Therapeutic miR-21 Silencing Reduces Cardiac Fibrosis and Modulates Inflammatory Response in Chronic Chagas Disease
Abstract
:1. Introduction
2. Results
2.1. Screening of miRNAs in Chronic Chagas Cardiomyopathy by PCR Array and in Silico Analyses
2.2. MiR-21 Is Overexpressed after T. cruzi Infection in Mouse Cardiac Fibroblasts
2.3. MiR-21 Participates in the TGFβ1-Induced Collagen Pathway
2.4. Treatment with Anti-miR-21 Induces Immunomodulatory and Anti-Fibrotic Effects in T. cruzi-Infected Mice
3. Discussion
4. Materials and Methods
4.1. Animals and T. cruzi Infection
4.2. Human Samples
4.3. Evaluation of miRNA Expression by RT-qPCR
4.4. PCR Array
4.5. In silico Analysis
4.6. In Vitro Studies with Cardiac Fibroblasts
4.7. Proliferation Assay
4.8. In Vitro Inhibition and Blockage of mir-21
4.9. In Vitro Studies with Bone Marrow Derived Macrophage (BMMO)
4.10. ELISA Assays
4.11. RNA Isolation and RT-qPCR Analysis
4.12. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Chagas Disease (American Trypanosomiasis); WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Rassi, A., Jr.; Marin Neto, J.A.; Rassi, A. Chronic Chagas cardiomyopathy: A review of the main pathogenic mechanisms and the efficacy of aetiological treatment following the BENznidazole Evaluation for Interrupting Trypanosomiasis (BENEFIT) trial. Mem. Inst. Oswaldo Cruz. 2017, 112, 224–235. [Google Scholar] [CrossRef]
- Morillo, C.A.; Marin-Neto, J.A.; Avezum, A.; Sosa-Estani, S.; Rassi, A.; Rosas, F.; Villena, E.; Quiroz, R.; Bonilla, R.; Britto, C.; et al. Randomized Trial of Benznidazole for Chronic Chagas’ Cardiomyopathy. N. Engl. J. Med. 2015, 373, 1295–1306. [Google Scholar] [CrossRef]
- Bern, C.; Montgomery, S.P.; Herwaldt, B.L.; Rassi, A.; Marin-Neto, J.A.; Dantas, R.O.; Maguire, J.H.; Acquatella, H.; Morillo, C.; Kirchhoff, L.V.; et al. Evaluation and Treatment of Chagas Disease in the United States. JAMA 2007, 298, 2171–2181. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.C.P.; Ramos, A.N., Jr.; Gontijo, E.D.; Luquetti, A.; Yasura, M.A.S.; Coura, J.R.; Torres, R.M.; Melo, J.R.C.; Almeida, E.A.; Oliveira, W.; et al. II Consenso Brasileiro em Doença de Chagas. Epidemiol. Serviços Saúde 2016, 25, 7–86. [Google Scholar]
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Manley, J.L. Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 2017, 18, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhang, C. MicroRNA-21 in Cardiovascular Disease. J. Cardiovasc. Transl. Res. 2010, 3, 251–255. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, H.; Ge, D.; Xu, Y.; Yang, Y.; Gu, M.; Zhou, Y.; Zhu, J.; Ge, T.; Chen, Q.; et al. Mir-21 promotes cardiac fibrosis after myocardial infaction via targeting Smad. Cell. Physiol. Biochem. 2017, 42, 2207–2219. [Google Scholar] [CrossRef]
- Van Rooij, E.; Sutherland, L.B.; Liu, N.; Williams, A.H.; McAnally, J.; Gerard, R.D.; Richardson, J.A.; Olson, E.N. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA 2006, 103, 18255–18260. [Google Scholar] [CrossRef]
