Cui, G.; Fan, M.; Xu, Q.; Wang, Z.; Li, G. Dynamic transcriptomes of resistant and susceptible peach lines after infestation by green peach aphids (Myzus persicae Sülzer) reveal defence responses controlled by the Rm3 locus. BMC Genom. 2018, 19, 846. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.D.; Jha, A.; Sabikhi, L.; Singh, A. Significance of coarse cereals in health and nutrition: A review. J. Food Sci. Technol. 2014, 51, 1429–1441. [Google Scholar] [CrossRef] [Green Version]
- Viswanath, K.K.; Varakumar, P.; Pamuru, R.R.; Basha, S.J.; Mehta, S.; Rao, A.D. Plant lipoxygenases and their role in plant physiology. J. Plant Biol. 2020, 63, 83–95. [Google Scholar] [CrossRef]
- Rathinam, M.; Mishra, P.; Mahato, A.K.; Singh, N.K.; Rao, U.; Sreevathsa, R. Comparative transcriptome analyses provide novel insights into the differential response of Pigeonpea (Cajanus cajan L.) and its wild relative (Cajanus platycarpus (Benth.) Maesen) to herbivory by Helicoverpa armigera (Hübner). Plant Mol. Biol. 2019, 101, 163–182. [Google Scholar] [CrossRef]
- Woldemariam, M.G.; Ahern, K.; Jander, G.; Tzin, V. A role for 9-lipoxygenases in maize defense against insect herbivory. Plant Signal. Behav. 2018, 13, 4709–4723. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Ren, N.; Qi, J.; Lu, J.; Xiang, C.; Ju, H.; Cheng, J.; Lou, Y. The 9-lipoxygenase Osr9-LOX1 interacts with the 13-lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice. Physiol. Plant. 2014, 152, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 2007, 100, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Lyons, R.; Manners, J.M.; Kazan, K. Jasmonate biosynthesis and signaling in monocots: A comparative overview. Plant Cell Rep. 2013, 32, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Jun, X.; Wang, X.-Y.; Guo, W.-Z. The cytochrome P450 superfamily: Key players in plant development and defense. J. Integr. Agric. 2015, 14, 1673–1686. [Google Scholar]
- Gulsen, O.; Eickhoff, T.; Heng-Moss, T.; Shearman, R.; Baxendale, F.; Sarath, G.; Lee, D. Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus. Arthropod-Plant Interact. 2010, 4, 45–55. [Google Scholar] [CrossRef]
- Kawano, T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 2003, 21, 829–837. [Google Scholar] [CrossRef]
- Díaz-Riquelme, J.; Zhurov, V.; Rioja, C.; Pérez-Moreno, I.; Torres-Pérez, R.; Grimplet, J.; Carbonell-Bejerano, P.; Bajda, S.; Van Leeuwen, T.; Martínez-Zapater, J.M. Comparative genome-wide transcriptome analysis of Vitis vinifera responses to adapted and non-adapted strains of two-spotted spider mite, Tetranyhus urticae. BMC Genom. 2016, 17, 74. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Tian, T.; Lin, R.; Deng, X.-W.; Wang, H.; Li, G. Arabidopsis FHY3 and FAR1 regulate light-induced myo-inositol biosynthesis and oxidative stress responses by transcriptional activation of MIPS1. Mol. Plant 2016, 9, 541–557. [Google Scholar] [CrossRef] [Green Version]
- Reddall, A.; Sadras, V.; Wilson, L.; Gregg, P. Physiological responses of cotton to two-spotted spider mite damage. Crop Sci. 2004, 44, 835–846. [Google Scholar]
- Marlin, D.; Hill, M.P.; Ripley, B.S.; Strauss, A.J.; Byrne, M.J. The effect of herbivory by the mite Orthogalumna terebrantis on the growth and photosynthetic performance of water hyacinth (Eichhornia crassipes). Aquat. Bot. 2013, 104, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Palmer, N.A.; Basu, S.; Heng-Moss, T.; Bradshaw, J.D.; Sarath, G.; Louis, J. Fall armyworm (Spodoptera frugiperda Smith) feeding elicits differential defense responses in upland and lowland switchgrass. PLoS ONE 2019, 14, e0218352. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Liu, M.; Hu, Q.; He, M.; Qi, X.; Xu, Q.; Zhou, F.; Chen, X. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.). Sci. Rep. 2015, 5, 9645–9654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, R.A.; Achnine, L.; Kota, P.; Liu, C.J.; Reddy, M.S.; Wang, L. The phenylpropanoid pathway and plant defence—a genomics perspective. Mol. Plant Pathol. 2002, 3, 371–390. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Eck, L.; Schultz, T.; Leach, J.E.; Scofield, S.R.; Peairs, F.B.; Botha, A.M.; Lapitan, N.L. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance. Plant Biotechnol. J. 2010, 8, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Kong, H.; Liu, H.; Lu, Y.; Zhang, C.; Liu, J.; Ji, C.; Zhu, J.; Su, J.; Gao, X. Induction of phenylalanine ammonia-lyase (PAL) in insect damaged and neighboring undamaged cotton and maize seedlings. Int. J. Pest Manag. 2017, 63, 166–171. [Google Scholar] [CrossRef]
- Dar, T.A.; Uddin, M.; Khan, M.M.A.; Hakeem, K.; Jaleel, H. Jasmonates counter plant stress: A review. Environ. Exp. Bot. 2015, 115, 49–57. [Google Scholar] [CrossRef]
- Lortzing, T.; Steppuhn, A. Jasmonate signalling in plants shapes plant–insect interaction ecology. Curr. Opin. Insect Sci. 2016, 14, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; Poland, J. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018. [Google Scholar] [CrossRef] [Green Version]
- Koo, A.J. Metabolism of the plant hormone jasmonate: A sentinel for tissue damage and master regulator of stress response. Phytochem. Rev. 2018, 17, 51–80. [Google Scholar] [CrossRef]
- Guo, Q.; Yoshida, Y.; Major, I.T.; Wang, K.; Sugimoto, K.; Kapali, G.; Havko, N.E.; Benning, C.; Howe, G.A. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc. Natl. Acad. Sci. USA 2018, 115, E10768–E10777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asthir, B. Mechanisms of heat tolerance in crop plants. Biol. Plant. 2015, 59, 620–628. [Google Scholar] [CrossRef]
- Fang, Q.; Inanc, B.; Schamus, S.; Wang, X.-H.; Wei, L.; Brown, A.R.; Svilar, D.; Sugrue, K.F.; Goellner, E.M.; Zeng, X. HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase β. Nat. Commun. 2014, 5, 5513–5528. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.-S.; Li, Z.-Y.; Chen, Y.; Chen, M.; Li, L.-C.; Ma, Y.-Z. Heat shock protein 90 in plants: Molecular mechanisms and roles in stress responses. Int. J. Mol. Sci. 2012, 13, 15706–15723. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, K.K.; Li, Q.; Liu, Y.; Dinesh-Kumar, S.P.; Kaloshian, I. The Mi-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol. 2007, 144, 312–323. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Paolacci, A.R.; Tanzarella, O.A.; Porceddu, E.; Ciaffi, M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. Bmc Mol. Biol. 2009, 10, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiani, M.; Bryan, B.; Rush, C.; Szczepaniec, A. Transcriptional Responses of Resistant and Susceptible Wheat Exposed to Wheat Curl Mite. Int. J. Mol. Sci. 2021, 22, 2703. https://doi.org/10.3390/ijms22052703
Kiani M, Bryan B, Rush C, Szczepaniec A. Transcriptional Responses of Resistant and Susceptible Wheat Exposed to Wheat Curl Mite. International Journal of Molecular Sciences. 2021; 22(5):2703. https://doi.org/10.3390/ijms22052703
Chicago/Turabian StyleKiani, Mahnaz, Becky Bryan, Charles Rush, and Adrianna Szczepaniec. 2021. "Transcriptional Responses of Resistant and Susceptible Wheat Exposed to Wheat Curl Mite" International Journal of Molecular Sciences 22, no. 5: 2703. https://doi.org/10.3390/ijms22052703
APA StyleKiani, M., Bryan, B., Rush, C., & Szczepaniec, A. (2021). Transcriptional Responses of Resistant and Susceptible Wheat Exposed to Wheat Curl Mite. International Journal of Molecular Sciences, 22(5), 2703. https://doi.org/10.3390/ijms22052703