Construction of Whole Genomes from Scaffolds Using Single Cell Strand-Seq Data
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Preparation of Strand-Seq Libraries
4.3. Orthologous Curation Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mouse Genome Sequencing Consortium; Waterston, R.H.; Lindblad-Toh, K.; Birney, E.; Rogers, J.; Abril, J.F.; Agarwal, P.; Agarwala, R.; Ainscough, R.; Alexandersson, M.; et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420, 520–562. [Google Scholar] [CrossRef]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [Green Version]
- Lander, E.S. Initial impact of the sequencing of the human genome. Nature 2011, 470, 187–197. [Google Scholar] [CrossRef]
- Falconer, E.; Hills, M.; Naumann, U.; Poon, S.S.; Chavez, E.A.; Sanders, A.D.; Zhao, Y.; Hirst, M.; Lansdorp, P.M. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution. Nat. Methods 2012, 9, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Hills, M.; O’Neill, K.; Falconer, E.; Brinkman, R.; Lansdorp, P.M. BAIT: Organizing genomes and mapping rearrangements in single cells. Genome Med. 2013, 5, 82. [Google Scholar] [CrossRef] [Green Version]
- International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004, 431, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Marra, M.A.; Kucaba, T.A.; Dietrich, N.L.; Green, E.D.; Brownstein, B.; Wilson, R.K.; McDonald, K.M.; Hillier, L.W.; McPherson, J.D.; Waterston, R.H. High throughput fingerprint analysis of large-insert clones. Genome Res. 1997, 7, 1072–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Xie, M.; Jiang, Y.; Xiao, N.; Du, X.; Zhang, W.; Tosser-Klopp, G.; Wang, J.; Yang, S.; Liang, J.; et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 2013, 31, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, D.C.; Li, X.; Hernandez, L.I.; Ramnarain, S.P.; Huff, E.J.; Wang, Y.K. Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 1993, 262, 110–114. [Google Scholar] [CrossRef]
- Ip, C.L.C.; Loose, M.; Tyson, J.R.; de Cesare, M.; Brown, B.L.; Jain, M.; Leggett, R.M.; Eccles, D.A.; Zalunin, V.; Urban, J.M.; et al. MinION Analysis and Reference Consortium: Phase 1 data release and analysis. F1000Research 2015, 4, 1075. [Google Scholar] [CrossRef]
- Huddleston, J.; Chaisson, M.J.P.; Steinberg, K.M.; Warren, W.; Hoekzema, K.; Gordon, D.; Graves-Lindsay, T.A.; Munson, K.M.; Kronenberg, Z.N.; Vives, L.; et al. Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res. 2017, 27, 677–685. [Google Scholar] [CrossRef]
- Zheng, G.X.; Lau, B.T.; Schnall-Levin, M.; Jarosz, M.; Bell, J.M.; Hindson, C.M.; Kyriazopoulou-Panagiotopoulou, S.; Masquelier, D.A.; Merrill, L.; Terry, J.M.; et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 2016, 34, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef]
- Salzberg, S.L.; Phillippy, A.M.; Zimin, A.; Puiu, D.; Magoc, T.; Koren, S.; Treangen, T.J.; Schatz, M.C.; Delcher, A.L.; Roberts, M.; et al. GAGE: A critical evaluation of genome assemblies and assembly algorithms. Genome Res. 2012, 22, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Guo, Y.; Dong, C.; Huddleston, J.; Yang, H.; Han, X.; Fu, A.; Li, Q.; Li, N.; Gong, S.; et al. Long-read sequencing and de novo assembly of a Chinese genome. Nat. Commun. 2016, 7, 12065. [Google Scholar] [CrossRef] [Green Version]
- Sanders, A.D.; Hills, M.; Porubsky, D.; Guryev, V.; Falconer, E.; Lansdorp, P.M. Characterizing polymorphic inversions in human genomes by single-cell sequencing. Genome Res. 2016, 26, 1575–1587. [Google Scholar] [CrossRef]
- Sanders, A.D.; Falconer, E.; Hills, M.; Spierings, D.C.J.; Lansdorp, P.M. Single-cell template strand sequencing by Strand-seq enables the characterization of individual homologs. Nat. Protoc. 2017, 12, 1151–1176. [Google Scholar] [CrossRef]
- Falconer, E.; Chavez, E.A.; Henderson, A.; Poon, S.S.; McKinney, S.; Brown, L.; Huntsman, D.G.; Lansdorp, P.M. Identification of sister chromatids by DNA template strand sequences. Nature 2010, 463, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Van Wietmarschen, N.; Lansdorp, P.M. Bromodeoxyuridine does not contribute to sister chromatid exchange events in normal or Bloom syndrome cells. Nucleic Acids Res. 2016, 44, 6787–6793. [Google Scholar] [CrossRef]
- Van Wietmarschen, N.; Merzouk, S.; Halsema, N.; Spierings, D.C.J.; Guryev, V.; Lansdorp, P.M. BLM helicase suppresses recombination at G-quadruplex motifs in transcribed genes. Nat. Commun. 2018, 9, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porubsky, D.; Sanders, A.D.; van Wietmarschen, N.; Falconer, E.; Hills, M.; Spierings, D.C.; Bevova, M.R.; Guryev, V.; Lansdorp, P.M. Direct chromosome-length haplotyping by single-cell sequencing. Genome Res. 2016, 26, 1565–1574. [Google Scholar] [CrossRef] [Green Version]
- Porubsky, D.; Garg, S.; Sanders, A.D.; Korbel, J.O.; Guryev, V.; Lansdorp, P.M.; Marschall, T. Dense and accurate whole-chromosome haplotyping of individual genomes. Nat. Commun. 2017, 8, 1293. [Google Scholar] [CrossRef] [Green Version]
- Claussin, C.; Porubsky, D.; Spierings, D.C.; Halsema, N.; Rentas, S.; Guryev, V.; Lansdorp, P.M.; Chang, M. Genome-wide mapping of sister chromatid exchange events in single yeast cells using Strand-seq. Elife 2017, 6, e30560. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, K.; Hills, M.; Gottlieb, M.; Borkowski, M.; Karsan, A.; Lansdorp, P.M. Assembling draft genomes using contiBAIT. Bioinformatics 2017, 33, 2737–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.; Alfoldi, J.; Gori, K.; Eisfeld, A.J.; Tyler, S.R.; Tisoncik-Go, J.; Brawand, D.; Law, G.L.; Skunca, N.; Hatta, M.; et al. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease. Nat. Biotechnol. 2014, 32, 1250–1255. [Google Scholar] [CrossRef]
- Murchison, E.P.; Schulz-Trieglaff, O.B.; Ning, Z.; Alexandrov, L.B.; Bauer, M.J.; Fu, B.; Hims, M.; Ding, Z.; Ivakhno, S.; Stewart, C.; et al. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 2012, 148, 780–791. [Google Scholar] [CrossRef] [Green Version]
- Lindblad-Toh, K.; Garber, M.; Zuk, O.; Lin, M.F.; Parker, B.J.; Washietl, S.; Kheradpour, P.; Ernst, J.; Jordan, G.; Mauceli, E.; et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 2011, 478, 476–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groenen, M.A.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Rogel-Gaillard, C.; Park, C.; Milan, D.; Megens, H.J.; et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellsten, U.; Harland, R.M.; Gilchrist, M.J.; Hendrix, D.; Jurka, J.; Kapitonov, V.; Ovcharenko, I.; Putnam, N.H.; Shu, S.; Taher, L.; et al. The genome of the Western clawed frog Xenopus tropicalis. Science 2010, 328, 633–636. [Google Scholar] [CrossRef] [Green Version]
- Freeman, J.L.; Adeniyi, A.; Banerjee, R.; Dallaire, S.; Maguire, S.F.; Chi, J.; Ng, B.L.; Zepeda, C.; Scott, C.E.; Humphray, S.; et al. Definition of the zebrafish genome using flow cytometry and cytogenetic mapping. BMC Genom. 2007, 8, 195. [Google Scholar] [CrossRef] [Green Version]
