Changes in Serum MicroRNAs after Anti-IL-5 Biological Treatment of Severe Asthma
Abstract
:1. Introduction
2. Results
2.1. Administration of Anti-IL-5 Drugs Improves Asthma Symptoms
2.2. MiRNA Deregulation after Anti-IL5 Treatment
2.3. MiR-338-3p Regulates Important Pathways in Asthma but It Does Not Correlate with Clinical Parameters
3. Discussion
4. Materials and Methods
4.1. Patient Selection
4.2. Blood Processing
4.3. MiRNAs Isolation
4.4. cDNA Retrotranscription
4.5. Serum miRNA PCR Panel
4.6. MiRNA Validation
4.7. Analysis of Pathway Enrichment
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murphy, D.M.; O’Byrne, P.M. Recent advances in the pathophysiology of asthma. Chest 2010, 137, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Melo, R.C.N.; Liu, L.; Xenakis, J.J.; Spencer, L.A. Eosinophil-derived cytokines in health and disease: Unraveling novel mechanisms of selective secretion. Allergy 2013, 68, 274–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saco, T.V.; Pepper, A.N.; Lockey, R.F. Benralizumab for the treatment of asthma. Expert Rev. Clin. Immunol. 2017, 13, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Zangrilli, J.; Wechsler, M.E.; Bateman, E.D.; Brusselle, G.G.; Bardin, P.; Murphy, K.; Maspero, J.F.; O’Brien, C.; Korn, S. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: Results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med. 2015, 3, 355–366. [Google Scholar] [CrossRef]
- Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; FitzGerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; et al. Mepolizumab Treatment in Patients with Severe Eosinophilic Asthma. N. Engl. J. Med. 2014, 371, 1198–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousavi, S.R.; Ahmadi, A.; Jamalkandi, S.A.; Salimian, J. Involvement of microRNAs in physiological and pathological processes in asthma. J. Cell. Physiol. 2019, 234, 21547–21559. [Google Scholar] [CrossRef] [PubMed]
- Sastre, B.; Cañas, J.A.; Rodrigo-Muñoz, J.M.; del Pozo, V. Novel modulators of asthma and allergy: Exosomes and microRNAs. Front. Immunol. 2017, 8, 826. [Google Scholar] [CrossRef] [PubMed]
- Oglesby, I.K.; McElvaney, N.G.; Greene, C.M. MicroRNAs in inflammatory lung disease—Master regulators or target practice? Respir. Res. 2010, 11, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clin. Epigenetics 2018, 10, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonneau, E.; Neveu, B.; Kostantin, E.; Tsongalis, G.J.; De Guire, V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. Electron. J. Int. Fed. Clin. Chem. Lab. Med. 2019, 30, 114–127. [Google Scholar]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigo-Muñoz, J.M.; Cañas, J.A.; Sastre, B.; Rego, N.; Greif, G.; Rial, M.; Mínguez, P.; Mahíllo-Fernández, I.; Fernández-Nieto, M.; Mora, I.; et al. Asthma diagnosis using integrated analysis of eosinophil microRNAs. Allergy 2019, 74, 507–517. [Google Scholar] [CrossRef]
- Cañas, J.A.; Valverde-Monge, M.; Rodrigo-Muñoz, J.M.; Sastre, B.; Gil-Martínez, M.; García-Latorre, R.; Rial, M.J.; Gómez-Cardeñosa, A.; Fernández-Nieto, M.; Pinillos-Robles, E.J.; et al. Serum micrornas as tool to predict early response to benralizumab in severe eosinophilic asthma. J. Pers. Med. 2021, 11, 76. [Google Scholar] [CrossRef]
- Lambert, K.A.; Roff, A.N.; Panganiban, R.P.; Douglas, S.; Ishmael, F.T. MicroRNA-146a is induced by inflammatory stimuli in airway epithelial cells and augments the anti-inflammatory effects of glucocorticoids. PLoS ONE 2018, 13, e0205434. [Google Scholar] [CrossRef] [PubMed]
- Kos, A.; Olde Loohuis, N.F.M.; Wieczorek, M.L.; Glennon, J.C.; Martens, G.J.M.; Kolk, S.M.; Aschrafi, A. A potential regulatory role for intronic microrna-338-3p for its host gene encoding apoptosis-associated Tyrosine Kinase. PLoS ONE 2012, 7, e31022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacedonia, D.; Palladino, G.P.; Foschino-Barbaro, M.P.; Scioscia, G.; Elisiana, G. Carpagnano Expression profiling of miRNA-145 and miRNA-338 in serum and sputum of patients with COPD, asthma, and asthma–COPD overlap syndrome phenotype. Int. J. COPD 2017, 12, 1811–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global INitiative for Asthma. Global Strategy for Asthma Management and Prevention. Available online: www.ginasthma.org (accessed on 10 December 2020).
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015, 43, 460–466. [Google Scholar] [CrossRef] [PubMed]
Demographic and Clinical Characteristics | ||
---|---|---|
Demographic | Age 1 | 58 ± 13 |
Female (%) | 11 (68.75) | |
Age at onset | ||
<30 years (%) | 35.7 | |
>30 years (%) | 64.3 | |
Body Mass Index 1 | 26.90 ± 5.29 | |
Smoking status | ||
Never (%) | 62.5 | |
Passive (%) | 6.25 | |
Former smoker (%) | 25 | |
Smoker (%) | 6.25 | |
Inflammatory characteristics | Atopy (%) | 53.8 |
Total IgE 1 (kU/L) | 603.7 ± 663.3 | |
Eosinophils (cells/mm3)1 | 493 ± 321 | |
FeNO 1 (ppb) | 56.08 ± 38.1 | |
Functional parameters | FEV1 Pre-BD (%) 1 | 74.69 ± 29.21 |
FEV1 Post-BD (%) 1 | 80.25 ± 31.98 | |
FVC Pre-BD (%) 1 | 86.87 ± 20.24 | |
FVC Post-BD (%) 1 | 87.62 ± 38.85 | |
FEV1/FVC Pre-BD 1 | 69.13 ± 11.64 | |
FEV1/FVC Post-BD 1 | 70.2 ± 9.73 | |
Questionaries | ACT 1 | 13.77 ± 6.2 |
KEGG Pathway | p-Value | Target Genes |
---|---|---|
Prion diseases | 2.69−31 | PRNP |
Fatty acid biosynthesis | 2.42−29 | FASN |
Fatty acid metabolism | 5.22−7 | FASN |
Other types of O-glycan biosynthesis | 1.49−6 | OGT, POMT2, EOGT, POFUT1 |
MAPK signaling pathway | 0.015 | FOS, CACNG8, DUSP2, ELK4, CDC25B, TAOK2, MAP4K3, MAP2K3, RASA1, ZAK, RAPGEF2, NFKB2, MAPKAP3, HSPA8, CACNA1H, MAP3K2, DUSP5, RPSKA4, NFATC3, DUSP1 |
Other glycan degradation | 0.026 | NEU3 |
TGF-beta signaling pathway | 0.029 | SKP1, DCN, SMAD4, SMAD5, SP1, BAMBI |
Glutathione metabolism | 0.031 | SRM, CDC1, GSTP1, GGT6, RRM1 |
Cell cycle | 0.032 | YWHAH, CCNB1, CDC25B, MCM4, BUB3, SKP1, CCND1, SMAD4, CDC14B, PRKDC, MDM2, MCM3, CDC25A |
Mucin type O-Glycan biosynthesis | 0.036 | GALNT7, GALNT16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rial, M.J.; Cañas, J.A.; Rodrigo-Muñoz, J.M.; Valverde-Monge, M.; Sastre, B.; Sastre, J.; del Pozo, V. Changes in Serum MicroRNAs after Anti-IL-5 Biological Treatment of Severe Asthma. Int. J. Mol. Sci. 2021, 22, 3558. https://doi.org/10.3390/ijms22073558
Rial MJ, Cañas JA, Rodrigo-Muñoz JM, Valverde-Monge M, Sastre B, Sastre J, del Pozo V. Changes in Serum MicroRNAs after Anti-IL-5 Biological Treatment of Severe Asthma. International Journal of Molecular Sciences. 2021; 22(7):3558. https://doi.org/10.3390/ijms22073558
Chicago/Turabian StyleRial, Manuel J., José A. Cañas, José M. Rodrigo-Muñoz, Marcela Valverde-Monge, Beatriz Sastre, Joaquín Sastre, and Victoria del Pozo. 2021. "Changes in Serum MicroRNAs after Anti-IL-5 Biological Treatment of Severe Asthma" International Journal of Molecular Sciences 22, no. 7: 3558. https://doi.org/10.3390/ijms22073558
APA StyleRial, M. J., Cañas, J. A., Rodrigo-Muñoz, J. M., Valverde-Monge, M., Sastre, B., Sastre, J., & del Pozo, V. (2021). Changes in Serum MicroRNAs after Anti-IL-5 Biological Treatment of Severe Asthma. International Journal of Molecular Sciences, 22(7), 3558. https://doi.org/10.3390/ijms22073558