Molecular Mechanisms of Canine Osteosarcoma Metastasis
Abstract
:1. Introduction
2. Search Methodology
3. Proteins and Genes Potentially Involved in Canine OSA Metastasis—In Vitro and In Vivo Studies
3.1. p63
3.2. STAT3
3.3. Snail2
3.4. Vimentin
3.5. Growth Factors and Their Specific Receptors
3.5.1. Vascular Endothelial Growth Factor (VEGF)
3.5.2. Insulin Growth Factor 1 (IGF-1) and Its Receptor
3.5.3. Transforming Growth Factor Beta (TGFβ)
3.5.4. HGF-SF and Its Receptor (Met Receptor)
3.5.5. EGFR (ErbB1, HER1)
3.6. Integrins
3.7. CD147
3.8. Collagen
3.9. Ezrin and p-ERM
3.10. Yes-Associated Protein (YAP) and Transcriptional Coactivator with PDZ-Binding Motif (TAZ)
3.11. The Tropomyosin-Related 00 A (TrkA)
3.12. C-X-C Chemokine Receptor Type 4 (CXCR-4)
3.13. microRNA (miR-9 and miR-34a)
3.14. Annexins
3.15. Tissue Factor (TF)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CAM | chorioallantoic membrane |
CID | Collision-induced dissociation |
CMV | human cytomegalovirus |
CT | computed tomography |
DFI | disease-free interval |
ECM | extracellular matrix |
EGFR | epidermal growth factor receptor |
EMMPRIN | extracellular matrix metalloproteinase inducer |
EMT | epithelial-mesenchymal transition |
ERM | ezrin/radixin/moesin |
HGF-SF | hepatocyte growth factor-scatter factor |
IA | (Matrigel) invasion assay |
IGF-1 | insulin growth factor 1 |
IGF1-R | insulin-like growth factor receptor 1 |
IHC | immunohistochemistry |
IL-8 | interleukin-8 |
IL-11 | interleukin-11 |
IT | intratibial |
IV | intravenous |
KLF4 | Kruppel-like factor 4 |
MiRNA | micro RNA |
MMPs | metalloproteinases |
MRI | magnetic resonance imaging |
mRNAs | messenger RNAs |
MS | mass spectrometry |
OSA | osteosarcoma |
OSM | oncostatin M |
p-ERM | phosphorylated ezrin-radixin-moesin |
PKC | Protein Kinase C |
qRT-PCR | quantitative Real Time PCR |
rhHGF | recombinant human hepatocyte growth factor |
SCID mice | severe combined immunodeficient mice |
SEMA3E | Semaphorin 3E |
SiRNA | silenced RNA |
ST | survival time |
STAT3 | signal transducer and activator of transcription 3 |
TF | tissue factor |
TGFβ | transforming growth factor beta |
TWI | transwell invasion |
VEGF | vascular endothelial growth factor |
VEGFA | vascular endothelial growth factor A |
WB | Western blot |
WHA | wound healing assay |
YAP | yes-associated protein |
References
- Cavalcanti, J.N.; Amstalden, E.M.I.; Guerra, J.L.; Magna, L.C. Osteosarcoma in dogs: Clinical-morphological study and prognostic correlation. Braz. J. Vet. Res. Anim. Sci. 2004, 41, 299–305. [Google Scholar] [CrossRef]
- Dernell, W.S.; Straw, R.C.; Withrow, S.J. Tumors of the Skeletal System. In Small Animal Clinical Oncology; Withrow, S.J., MacEwen, E.G., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2001; pp. 378–417. [Google Scholar]
- Dobson, J.M.; Samuel, S.; Milstein, H.; Rogers, K.; Wood, J.L.N. Canine neoplasia in the UK: Estimates of incidence rates from a population of insured dogs. J. Small Anim. Pract. 2002, 43, 240–246. [Google Scholar] [CrossRef]
- Egenvall, A.; Nødtvedt, A.; Euler, H. Von Bone tumors in a population of 400 000 insured Swedish dogs up to 10 y of age: Incidence and survival. Can. J. Vet. Res. 2007, 71, 292–299. [Google Scholar]
- Rowell, J.L.; McCarthy, D.O.; Alvarez, C.E. Dog models of naturally occurring cancer. Trends Mol. Med. 2011, 17, 380–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szewczyk, M.; Lechowski, R.; Zabielska, K. What do we know about canine osteosarcoma treatment?—Review. Vet. Res. Commun. 2015, 39, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvarajah, G.T.; Kirpensteijn, J. Prognostic and predictive biomarkers of canine osteosarcoma. Vet. J. 2010, 185, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Selmic, L.E.; Burton, J.H.; Thamm, D.H.; Withrow, S.J.; Lana, S.E. Comparison of carboplatin and doxorubicin-based chemotherapy protocols in 470 dogs after amputation for treatment of appendicular osteosarcoma. J. Vet. Intern. Med. 2014, 28, 554–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebhard, C.; Miller, I.; Hummel, K.; Neschi née Ondrovics, M.; Schlosser, S.; Walter, I. Comparative proteome analysis of monolayer and spheroid culture of canine osteosarcoma cells. J. Proteom. 2018, 177, 124–136. [Google Scholar] [CrossRef]
- Hapach, L.A.; Mosier, J.A.; Wang, W.; Reinhart-King, C.A. Engineered models to parse apart the metastatic cascade. Npj Precis. Oncol. 2019, 3. [Google Scholar] [CrossRef]
- Anderson, R.L.; Balasas, T.; Callaghan, J.; Coombes, R.C.; Evans, J.; Hall, J.A.; Kinrade, S.; Jones, D.; Jones, P.S.; Jones, R.; et al. A framework for the development of effective anti-metastatic agents. Nat. Rev. Clin. Oncol. 2019, 16, 185–204. [Google Scholar] [CrossRef] [Green Version]
- Marx, V. Models: Stretching the skills of cell lines and mice. Nat. Methods 2014, 11, 617–620. [Google Scholar] [CrossRef]
- Solano, L.N.; Nelson, G.L.; Ronayne, C.T.; Jonnalagadda, S.; Jonnalagadda, S.K.; Kottke, K.; Chitren, R.; Johnson, J.L.; Pandey, M.K.; Jonnalagadda, S.C.; et al. Synthesis, in vitro, and in vivo evaluation of novel N-phenylindazolyl diarylureas as potential anti-cancer agents. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Wesserling, M.; Drewa, T. Will In Vitro Tests Replace Animal Models in Experimental Oncology? J. Tissue Sci. Eng. 2011, 2, 2–5. [Google Scholar] [CrossRef]
- Gengenbacher, N.; Singhal, M.; Augustin, H.G. Preclinical mouse solid tumour models: Status quo, challenges and perspectives. Nat. Rev. Cancer 2017, 17, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Chaffee, B.K.; Allen, M.J. A clinically relevant mouse model of canine osteosarcoma with spontaneous metastasis. In Vivo 2013, 27, 599–604. [Google Scholar]
- Kim, Y.; Williams, K.C.; Gavin, C.T.; Jardine, E.; Chambers, A.F.; Leong, H.S. Quantification of cancer cell extravasation in vivo. Nat. Protoc. 2016, 11, 937–948. [Google Scholar] [CrossRef]
- Onaciu, A.; Munteanu, R.; Munteanu, V.C.; Gulei, D.; Raduly, L.; Feder, R.I.; Pirlog, R.; Atanasov, A.G.; Korban, S.S.; Irimie, A.; et al. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics 2020, 10, 660. [Google Scholar] [CrossRef]
- Maniscalco, L.; Iussich, S.; Morello, E.; Martano, M.; Gattino, F.; Miretti, S.; Biolatti, B.; Accornero, P.; Martignani, E.; Sánchez-Céspedes, R.; et al. Increased expression of insulin-like growth factor-1 receptor is correlated with worse survival in canine appendicular osteosarcoma. Vet. J. 2015, 205, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Selvarajah, G.T.; Kirpensteijn, J.; van Wolferen, M.E.; Rao, N.A.S.; Fieten, H.; Mol, J.A. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times. Mol. Cancer 2009, 8, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fossey, S.L.; Liao, A.T.; McCleese, J.K.; Bear, M.D.; Lin, J.; Li, P.K.; Kisseberth, W.C.; London, C.A. Characterization of STAT3 activation and expression in canine and human osteosarcoma. BMC Cancer 2009, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Candi, E.; Dinsdale, D.; Rufini, A.; Salomoni, P.; Knight, R.A.; Mueller, M.; Krammer, P.H.; Melino, G. TAp63 and ΔNp63 in cancer and epidermal development. Cell Cycle 2007, 6, 274–284. [Google Scholar] [CrossRef]
- Cam, M.; Gardner, H.L.; Roberts, R.D.; Fenger, J.M.; Guttridge, C.; London, C.A.; Cam, H. ΔNp63 mediates cellular survival and metastasis in canine osteosarcoma. Oncotarget 2016, 7, 48533–48546. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, B.B.; Sethi, G.; Kwang, S.A.; Sandur, S.K.; Pandey, M.K.; Kunnumakkara, A.B.; Sung, B.; Ichikawa, H. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: Modern target but ancient solution. Ann. N. Y. Acad. Sci. 2006, 1091, 151–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haura, E.B.; Turkson, J.; Jove, R. Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat. Clin. Pract. Oncol. 2005, 2, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Nieto, M.A. The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 2002, 3, 155–166. [Google Scholar] [CrossRef]
- Sharili, A.S.; Allen, S.; Smith, K.; Hargreaves, J.; Price, J.; McGonnell, I. Expression of Snail2 in long bone osteosarcomas correlates with tumour malignancy. Tumor Biol. 2011, 32, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Sharili, A.S.; Allen, S.; Smith, K.; Price, J.; McGonnell, I.M. Snail2 promotes osteosarcoma cell motility through remodelling of the actin cytoskeleton and regulates tumor development. Cancer Lett. 2013, 333, 170–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, M.J.; Dangi-Garimella, S.; Shields, M.A.; Diamond, M.E.; Sun, L.; Koblinski, J.E.; Munshi, H.G. Slug is a downstream mediator of transforming growth factor-β1-induced matrix metalloproteinase-9 expression and invasion of oral cancer cells. J. Cell. Biochem. 2009, 108, 726–736. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, D.; Jiao, X.; Zhang, S.; Liu, X.; Cao, J.; Wu, L.; Wang, D. Slug enhances invasion ability of pancreatic cancer cells through upregulation of matrix metalloproteinase-9 and actin cytoskeleton remodeling. Lab. Investig. 2011, 91, 426–438. [Google Scholar] [CrossRef]
- Verma, R.P.; Hansch, C. Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs. Bioorg. Med. Chem. 2007, 15, 2223–2268. [Google Scholar] [CrossRef]
- Lana, S.E.; Ogilvie, G.K.; Hansen, R.A.; Powers, B.E.; Dernell, W.S.; Withrow, S.J. Identification of matrix metalloproteinases in canine neoplastic tissue. Am. J. Vet. Res. 2000, 61, 111–114. [Google Scholar] [CrossRef]
- Loukopoulos, P.; O’Brien, T.; Ghoddusi, M.; Mungall, B.A.; Robinson, W.F. Characterisation of three novel canine osteosarcoma cell lines producing high levels of matrix metalloproteinases. Res. Vet. Sci. 2004, 77, 131–141. [Google Scholar] [CrossRef]
- Loukopoulos, P.; Mungall, B.A.; Straw, R.C.; Thornton, J.R.; Robinson, W.F. Matrix metalloproteinase-2 and -9 involvement in canine tumors. Vet. Pathol. 2003, 40, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.; Wycislo, K.L.; Pondenis, H.; Fan, T.M.; Das, A. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin. PLoS ONE 2017, 12, e0183930. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, E. Intermediate Filaments: Structure, Dynamics, Function, and Disease. Annu. Rev. Biochem. 1994, 63, 345–382. [Google Scholar] [CrossRef] [PubMed]
- Levin, C.; Jørgensen, T.; Forsare, C.; Ola, P.; Anna, B.; Falck, K.; Fernö, M.; Lövgren, K.; Aaltonen, K.; Rydén, L. Expression of epithelial—Mesenchymal transition—Related markers and phenotypes during breast cancer progression. Breast Cancer Res. Treat. 2020. [Google Scholar] [CrossRef]
- Li, C.; Balazsi, G. A landscape view on the interplay between EMT and cancer metastasis. Npj Syst. Biol. Appl. 2018, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revenco, T.; Nicodème, A.; Pastushenko, I.; Sznurkowska, M.K.; Latil, M.; Sotiropoulou, P.A.; Dubois, C.; Moers, V.; Lemaire, S.; de Maertelaer, V.; et al. Context Dependency of Epithelial-to-Mesenchymal Transition for Metastasis. Cell Rep. 2019, 29, 1458–1468. [Google Scholar] [CrossRef]
- Habel, N.; Stefanovska, B.; Carène, D.; Patiño-Garcia, A.; Lecanda, F.; Fromigué, O. CYR61 triggers osteosarcoma metastatic spreading via an IGF1Rβ-dependent EMT-like process. BMC Cancer 2019, 19, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Amaral, C.B.; da Silva Leite, J.; Fonseca, A.B.M.; Ferreira, A.M.R. Vimentin, osteocalcin and osteonectin expression in canine primary bone tumors: Diagnostic and prognostic implications. Mol. Biol. Rep. 2018, 45, 1289–1296. [Google Scholar] [CrossRef]