- Zimin, A.V.; Kelley, D.R.; Roberts, M.; Marcais, G.; Salzberg, S.L.; Yorke, J.A. Mis-assembled “segmental duplications” in two versions of the Bos taurus genome. PLoS ONE 2012, 7, e42680. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Li, J.; Shen, H.; Zhang, L.; Papasian, C.J.; Deng, H.W. Comparative studies of de novo assembly tools for next-generation sequencing technologies. Bioinformatics 2011, 27, 2031–2037. [Google Scholar] [CrossRef] [PubMed]
- Sinzelle, L.; Thuret, R.; Hwang, H.Y.; Herszberg, B.; Paillard, E.; Bronchain, O.J.; Stemple, D.L.; Dhorne-Pollet, S.; Pollet, N. Characterization of a novel Xenopus tropicalis cell line as a model for in vitro studies. Genesis 2012, 50, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Howe, K.; Wood, J.M. Using optical mapping data for the improvement of vertebrate genome assemblies. Gigascience 2015, 4, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, W.; Brugger, K.; Caccamo, M.; Sealy, I.; Torrance, J.; Howe, K. gEVAL—A web-based browser for evaluating genome assemblies. Bioinformatics 2016, 32, 2508–2510. [Google Scholar] [CrossRef]
- Schneider, V.A.; Graves-Lindsay, T.; Howe, K.; Bouk, N.; Chen, H.C.; Kitts, P.A.; Murphy, T.D.; Pruitt, K.D.; Thibaud-Nissen, F.; Albracht, D.; et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017, 27, 849–864. [Google Scholar] [CrossRef] [Green Version]
Organism Statistics | Assembly Statistics | Misorientation Statistics | Chimerism Statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Organism | Cell Line | Chromosomes | # Libraries | Assembly | Assembly Size (Mb) | Assembly Covered (%) | Number | Size (Mb) | Percent Assembly | Number | Size (Mb) | Percent Assembly |
S. harrisii | N/A | 7 | 242 | SarHar1 | 3174.77 | 90.4 | 1675 | 13.00 | 0.41 | 1484 | 5.98 | 0.19 |
C. porcellus | 104C1 | 32 | 56 | CavPor3 | 2723.58 | 91.0 | 45 | 197.21 | 7.24 | 18 | 29.48 | 1.08 |
M. Putoris furo | Mpf | 20 | 143 | MusPut Fur1 | 2410.76 | 97.8 | 35 | 25.97 | 1.08 | 61 | 13.77 | 0.57 |
D. Rerio | AB.9 | 25 | 223 | Zv9 | 1412.47 | NA | 578 | 56.82 | 4.19 | 1 | 8.02 | 0.56 |
X. tropicalis | Speedy (29) | 10 (chr10 triploid) | 114 | JGIv9.0 | 1443.32 | NA | 140 | 269.29 | 18.67 | 63 | 8.29 | 0.57 |
S. scrofa | SK-RST | 20 | 140 | Sscrofa10.2 | 2808.51 | NA | 1514 | 500.18 | 17.81 | 96 | 24.73 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hills, M.; Falconer, E.; O’Neill, K.; Sanders, A.D.; Howe, K.; Guryev, V.; Lansdorp, P.M. Construction of Whole Genomes from Scaffolds Using Single Cell Strand-Seq Data. Int. J. Mol. Sci. 2021, 22, 3617. https://doi.org/10.3390/ijms22073617
Hills M, Falconer E, O’Neill K, Sanders AD, Howe K, Guryev V, Lansdorp PM. Construction of Whole Genomes from Scaffolds Using Single Cell Strand-Seq Data. International Journal of Molecular Sciences. 2021; 22(7):3617. https://doi.org/10.3390/ijms22073617
Chicago/Turabian StyleHills, Mark, Ester Falconer, Kieran O’Neill, Ashley D. Sanders, Kerstin Howe, Victor Guryev, and Peter M. Lansdorp. 2021. "Construction of Whole Genomes from Scaffolds Using Single Cell Strand-Seq Data" International Journal of Molecular Sciences 22, no. 7: 3617. https://doi.org/10.3390/ijms22073617
APA StyleHills, M., Falconer, E., O’Neill, K., Sanders, A. D., Howe, K., Guryev, V., & Lansdorp, P. M. (2021). Construction of Whole Genomes from Scaffolds Using Single Cell Strand-Seq Data. International Journal of Molecular Sciences, 22(7), 3617. https://doi.org/10.3390/ijms22073617