- Duygu, B.; Martins, P.A.D.C. miR-21: A star player in cardiac hypertrophy. Cardiovasc. Res. 2015, 105, 235–237. [Google Scholar] [CrossRef]
- Duygu, B.; De Windt, L.J.; Martins, P.A.D.C. Targeting microRNAs in heart failure. Trends Cardiovasc. Med. 2016, 26, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.R.P.; Frade, A.F.; Santos, R.H.B.; Teixeira, P.C.; Baron, M.A.; Navarro, I.C.; Benvenuti, L.A.; Fiorelli, A.I.; Bocchi, E.A.; Stolf, N.A.; et al. MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in Chronic Chagas disease Cardiomyopathy. Int. J. Cardiol. 2014, 175, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Navarro, I.C.; Ferreira, F.M.; Nakaya, H.I.; Baron, M.A.; Navarro, I.C.; Benvenuti, L.A.; Fiorelli, A.L.; Bocchi, E.A.; Stolf, N.A.; Chevillard, C.; et al. MicroRNA transcriptome profiling in heart of Trypanosoma cruzi-infected mice: Parasitological and cardiological outcomes. PLoS Negl. Trop. Dis. 2015, 9, e0003828. [Google Scholar] [CrossRef] [PubMed]
- Linhares-Lacerda, L.; Granato, A.; Gomes-Neto, J.F.; Conde, L.; Freire-De-Lima, L.; De Freitas, E.O.; Freire-De-Lima, C.G.; Barroso, S.P.C.; Guerra, R.J.D.A.; Pedrosa, R.C.; et al. Circulating Plasma MicroRNA-208a as Potential Biomarker of Chronic Indeterminate Phase of Chagas Disease. Front. Microbiol. 2018, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.R.P.; Ferreira, F.M.; Nakaya, H.I.; Deng, X.; Cândido, D.D.S.; de Oliveira, L.C.; Billaud, J.N.; Lanteri, M.C.; Rigaud, V.O.; Seielstad, M.; et al. Blood Gene Signatures of Chagas disease cardiomyopathy with or without ventricular dysfunction. J. Infect. Dis. 2016, 215, 1–35. [Google Scholar]
- Liu, G.; Friggeri, A.; Yang, Y.; Milosevic, J.; Ding, Q.; Thahhickal, V.J.; Kaminski, N.; Abraham, E. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 2010, 207, 1589–1597. [Google Scholar] [CrossRef]
- Loboda, A.; Sobczak, M.; Jozkowicz, A.; Dulak, J. TGF-β1/Smads and miR-21 in Renal Fibrosis and Inflammation. Mediat. Inflamm. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Patrick, D.M.; Montgomery, R.L.; Qi, X.; Obad, S.; Kauppinen, S.; Hill, J.A.; Van Rooij, E.; Olson, E.N. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Investig. 2010, 120, 3912–3916. [Google Scholar] [CrossRef]
- Cao, W.; Shi, P.; Ge, J.-J. miR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway. BMC Cardiovasc. Disord. 2017, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Thum, T.; Gross, C.; Fiedler, J.; Fischer, T.; Kissler, S.; Busse, M.; Galuppo, P.; Just, S.; Rottbauer, W.; Frantz, S.; et al. Mi-croRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008, 456, 980–984. [Google Scholar] [CrossRef]
- Hinkel, R.; Ramanujam, D.; Kaczmarek, V.; Howe, A.; Klett, K.; Beck, C.; Dueck, A.; Thum, T.; Laugwitz, K.-L.; Maegdefessel, L.; et al. AntimiR-21 Prevents Myocardial Dysfunction in a Pig Model of Ischemia/Reperfusion Injury. J. Am. Coll. Cardiol. 2020, 75, 1788–1800. [Google Scholar] [CrossRef]
- Dong, X.; Sumandea, C.A.; Chen, Y.-C.; Garcia-Cazarin, M.L.; Zhang, J.; Balke, C.W.; Sumandea, M.P.; Ge, Y. Augmented Phosphorylation of Cardiac Troponin I in Hypertensive Heart Failure. J. Biol. Chem. 2012, 287, 848–857. [Google Scholar] [CrossRef]
- Burchfield, J.S.; Xie, M.; Hill, J.A. Pathological ventricular remodeling: Mechanisms: Part 1 of 2. Circulation 2013, 128, 388–400. [Google Scholar] [CrossRef]
- Eghbali, M.; Weber, K. Collagen and the myocardium: Fibrillar structure, biosynthesis and degradation in relation to hy-pertrophy and its regression. Mol. Cell. Biochem. 1990, 96, 1–14. [Google Scholar] [CrossRef]
- Coelho, L.L.; Pereira, I.R.; de Souza Pereira, M.C.; Mesquita, L.; Lannes-Vieira, J.; Adesse, D.; Garzoni, L.R. Trypanosoma cruzi activates mouse cardiac fibroblasts in vitro leading to fibroblast-myofibroblast transition and increase in expression of ex-tracellular matrix proteins. Parasites Vectors 2018, 11, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Verrecchia, F.; Mauviel, A. Transforming growth factor-beta and fibrosis. World J. Gastroenterol. 2007, 13, 3056–3062. [Google Scholar] [CrossRef] [PubMed]
- Adam, O.; Löhfelm, B.; Thum, T.; Gupta, S.K.; Puhl, S.-L.; Schäfers, H.-J.; Böhm, M.; Laufs, U. Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res. Cardiol. 2012, 107, 278. [Google Scholar] [CrossRef] [PubMed]
- LaRocca, T.F.; Souza, B.S.D.F.; Macêdo, C.T.; Azevedo, C.M.; Vasconcelos, J.F.; Silva, D.N.; Portella, D.C.N.; Dos Santos, W.L.C.; Tavora, F.R.F.; Neto, J.D.D.S.; et al. Assessment of syndecan-4 expression in the hearts of Trypanosoma cruzi-infected mice and human subjects with chronic Chagas disease cardiomyopathy. Surg. Exp. Pathol. 2018, 1, 1–12. [Google Scholar] [CrossRef]
- Xie, T.-X.; Wei, D.; Liu, M.; Gao, A.C.; Ali-Osman, F.; Sawaya, R.; Huang, S. Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 2004, 23, 3550–3560. [Google Scholar] [CrossRef] [PubMed]
- Dattaroy, D.; Pourhoseini, S.; Das, S.; Alhasson, F.; Seth, R.K.; Nagarkatti, M.; Michelotti, G.A.; Diehl, A.M.; Chatterjee, S. Micro-RNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin-mediated NADPH oxidase in experimental and human nonalcoholic steatohepatitis. Am. J. Physiol. Liver Physiol. 2015, 308, G298–G312. [Google Scholar] [CrossRef]
- Das, A.; Ganesh, K.; Khanna, S.; Sen, C.K.; Roy, S. Engulfment of Apoptotic Cells by Macrophages: A Role of MicroRNA-21 in the Resolution of Wound Inflammation. J. Immunol. 2014, 192, 1120–1129. [Google Scholar] [CrossRef]
- Soares, M.B.P.; De Lima, R.S.; Rocha, L.L.; Vasconcelos, J.F.; Rogatto, S.R.; Dos Santos, R.R.; Iacobas, S.; Goldenberg, R.C.; Iacobas, D.A.; Tanowitz, H.B.; et al. Gene Expression Changes Associated with Myocarditis and Fibrosis in Hearts of Mice with Chronic Chagasic Cardiomyopathy. J. Infect. Dis. 2010, 202, 416–426. [Google Scholar] [CrossRef]
- Araújo-Jorge, T.C.; Waghabi, M.C.; Soeiro, M.D.N.C.; Keramidas, M.; Bailly, S.; Feige, J.-J. Pivotal role for TGF-β in infectious heart disease: The case of Trypanosoma cruzi infection and consequent Chagasic myocardiopathy. Cytokine Growth Factor Rev. 2008, 19, 405–413. [Google Scholar] [CrossRef]
- Araújo-Jorge, T.C.; Waghabi, M.C.; Bailly, S.; Feige, J.-J. The TGF-β Pathway as an Emerging Target for Chagas Disease Therapy. Clin. Pharmacol. Ther. 2012, 92, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, R.; Su, Y.; Li, H.; Xie, W.; Ning, B. MicroRNA-21-5p mediates TGF-β-regulated fibrogenic activation of spinal fibroblasts and the formation of fibrotic scars after spinal cord injury. Int. J. Biol. Sci. 2018, 14, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Biernacka, A.; Dobaczewski, M.; Frangogiannis, N.G. TGF-β signaling in fibrosis. Growth Factors 2011, 29, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Werner, F.; Jain, M.K.; Feinberg, M.W.; Sibinga, N.E.; Pellacani, A.; Chin, M.T.; Topper, J.N.; Perrella, M.A.; Lee, M.-E.; Wiesel, P. Transforming Growth Factor-β1 Inhibition of Macrophage Activation is Mediated via Smadj. Biol. Chem. 2000, 275, 36653–36658. [Google Scholar] [CrossRef]
- Krenning, G.; Zeisberg, E.M.; Kalluri, R. The origin of fibroblasts and mechanism of cardiac fibrosis. J. Cell. Physiol. 2010, 225, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Shi, K.-H.; Yang, J.-J.; Huang, C.; Liu, L.-P.; Li, J. Epigenetic regulation of cardiac fibrosis. Cell. Signal. 2013, 25, 1932–1938. [Google Scholar] [CrossRef]
- Pan, Z.; Zhao, W.; Zhang, X.; Wang, B.; Wang, J.; Sun, X.; Liu, X.; Feng, S.; Yang, B.; Lu, Y. Scutellarin alleviates interstitial fibrosis and cardiac dysfunction of infarct rats by inhibiting TGFβ1 expression and activation of p38-MAPK and ERK1/British. J. Pharmacol. 2011, 162, 688–700. [Google Scholar]
- Yan, L.; Wei, X.; Tang, Q.Z.; Feng, J.; Zhang, Y.; Liu, C.; Bian, Z.Y.; Zhang, L.F.; Chen, M.; Bai, X.; et al. Cardiac-specific mindin overexpression attenuates cardiac hypertrophy via blocking AKT/GSK3β and TGF-β1–Smad signalling. Cardiovasc. Res. 2011, 92, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ramasawmy, R.; Faé, K.C.; Cunha-Neto, E.; Borba, S.C.; Ianni, B.; Mady, C.; Goldberg, A.C.; Kalil, J. Variants in the promoter region of IKBL/NFKBIL1 gene may mark susceptibility to the development of chronic Chagas’ cardiomyopathy among Trypanosoma cruzi-infected individuals. Mol. Immunol. 2008, 45, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Bang, C.; Batkai, S.; Dangwal, S.; Gupta, S.K.; Foinquinos, A.; Holzmann, A.; Thum, T. Cardiac fibroblast–derived mi-croRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Investig. 2014, 5, 2136–2146. [Google Scholar] [CrossRef]
- Gupta, S.; Silva, T.S.; Osizugbo, J.E.; Tucker, L.; Spratt, H.M.; Garg, N.J. Serum-Mediated Activation of Macrophages Reflects TcVac2 Vaccine Efficacy against Chagas Disease. Infect. Immun. 2014, 82, 1382–1389. [Google Scholar] [CrossRef]
- Abel, L.C.; Abel, L.C.; Rizzo, L.V.; Ianni, B.; Albuquerque, F.; Bacal, F.; Carrara, D.; Bocchi, E.A.; Teixeira, H.C.; Mady, C.; et al. Chronic Chagas’ disease cardiomyopathy patients display an increased IFN-γ response to Trypanosoma cruzi infection. J. Autoimmunity 2001, 17, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.B.P.; Pontes-De-Carvalho, L.; Ribeiro-Dos-Santos, R. The pathogenesis of Chagas’ disease: When autoimmune and parasite-specific immune responses meet. An. Acad. Bras. Ciênc. 2001, 73, 547–559. [Google Scholar] [CrossRef]
- Levick, S.P.; Goldspink, P.H. Could interferon-gamma be a therapeutic target for treating heart failure? Hear. Fail. Rev. 2014, 19, 227–236. [Google Scholar] [CrossRef]
- Vasconcelos, J.F.; Meira, C.S.; Silva, D.N.; Nonaka, C.K.V.; Daltro, P.S.; Macambira, S.G.; Domizi, P.D.; Borges, V.M.; Ribeiro-Dos-Santos, R.; Souza, B.S.D.F.; et al. Therapeutic effects of sphingosine kinase inhibitor N,N-dimethylsphingosine (DMS) in experimental chronic Chagas disease cardiomyopathy. Sci. Rep. 2017, 7, 6171. [Google Scholar] [CrossRef]
- Sousa, G.R.; Gomes, J.A.S.; Fares, R.C.G.; Damásio, M.P.D.S.; Chaves, A.T.; Ferreira, K.S.; Nunes, M.C.P.; Medeiros, N.I.; Valente, V.A.A.; Corrêa-Oliveira, R.; et al. Plasma Cytokine Expression Is Associated with Cardiac Morbidity in Chagas Disease. PLoS ONE 2014, 9, e87082. [Google Scholar] [CrossRef]
- Ferreira, R.C.; Ianni, B.M.; Abel, L.C.J.; Buck, P.; Mady, C.; Kalil, J.; Cunha-Neto, E. Increased plasma levels of tumor necrosis factor-alpha in asymptomatic/"indeterminate" and Chagas disease cardiomyopathy patients. Mem. Inst. Oswaldo Cruz 2003, 98, 407–412. [Google Scholar] [CrossRef]
- Pereira, I.R.; Vilar-Pereira, G.; Silva, A.A.; Moreira, O.C.; Britto, C.; Sarmento, E.D.M.; Lannes-Vieira, J. Tumor Necrosis Factor Is a Therapeutic Target for Immunological Unbalance and Cardiac Abnormalities in Chronic Experimental Chagas’ Heart Disease. Mediat. Inflamm. 2014, 2014, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, C.K.V.; Cavalcante, B.R.R.; Alcântara, A.C.D.; Silva, D.N.; Bezerra, M.D.R.; Caria, A.C.I.; Tavora, F.R.F.; Neto, J.D.S.; Noya-Rabelo, M.M.; Rogatto, S.R.; et al. Circulating miRNAs as Potential Biomarkers Associated with Cardiac Re-modeling and Fibrosis in Chagas Disease Cardiomyopathy. Int. J. Mol. Sci. 2019, 20, 4064. [Google Scholar] [CrossRef] [PubMed]
- National Research Council Guide for the Care and Use of Laboratory Animals. In Guide for the Care and Use of Laboratory Animals; National Academies Press: Washington, DC, USA, 2011. [CrossRef]
- Souza, B.S.D.F.; Da Silva, K.N.; Silva, D.N.; Rocha, V.P.C.; Paredes, B.D.; Azevedo, C.M.; Nonaka, C.K.; Carvalho, G.B.; Vasconcelos, J.F.; Dos Santos, R.R.; et al. Galectin-3 Knockdown Impairs Survival, Migration, and Immunomodulatory Actions of Mesenchymal Stromal Cells in a Mouse Model of Chagas Disease Cardiomyopathy. Stem Cells Int. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
Primers | Forward 5′-3′ | Reverse 5′-3′ |
---|---|---|
SPRY1 Mm | ATGGATTCCCCAAGTCAGCAT | CCTGTCATAGTCTAACCTCTGCC |
CADM1 Mm | GATCCCCACAGGTGATGGAC | TGATGGTTGCCACTTCTCCTT |
STAT3 Mm | CAATACCATTGACCTGCCGAT | GAGCGACTCAAACTGCCCT |
GAPDH Mm | GACTCCACTCACGGCAAATTCA | CTGGAAGATGGGCTTC |
COL1A1 Hs | GTGCGATGACGTGATCTGTGA | CGGTGGTTTCTTGGTCGGT |
COL1A2 Hs | TGGACGCCATGAAGGTTTTCT | TGGGAGCCAGATTGTCATCTC |
SPRY1 Hs | GAGAGAGATTCAGCCTACTGCT | GCAGGTCTTTTCACCACCGAA |
CADM1 Hs | ATGGCGAGTGTAGTGCTGC | GATCACTGTCACGTCTTTCGT |
STAT3 Hs | ACCAGCAGTATAGCCGCTTC | GCCACAATCCGGGCAATCT |
GAPDH Hs | GCCAGCATCGCCCCACTTG | GTGAAGGTCAACGGAT |
SPRY1 Mm | ATGGATTCCCCAAGTCAGCAT | CCTGTCATAGTCTAACCTCTGCC |
CADM1 Mm | GATCCCCACAGGTGATGGAC | TGATGGTTGCCACTTCTCCTT |
STAT3 Mm | CAATACCATTGACCTGCCGAT | GAGCGACTCAAACTGCCCT |
GAPDH Hs | GACTCCACTCACGGCAAATTCA | CTGGAAGATGGGCTTC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nonaka, C.K.V.; Sampaio, G.L.; de Aragão França, L.; Cavalcante, B.R.; Silva, K.N.; Khouri, R.; Torres, F.G.; Meira, C.S.; de Souza Santos, E.; Macedo, C.T.; et al. Therapeutic miR-21 Silencing Reduces Cardiac Fibrosis and Modulates Inflammatory Response in Chronic Chagas Disease. Int. J. Mol. Sci. 2021, 22, 3307. https://doi.org/10.3390/ijms22073307
Nonaka CKV, Sampaio GL, de Aragão França L, Cavalcante BR, Silva KN, Khouri R, Torres FG, Meira CS, de Souza Santos E, Macedo CT, et al. Therapeutic miR-21 Silencing Reduces Cardiac Fibrosis and Modulates Inflammatory Response in Chronic Chagas Disease. International Journal of Molecular Sciences. 2021; 22(7):3307. https://doi.org/10.3390/ijms22073307
Chicago/Turabian StyleNonaka, Carolina Kymie Vasques, Gabriela Louise Sampaio, Luciana de Aragão França, Bruno Raphael Cavalcante, Katia Nunes Silva, Ricardo Khouri, Felipe Guimarães Torres, Cassio Santana Meira, Emanuelle de Souza Santos, Carolina Thé Macedo, and et al. 2021. "Therapeutic miR-21 Silencing Reduces Cardiac Fibrosis and Modulates Inflammatory Response in Chronic Chagas Disease" International Journal of Molecular Sciences 22, no. 7: 3307. https://doi.org/10.3390/ijms22073307
APA StyleNonaka, C. K. V., Sampaio, G. L., de Aragão França, L., Cavalcante, B. R., Silva, K. N., Khouri, R., Torres, F. G., Meira, C. S., de Souza Santos, E., Macedo, C. T., Paredes, B. D., Rocha, V. P. C., Rogatto, S. R., Ribeiro dos Santos, R., Souza, B. S. d. F., & Soares, M. B. P. (2021). Therapeutic miR-21 Silencing Reduces Cardiac Fibrosis and Modulates Inflammatory Response in Chronic Chagas Disease. International Journal of Molecular Sciences, 22(7), 3307. https://doi.org/10.3390/ijms22073307