- MacEwen, E.G.; Pastor, J.; Kutzke, J.; Tsan, R.; Kurzman, I.D.; Thamm, D.H.; Wilson, M.; Radinsky, R. IGF-1 receptor contributes to the malignant phenotype in human and canine osteosarcoma. J. Cell. Biochem. 2004, 92, 77–91. [Google Scholar] [CrossRef]
- Selvarajah, G.T.; Verheije, M.H.; Kik, M.; Slob, A.; Rottier, P.J.M.; Mol, J.A.; Kirpensteijn, J. Expression of epidermal growth factor receptor in canine osteosarcoma: Association with clinicopathological parameters and prognosis. Vet. J. 2012, 193, 412–419. [Google Scholar] [CrossRef]
- Gospodarowicz, D.; Abraham, J.A.; Schilling, J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc. Natl. Acad. Sci. USA 1989, 86, 7311–7315. [Google Scholar] [CrossRef] [Green Version]
- Henzel, W.J.; Ferrara, N. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 1989, 161, 851–858. [Google Scholar]
- Maeda, K.; Chung, Y.S.; Ogawa, Y.; Kang, S.M.; Ogawa, M.; Sawada, T.; Sowa, M. Prognostic Value of Vascular Endothelial Growth Factor Expression in Gastric Carcinoma. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1996, 77, 858–863. [Google Scholar] [CrossRef]
- Jinno, K.; Tanimizu, M.; Hyodo, I.; Nishikawa, Y.; Hosokawa, Y. Circulating vascular endothelial growth factor (VEGF) is a possible tumor marker for metastasis in human hepatocellular carcinoma. J. Gastroenterol. 1998, 33, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Wada, T.; Akatsuka, T.; Kawaguchi, S.; Nagoya, S.; Shindoh, M.; Higashino, F.; Mezawa, F.; Okada, F.; Ishii, S. Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. Clin. Cancer Res. 2000, 6, 572–577. [Google Scholar]
- Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 2008, 8, 915–928. [Google Scholar] [CrossRef]
- Derynck, R.; Akhurst, R.J.; Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nat. Genet. 2001, 29, 117–129. [Google Scholar] [CrossRef]
- Wu, M.; Chen, G.; Li, Y. TGF- β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016, 4, 16009. [Google Scholar] [CrossRef]
- Li, S.; Li, F.; Cheng, T. TGF-β1 promotes osteosarcoma cell migration and invasion through the miR-143-versican pathway. Cell Physiol. Biochem. 2014, 34, 2169–2179. [Google Scholar] [CrossRef]
- Portela, R.F.; Fadl-Alla, B.A.; Pondenis, H.C.; Byrum, M.L.; Garrett, L.D.; Wycislo, K.L.; Borst, L.B.; Fan, T.M. Pro-tumorigenic effects of transforming growth factor beta 1 in canine osteosarcoma. J. Vet. Intern. Med. 2014, 28, 894–904. [Google Scholar] [CrossRef] [Green Version]
- Galimi, F.; Brizzi, M.F.; Comoglio, P.M. The hepatocyte growth factor and its receptor. Stem Cells 1993, 11, 22–30. [Google Scholar] [CrossRef]
- Sonnenberg, E.; Meyer, D.; Weidner, K.M.; Birchmeier, C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J. Cell Biol. 1993, 123, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Bussolino, F.; Di Renzo, M.F.; Ziche, M.; Bocchietto, E.; Olivero, M.; Naldini, L.; Gaudino, G.; Tamagnone, L.; Coffer, A.; Comoglio, P.M. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 1992, 119, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Grano, M.; Galimi, F.; Zambonin, G.; Colucci, S.; Cottone, E.; Zallone, A.Z.; Comoglio, P.M. Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc. Natl. Acad. Sci. USA 1996, 93, 7644–7648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacEwen, E.G.; Kutzke, J.; Carew, J.; Pastor, J.; Schmidt, J.A.; Tsan, R.; Thamm, D.H.; Radinsky, R. c-Met tyrosine kinase receptor expression and function in human and canine osteosarcoma cells. Clin. Exp. Metastasis 2003, 20, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Ferracini, R.; Angelini, P.; Cagliero, E.; Linari, A.; Martano, M.; Wunder, J.; Buracco, P. MET Oncogene Aberrant Expression in Canine Osteosarcoma. J. Bone Jt. Surg. Am. 2000, 82, 48. [Google Scholar] [CrossRef]
