Symbiotic NCR Peptide Fragments Affect the Viability, Morphology and Biofilm Formation of Candida Species
Abstract
:1. Introduction
2. Results
2.1. Design and Synthesis of NCR335 and NCR169 Peptide Derivatives
2.2. NCR Based Peptides Affect the Growth and Survival of Candida Strains
2.3. NCR335C17–33 and NCR169C17–38 Reduce Hyphae Formation
2.4. The Anticandidal NCR Peptide Derivatives Inhibit Biofilm Formation
2.5. NCR335C17–33 and NCR169C17–38 Drastically Reduce the Hyphal Form in Biofilms
2.6. Combined Treatment of C. auris with NCR Peptide Derivatives and Fluconazole Reveals Synergism
2.7. Anti-Candida NCR Peptides Exhibit No or Only Moderate Cytotoxicity on Human Keratinocytes
3. Discussion
4. Materials and Methods
4.1. Peptide Synthesis
4.2. Strains and Growth Conditions
4.3. Antifungal Activity Assays
4.4. Biofilm Formation Assay of C. albicans and C. tropicalis Strains
4.5. Morphological Analysis of C. albicans and C. tropicalis Cells
4.6. