Synthesis and Enantioselective Pharmacokinetic/Pharmacodynamic Analysis of New CNS-Active Sulfamoylphenyl Carbamate Derivatives
Abstract
:1. Introduction
2. Results
- Racemic-MBPC = AUCbrain/AUCplasma = 48/32 = 1.49
- (S)-MBPC = AUCbrain/AUCplasma = 52/40 = 1.32
- (R)-MBPC = AUCbrain/AUCplasma = 30/24 = 1.27
PK Parameter | Racemic-MBPC | (R)-MBPC | (S)-MBPC |
---|---|---|---|
t1/2 (h) | 0.5 | 0.6 | 1.2 |
Vss/F (L/kg) | 4.3 | 6.7 | 5.7 |
CL/F (L/h/kg) | 2.5 | 3.3 | 2.0 |
AUCinf (mg/L/h) | 32 | 24 | 39.6 |
Cmax (mg/L) | 15.3 | 10.7 | 12.7 |
tmax (h) | 0.33 | 1.7 | 1 |
MRT (h) | 1.7 | 2 | 2.7 |
PK Parameter | Racemic-MBPC | (R)-MBPC | (S)-MBPC |
---|---|---|---|
t1/2 (h) | 0.7 | 0.5 | 0.9 |
Vss/F (L/kg) | 3.4 | 5.4 | 5 |
CL/F (L/h/kg) | 1.7 | 2.6 | 1.6 |
AUCinf (mg/L/h) | 47.8 | 30.4 | 51.5 |
Cmax (mg/L) | 16.5 | 11.4 | 15.2 |
tmax (h) | 1.33 | 2.7 | 1.66 |
MRT (h) | 2 | 2.1 | 4.2 |
Brain-to-plasma (AUCinf) ratio | 1.49 | 1.27 | 1.32 |
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.1.1. General Procedure for the Synthesis of Compounds
4.1.2. (R)- or (S)-3-Methylpropyl(4-sulfamoylphenyl)carbamate (MBPC)
4.2. Pharmacokinetics Studies
4.3. Analysis of MBPC and Its Two Individual Enantiomers in Plasma and Brain
4.4. Calculation of Pharmacokinetic (PK) Parameters
4.5. Anticonvulsant Activity of MBPC and Its Individual Enantiomers
4.6. Carbonic Anhydrase Inhibition of MBPC and Its Individual Enantiomers
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Abram, M.; Jakubiec, M.; Kaminski, K. Chirality as an important factor for the development of new antiepileptic drugs. Chem. Med. Chem. 2019, 14, 1744–1761. [Google Scholar] [CrossRef] [PubMed]
- Odi, R.; Bibi, D.; Wager, T.; Bialer, M. A Perspective into the physicochemical and biopharmaceutic properties of marketed antiepileptic drugs—from phenobarbital to cenobamate and beyond. Epilepsia 2020, 61, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Levy, R.H.; Perucca, E.; Perucca, P.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Fifteen Eilat Conference (EILAT XV). I. Drugs in preclinical and early clinical development. Epilepsia 2020, 61, 2345–2364. [Google Scholar]
- Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV). II. Drugs in more advanced clinical development. Epilepsia 2020, 61, 2365–2385. [Google Scholar] [CrossRef] [PubMed]