- De Maria, R.; Miretti, S.; Iussich, S.; Olivero, M.; Morello, E.; Bertotti, A.; Christensen, J.G.; Biolatti, B.; Levine, R.A.; Buracco, P.; et al. Met Oncogene Activation Qualifies Spontaneous Canine Osteosarcoma as a Suitable Pre-Clinical Model of Human Osteosarcoma. J. Pathol. 2009, 218, 399–408. [Google Scholar] [CrossRef]
- Oda, Y.; Naka, T.; Takeshita, M.; Iwamoto, Y.; Tsuneyoshi, M. Comparison of histological changes and changes in nm23 and c-MET expression between primary and metastatic sites in osteosarcoma: A clinicopathologic and immunohistochemical study. Hum. Pathol. 2000, 31, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Carpenter, G. Epidermal Growth Factor. Biochemistry 1990, 265, 7709–7712. [Google Scholar]
- Wu, H.; Muscato, N.E.; Gonzalez, A.; Shyr, Y. An EGFR and AKT Signaling Pathway was Identified with Mediation Model in Osteosarcomas Clinical Study. Biomark. Insights 2007, 2. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.L.; Zhong, G.X.; Wang, X.W.; Yu, F.Q.; Weng, D.F.; Wang, X.X.; Lin, J.H. Prognostic significance of the expression of HER family members in primary osteosarcoma. Oncol. Lett. 2018, 16, 2185–2194. [Google Scholar] [CrossRef]
- Giancotti, F.G.; Ruoslahti, E. Integrin Signaling. Science 1999, 285, 1028–1033. [Google Scholar] [CrossRef]
- Stefanidakis, M.; Koivunen, E. Cell-surface association between matrix metalloproteinases and integrins: Role of the complexes in leukocyte migration and cancer progression. Blood 2006, 108, 1441–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barroga, E.F.; Kadosawa, T.; Okumura, M.; Fujinaga, T. Establishment and Characterization of the Growth and Pulmonary Metastasis of a Highly Lung Metastasizing Cell Line from Canine Osteosarcoma in Nude Mice. J. Vet. Med. Sci. 1999, 61, 361–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, M.; Serada, N.; Sheehan, M.; Srinivasan, S.; Mason, N.; Id, M.G.; Avadhani, N. Mitochondrial genome and functional defects in osteosarcoma are associated with their aggressive phenotype. PLoS ONE 2018, 13, e0209489. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, V.; Constant, S.; Bukrinsky, M. Dealing with the family: CD147 interactions with cyclophilins. Immunology 2006, 117, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Saxena, D.K.; Oh-Oka, T.; Kadomatsu, K.; Muramatsu, T.; Toshimori, K. Behaviour of a sperm surface transmembrane glycoprotein basigin during epididymal maturation and its role in fertilization in mice. Reproduction 2002, 123, 435–444. [Google Scholar] [CrossRef]
- Igakura, T.; Kadomatsu, K.; Taguchi, O.; Muramatsu, H.; Kaname, T.; Miyauchi, T.; Yamamura, K.I.; Arimura, K.; Muramatsu, T. Roles of basigin, a member of the immunoglobulin superfamily, in behavior as to an irritating odor, lymphocyte response, and blood-brain barrier. Biochem. Biophys. Res. Commun. 1996, 224, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Lv, G.; Kim, A.; Ha, J.M.; Kim, S. Expression and clinical significance of extracellular matrix metalloproteinase inducer, EMMPRIN/CD147, in human osteosarcoma. Oncol. Lett. 2012, 5, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Chen, X.; Kanekura, T. A CD147-targeting siRNA inhibits the proliferation, invasiveness, and VEGF production of human malignant melanoma cells by down-regulating glycolysis. Cancer Lett. 2009, 273, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Di Lullo, G.A.; Sweeney, S.M.; Körkkö, J.; Ala-Kokko, L.; San Antonio, J.D. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 2002, 277, 4223–4231. [Google Scholar] [CrossRef] [Green Version]
- Provenzano, P.P.; Inman, D.R.; Eliceiri, K.W.; Knittel, J.G.; Yan, L.; Rueden, C.T.; White, J.G.; Keely, P.J. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Elenjord, R.; Allen, J.B.; Johansen, H.T.; Kildalsen, H.; Svineng, G.; Mælandsmo, G.M.; Loennechen, T.; Winberg, J.O. Collagen i regulates matrix metalloproteinase-2 activation in osteosarcoma cells independent of S100A4. FEBS J. 2009, 276, 5275–5286. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Pearce, M.C.; Jiang, Y.; Yang, L.; Goodall, C.; Miranda, C.L.; Milovancev, M.; Bracha, S.; Kolluri, S.K.; Maier, C.S. Delineation of hypoxia-induced proteome shifts in osteosarcoma cells with different metastatic propensities. Sci. Rep. 2020, 10, 727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehon, R.G.; McClatchey, A.I.; Bretscher, A. Organizing the cell cortex: The role of ERM proteins. Nat. Rev. Mol. Cell Biol. 2010, 11, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Algrain, M.; Turunen, O.; Vaheri, A.; Louvard, D.; Arpin, M. Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J. Cell Biol. 1993, 120, 129–140. [Google Scholar] [CrossRef]
- Bruce, B.; Khanna, G.; Ren, L.; Landberg, G.; Jirström, K.; Powell, C.; Borczuk, A.; Keller, E.T.; Wojno, K.J.; Meltzer, P.; et al. Expression of the cytoskeleton linker protein ezrin in human cancers. Clin. Exp. Metastasis 2007, 24, 69–78. [Google Scholar] [CrossRef]
- Khanna, C.; Wan, X.; Bose, S.; Cassaday, R.; Olomu, O.; Mendoza, A.; Yeung, C.; Gorlick, R.; Hewitt, S.M.; Helman, L.J. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat. Med. 2004, 10, 182–186. [Google Scholar] [CrossRef]
- Hong, S.H.; Osborne, T.; Ren, L.; Briggs, J.; Mazcko, C.; Burkett, S.S.; Khanna, C. Protein kinase C regulates ezrin-radixin-moesin phosphorylation in canine osteosarcoma cells. Vet. Comp. Oncol. 2011, 9, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Jaroensong, T.; Endo, Y.; Lee, S.J.; Kamida, A.; Mochizuki, M.; Nishimura, R.; Sasaki, N.; Nakagawa, T. Effects of transplantation sites on tumour growth, pulmonary metastasis and ezrin expression of canine osteosarcoma cell lines in nude mice. Vet. Comp. Oncol. 2012, 10, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, S.; Barrera, J.; Matthews, K.; Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 2005, 122, 421–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP/TAZ at the Roots of Cancer. Cancer Cell 2016, 29, 783–803. [Google Scholar] [CrossRef] [Green Version]
- Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP and TAZ: A signalling hub of the tumour microenvironment. Nat. Rev. Cancer 2019, 19, 454–464. [Google Scholar] [CrossRef]
- Hiemer, S.E.; Szymaniak, A.D.; Varelas, X. The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells. J. Biol. Chem. 2014, 289, 13461–13474. [Google Scholar] [CrossRef] [Green Version]
- Luu, A.K.; Schott, C.R.; Jones, R.; Poon, A.C.; Golding, B.; Hamed, R.; Deheshi, B.; Mutsaers, A.; Wood, G.A.; Viloria-Petit, A.M. An evaluation of TAZ and YAP crosstalk with TGF β signalling in canine osteosarcoma suggests involvement of hippo signalling in disease progression. BMC Vet. Res. 2018, 14, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef] [Green Version]
- Fan, T.M.; Barger, A.M.; Sprandel, I.T.; Fredrickson, R.L. Investigating TrkA expression in canine appendicular osteosarcoma. J. Vet. Intern. Med. 2008, 22, 1181–1188. [Google Scholar] [CrossRef]
- Burger, J.A.; Kipps, T.J. CXCR4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006, 107, 1761–1767. [Google Scholar] [CrossRef]
- Fan, T.M.; Barger, A.M.; Fredrickson, R.L.; Fitzsimmons, D.; Garrett, L.D. Investigating CXCR4 expression in canine appendicular osteosarcoma. J. Vet. Intern. Med. 2008, 22, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Byrum, M.L.; Pondenis, H.C.; Fredrickson, R.L.; Wycislo, K.L.; Fan, T.M. Downregulation of CXCR4 Expression and Functionality After Zoledronate Exposure in Canine Osteosarcoma. J. Vet. Intern. Med. 2016, 1187–1196. [Google Scholar] [CrossRef] [Green Version]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Garzon, R.; Marcucci, G.; Croce, C.M. Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat. Rev. Drug Discov. 2010, 9, 775–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahabi, K.; Selvarajah, G.T.; Abdullah, R.; Kqueen Cheah, Y.; Chin Tan, G. Comparative aspects of microRNA expression in canine and human cancers. J. Vet. Sci. 2018, 19, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Fenger, J.M.; Roberts, R.D.; Iwenofu, O.H.; Bear, M.D.; Zhang, X.; Couto, J.I.; Modiano, J.F.; Kisseberth, W.C.; London, C.A. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines. BMC Cancer 2016, 16, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, C.M.; Yu, P.Y.; Zhang, X.; Yilmaz, A.S.; London, C.A.; Fenger, J.M. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines. PLoS ONE 2018, 13, e0190086. [Google Scholar] [CrossRef] [Green Version]
- Ghoshdastider, U.; Popp, D.; Burtnick, L.D.; Robinson, R.C. The expanding superfamily of gelsolin homology domain proteins. Cytoskeleton 2013, 70, 775–795. [Google Scholar] [CrossRef] [PubMed]
- Gerke, V.; Moss, S. Annexins: From structure to function. Physiol. Rev. 2002, 82, 331–371. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Bi, J.; Yao, C.; Xu, D.; Li, X.; Wang, S.; Li, L.; Zhang, D.; Wang, M.; Chang, G. Annexin A1 expression and its prognostic significance in human breast cancer. Neoplasma 2010, 57, 253–259. [Google Scholar] [CrossRef]
- Bogdanov, V.Y.; Balasubramanian, V.; Hathcock, J.; Vele, O.; Lieb, M.; Nemerson, Y. Alternatively spliced human tissue factor: A circulating, soluble, thrombogenic protein. Nat. Med. 2003, 9, 458–462. [Google Scholar] [CrossRef]
- Rak, J.; Milsom, C.; Yu, J. Tissue factor in cancer. Curr. Opin. Hematol. 2008, 15, 522–528. [Google Scholar] [CrossRef]
- Regina, S.; Valentin, J.B.; Lachot, S.; Lemarié, E.; Rollin, J.; Gruel, Y. Increased tissue factor expression is associated with reduced survival in non-small cell lung cancer and with mutations of TP53 and PTEN. Clin. Chem. 2009, 55, 1834–1842. [Google Scholar] [CrossRef] [Green Version]
- Stokol, T.; Daddona, J.L.; Mubayed, L.S.; Trimpert, J.; Kang, S. Evaluation of tissue factor expression in canine tumor cells. Am. J. Vet. Res. 2011, 72, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Kpetemey, M.; Dasgupta, S.; Rajendiran, S.; Das, S.; Gibbs, L.D.; Shetty, P.; Gryczynski, Z.; Vishwanatha, J.K. MIEN1, a novel interactor of Annexin A2, promotes tumor cell migration by enhancing AnxA2 cell surface expression. Mol. Cancer 2015, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zheng, S.; Yan, Z.; Deng, Z. CCL18 promotes the invasion and metastasis of breast cancer through Annexin A2. Oncol. Rep. 2020, 43, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Bulla, S.C.; Badial, P.R.; Silva, R.C.; Lunsford, K.; Bulla, C. Platelets Inhibit Migration of Canine Osteosarcoma Cells. J. Comp. Pathol. 2016, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Niinaka, Y.; Harada, K.; Fujimuro, M.; Oda, M.; Haga, A.; Hosoki, M.; Uzawa, N.; Arai, N.; Yamaguchi, S.; Yamashiro, M.; et al. Silencing of autocrine motility factor induces mesenchymal to epithelial transition and suppression of osteosarcoma pulmonary metastasis. Cancer Res. 2010, 70, 9483–9493. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.R.; Ding, Y.; Ricks, T.K.; Gullapalli, A.; Wolfe, B.L.; Trejo, J. Protease-Activated Receptor-2 Is Essential for Factor VIIa and Xa—Induced Signaling, Migration, and Invasion of Breast Cancer Cells. Cancer Res. 2006, 66, 307–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astolfi, A.; Nanni, P.; Landuzzi, L.; Ricci, C.; Nicoletti, G.; Rossi, I. An anti-apoptotic role for NGF receptors in human rhabdomyosarcoma. Eur. J. Cancer 2001, 37, 1719–1725. [Google Scholar] [CrossRef]
Protein/Gene | In Vitro | In Vivo | Step(s) of the Metastatic Cascade | ||
---|---|---|---|---|---|
Method | Cell Lines | Method | Samples | ||
p63 | qRT-PCR; WB; TIA; quantitative migration assay; WHA [23] | Abrams, OSA8, OSA16, D17 [23] | necropsy and light microscopy [23] | SCID mice [23] | invasion; migration [23] |
Annexins | peptide fingerprinting [35] | HMPOS, POS [35] | - | - | Invasion; migration [106,107] |
CD147 | peptide fingerprinting; WB; flow cytometry; confocal microscopy; IHC [35] | HMPOS, POS [35] | IHC [35] | spontaneously occurring canine osteosarcoma [35] | Invasion [72,73] |
Collagen | peptide fingerprinting [35]; WHA [35,77]; nano-Lc-MS/MS analysis, parallel reaction monitoring (pRM) MS, WB [77] | HMPOS, POS [35,77] | - | - | Migration [77] |
CXCR-4 | directional migration assay [92,93] RT-PCR; WB; flow cytometry; IHC [92] | POS, HMPOS, COS31, Buck, D17 [92] K003 [93] | IHC [92] | spontaneously occurring canine osteosarcoma [92] | Migration [92,93] |
EGFR | WB; IHC; qRT-PCR [43] | COS31, HMPOS, POS, D17, KOS-001, KOS-002, KOS-003, KOS-004 [43] | tissue microarray; IHC; qRT-PCR [43] | spontaneously occurring canine osteosarcoma [43] | Migration [63] |
Ezrin p-ERM | Matrigel IA qRT-PCR; WHA [82] | MC-KOSA, SK-KOSA, BW-KOSA [68] KOS-001, KOS-002, KOS-003, KOS-004 [82] | IHC; necropsy; [82,83] | SCID mice [82] BALB/c nude mice [83] | invasion; migration [68] |
HGF-SF Met receptor | Matrigel IA [58,60]; Northern blot; qRT-PCR [58]; | D17 [58,60], D22 [60] Abrams, Grey [58] | Northern blot analysis; IHC [59] | spontaneously occurring canine osteosarcoma [59] | Invasion [58,60] |
IGF-1 IGF1-R | Matrigel IA; WB; qRT-PCR [42,68], Northern blot [42] | Abrams, Grey, D17 [42], SK-KOSA, MC-KOSA, BW-KOSA [68] | Necropsy; karyotypic analysis; [42] | athymic nude mice [42] | Invasion [42,68] |
Integrins | peptide fingerprinting [35]; RT-PCR [68] | HMPOS, POS [35], MC-KOSA, SK-KOSA, BW-KOSA [68] | - | - | invasion; migration [66,68] |
miR-9 miR-34a | Matrigel IA; WHA; qRT-PCR; Nano-LC/MS/MS; [97,98], WB [97] | OSA8, OSA16 [97,98], OSA2, OSA40, OSA50, Abrams, D17 [98] | qRT-PCR [98] | spontaneously occurring canine osteosarcoma [97] | invasion, migration [97,98] |
Snail2 | WHA [28]; qRT-PCR [108] | D17 [28], OSCA-8 [108] | fluorescent microscopy [28] | the CAM model; [28] | invasion, migration [28,109], intravasation [28] |
STAT3 | WB; RT-PCR; gel zymography [21] | OSA8, OSA11M, OSA16, OSA29, OSA32, D17 [21] | - | - | Invasion [21] |
TF | RT-PCR; flow cytometry; immunofluorescent microscopy [105] | HMPOS, D17, OS2.4 [105] | - | - | Invasion [110] |
TGFβ | WHA [53] | HMPOS, Abrams, D17 [53] | - | - | Invasion, migration [52,53] |
TrKA | - | - | IHC [90] | spontaneously occurring canine osteosarcoma [90] | survival of the tumor cells in metastatic tumor microenvironment [111] |
Vimentin | peptide fingerprinting; confocal microscopy; WB [35] | HMPOS, POS [35] | - | - | invasion, migration [41] |
YAP and TAZ | migration transwell assay [88] | D17, OVC-cOSA31, OVC-cOSA-75, OVC-cOSA-78 [88] | - | - | Migration [85,88], survival in circulation and at the secondary sites [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilk, S.S.; Zabielska-Koczywąs, K.A. Molecular Mechanisms of Canine Osteosarcoma Metastasis. Int. J. Mol. Sci. 2021, 22, 3639. https://doi.org/10.3390/ijms22073639
Wilk SS, Zabielska-Koczywąs KA. Molecular Mechanisms of Canine Osteosarcoma Metastasis. International Journal of Molecular Sciences. 2021; 22(7):3639. https://doi.org/10.3390/ijms22073639
Chicago/Turabian StyleWilk, Sylwia S., and Katarzyna A. Zabielska-Koczywąs. 2021. "Molecular Mechanisms of Canine Osteosarcoma Metastasis" International Journal of Molecular Sciences 22, no. 7: 3639. https://doi.org/10.3390/ijms22073639
APA StyleWilk, S. S., & Zabielska-Koczywąs, K. A. (2021). Molecular Mechanisms of Canine Osteosarcoma Metastasis. International Journal of Molecular Sciences, 22(7), 3639. https://doi.org/10.3390/ijms22073639