- Tollner, K.; Brandt, C.; Topfer, M.; Brunhofer, G.; Erker, T.; Gabriel, M.; Feit, P.W.; Lindfors, J.; Kaila, K.; Löscher, W. A novel prodrug-based strategy to increase effects of beumetanide in epilepsy. Ann. Neurol. 2014, 75, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Lykke, K.; Töllner, K.; Feit, P.W.; Erker, T.; MacAulay, N.; Löscher, W. The search for NKCC1-selective drugs for the treatment of epilepsy: Structure–function relationship of bumetanide and various bumetanide derivatives in inhibiting the human cation-chloride cotransporter NKCC1A. Epilepsy Behav. 2016, 59, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Brenneman, D.E.; Smith, G.R.; Zhang, Y.; Du, Y.; Kondaveeti, S.K.; Zdilla, M.J.; Reitz, A.B. Small Molecule Anticonvulsant Agents with Potent In Vitro Neuroprotection. J. Mol. Neurosci. 2012, 47, 368–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bialer, M.; White, H.S. Key factors in the discovery and development of new antiepileptic drugs (AEDs). Nat. Rev. Drug Discov. 2010, 9, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Bibi, D.; Mawasi, H.; Nocentini, A.; Supuran, C.T.; Wlodarczyk, B.; Finnell, R.H.; Bialer, M. Design and comparative evaluation of the anticonvulsant profile, carbonic-anhydrate inhibition and teratogenicity of novel carbamate derivatives of branched aliphatic carboxylic acids with 4-aminobenzensulfonamide. Neurochem. Res. 2017, 4, 1972–1982. [Google Scholar] [CrossRef] [PubMed]
- Bibi, D.; Shusterman, B.; Nocentini, A.; Supuran, C.T.; Bialer, M. Stereoselective pharmacokinetic and pharmacodynamic analysis of a CNS-active sulphamoylphenyl carbamate derivative. J. Enz. Inhib. Med. Chem. 2019, 34, 1078–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, R.H.; Boddy, A.V. Stereoselectivity in pharmacokinetics: A general theory. Pharm. Res. 1991, 8, 551–555. [Google Scholar] [CrossRef]
- Agranat, I.; Caner, H.; Caldwell, J. Putting chirality to work: The strategy of chiral switches. Nat. Rev. Drug Discov. 2002, 10, 753–768. [Google Scholar] [CrossRef]
- Calcaterra, A.; D’Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal. 2018, 147, 323–340. [Google Scholar] [CrossRef]
- D’Acquarica, I.; Agranat, I. Chiral switches of chloroquine and hydroxychloroquine: Potential drugs to treat Covid-19. Drug Discov. Today 2020, 25, 1121–1123. [Google Scholar] [CrossRef]
- Agranat, I.; Marom, H. In defense of secondary pharmaceutical patents in drug discovery and development. ACS Med. Chem. Lett. 2020, 11, 91–98. [Google Scholar] [CrossRef]
- De la Torre, B.G.; Albericio, F. The pharmaceutical industry in 2019. An analysis of FDA drug Approvals from the Perspective of Molecules. Molecules 2020, 25, 745. [Google Scholar] [CrossRef] [Green Version]
- De la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2018. An analysis of FDA drug approvals from the perspective of molecules. Molecules 2019, 24, 809. [Google Scholar] [CrossRef] [Green Version]
- FDA. Guidance of Development of New Stereoisomeric Drugs. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/development-new-stereoisomeric-drugs (accessed on 8 January 2021).
- Mansfield, P.; Henry, D.; Tonkin, A. Single-Enantiomer Drugs Elegant Science, Disappointing Effects. Clin. Pharmacokinet. 2004, 3, 287–290. [Google Scholar] [CrossRef]
- Gellad, W.F.; Choi, P.; Mizah, M.; Good, C.B.; Kesselheim, A.S. Assessing the chiral switch: Approval and use of single-enantiomer drugs, 2001 to 2011. Am. J. Manag. Care 2014, 20, e90–e97. [Google Scholar]
- Levy, R.H.; Mattson, R.H.; Meldrum, B.S. Felbamate. Antiepileptic Drugs, 5th ed.; Lipincott Williams and Wilkins Co.: Philadelphia, PA, USA, 2002. [Google Scholar]
- Thakkar, K.; Billa, G.; Rane, J.; Chudasama, H.; Goswami, S.; Shah, R. The rise and fall of felbamate as a treatment for partial epilepsy—aplastic anemia and hepatic failure to blame? Expert Rev. Neurother. 2015, 15, 1373–1375. [Google Scholar] [CrossRef] [Green Version]
- Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the ninth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT IX). II. Drugs in more advanced clinical development. Epilepsy Res. 2009, 83, 1–43. [Google Scholar] [CrossRef]
- Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: A multicentre, double-blind, randomised, placebo-controlled, dose-response trial. Lancet Neurol. 2019, 19, 38–48. [Google Scholar] [CrossRef]
- French, J.A. Cenobamate for focal seizures—a game changer? Nat. Rev. Neurol. 2020, 16, 133–134. [Google Scholar] [CrossRef]
- Mishra, C.B.; Kumari, S.; Angeli, A.; Bua, S.; Mongre, R.K.; Tiwari, M.; Supuran, C.T. Discovery of Potent Carbonic Anhydrase Inhibitors as Effective Anticonvulsant Agents: Drug Design, Synthesis, and In Vitro and In Vivo Investigations. J. Med. Chem. 2021. [Google Scholar] [CrossRef]
- Nocentini, A.; Donald, W.A.; Supuran, C.T. Human Carbonic Anhydrases: Tissue Distribution, Physiological Role and Druggability. In Carbonic Anhydrases; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Löscher, W.; Sills, G.J.; White, H.S. The ups and downs of alkyl-carbamates in epilepsy therapy: How does cenobamate differ? Epilepsia 2021, 62, 596–614. [Google Scholar] [CrossRef]
- Mawasi, H.; Bibi, D.; Shekh-Ahmad, T.; Shaul, C.; Blotnik, S.; Bialer, M. Pharmacokinetic-pharmacodynamic correlation and brain penetration of sec-butylpropylacetamide, a new CNS drug possessing unique activity against status epilepticus. Mol. Pharm. 2016, 13, 2492–2496. [Google Scholar] [CrossRef]
- Hen, N.; Shekh-Ahmad, T.; Yagen, B.; McDonough, J.H.; Finnell, R.H.; Wlodarczyk, B.; Bialer, M. Stereoselective pharmacodynamic and pharmacokinetic analysis of sec-butylpropylacetamide (SPD), a new CNS-active derivative of valproic acid with unique activity against status epilepticus. J. Med. Chem. 2013, 56, 6467–6477. [Google Scholar] [CrossRef]
- Shekh-Ahmad, T.; Hen, N.; Yagen, B.; McDonough, J.H.; Finnell, R.H.; Wlodarczyk, B.; Bialer, M. Stereoselective anticonvulsant and pharmacokinetic analysis of valnoctamide, a CNS-active derivative of valproic acid with low teratogenic potential. Epilepsia 2014, 55, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Shekh-Ahmad, T.; Mawasi, H.; McDonough, J.H.; Yagen, B.; Bialer, M. The potential of valnoctamide and sec-butylpropylacetamide (SPD) for acute seizures and status epilepticus (SPD) and valnoctamide and their individual stereoisomers in status epilepticus. Epilepsy Behav. 2015, 49, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Khalifah, R.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem. 1971, 246, 2561–2573. [Google Scholar] [CrossRef]
- De Simone, G.; Di Fiore, A.; Menchise, V.; Pedone, C.; Antel, J.; Casini, A.; Scozzafava, A.; Wurl, M.; Supuran, C.T. Carbonic anhydrase inhibitors. Zonisamide is an effective inhibitor of the cytosolic isozyme II and mitochondrial isozyme V: Solution and X-ray crystallographic studies. Bioorg. Med. Chem. Lett. 2005, 15, 2315–2320. [Google Scholar] [CrossRef]
- Casini, A.; Antel, J.; Abbate, F.; Scozzafava, A.; David, S.; Waldeck, H.; Schäfer, S.; Supuran, C.T. Carbonic anhydrase inhibitors: SAR and X-ray crystallographic study for the interaction of sugar sulfamates/sulfamides with isozymes I, II and IV. Bioorg. Med. Chem. Lett. 2013, 13, 841–845. [Google Scholar] [CrossRef]
- Temperini, C.; Innocenti, A.; Scozzafava, A.; Parkkila, S.; Supuran, C.T. The coumarin-binding site in carbonic anhydrase accommodates structurally diverse inhibitors: The antiepileptic lacosamide as an example. J. Med. Chem. 2010, 53, 850–854. [Google Scholar] [CrossRef] [PubMed]
Cmpd | MES-ED50 (mg/kg) [95% CI] a | Neurotoxicity-TD50 (mg/kg) [95% CI] a | Protective Index (PI = TD50/ED50) |
---|---|---|---|
Racemic-MBPC | 25 [17–32] | >500 | >20 |
(R)-MBPC | 39 [27–51] | >500 | >13 |
(S)-MBPC | 19 [13–25] | >200 | >11 |
Racemic-MSPC | 28 [18–35] | >500 | >18 |
Racemic-MSPC b | 13 [8–22] | >250 | >19 |
(R)-MSPC | 30 [22–37] | NA | NA |
(R)-MSPC b | 39 [31–44] | 134 [108–158] | 3.4 |
(S)-MSPC | 24 [17–29] | NA | NA |
(S)-MSPC b | 43 [33–52] | 149 [121–157] | 3.5 |
Cmpd | KI (nM) a | |||
---|---|---|---|---|
CA I | CA II | CA IV | CA VII | |
MBPC | 97.1 ± 5.3 | 20.2 ± 1.5 | 432 ± 28 | 121 ± 8 |
(S)-MBPC | 71.8 ± 6.5 | 34.9 ± 1.4 | 249 ± 13 | 53.3 ± 2.9 |
(R)-MBPC | 203 ± 13 | 7.1 ± 0.4 | 522 ± 26 | 197 ± 14 |
MSPC | 77.0 ± 4.7 | 7.6 ± 0.5 | 750 ± 42 | 351 ± 26 |
(S)-MSPC | 130 ± 8 | 20.3 ± 1.4 | 593 ± 42 | 744 ± 36 |
(R)-MSPC | 34.1 ± 2.5 | 3.3 ± 0.2 | 810 ± 55 | 170 ± 9 |
AAZ | 250 ± 15 | 12 ± 1 | 74 ± 5 | 5.7 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odi, R.; Bibi, D.; Shusterman, B.; Erenburg, N.; Shaul, C.; Supuran, C.T.; Nocentini, A.; Bialer, M. Synthesis and Enantioselective Pharmacokinetic/Pharmacodynamic Analysis of New CNS-Active Sulfamoylphenyl Carbamate Derivatives. Int. J. Mol. Sci. 2021, 22, 3361. https://doi.org/10.3390/ijms22073361
Odi R, Bibi D, Shusterman B, Erenburg N, Shaul C, Supuran CT, Nocentini A, Bialer M. Synthesis and Enantioselective Pharmacokinetic/Pharmacodynamic Analysis of New CNS-Active Sulfamoylphenyl Carbamate Derivatives. International Journal of Molecular Sciences. 2021; 22(7):3361. https://doi.org/10.3390/ijms22073361
Chicago/Turabian StyleOdi, Reem, David Bibi, Bella Shusterman, Natalia Erenburg, Chanan Shaul, Claudiu T. Supuran, Alessio Nocentini, and Meir Bialer. 2021. "Synthesis and Enantioselective Pharmacokinetic/Pharmacodynamic Analysis of New CNS-Active Sulfamoylphenyl Carbamate Derivatives" International Journal of Molecular Sciences 22, no. 7: 3361. https://doi.org/10.3390/ijms22073361
APA StyleOdi, R., Bibi, D., Shusterman, B., Erenburg, N., Shaul, C., Supuran, C. T., Nocentini, A., & Bialer, M. (2021). Synthesis and Enantioselective Pharmacokinetic/Pharmacodynamic Analysis of New CNS-Active Sulfamoylphenyl Carbamate Derivatives. International Journal of Molecular Sciences, 22(7), 3361. https://doi.org/10.3390/ijms22073361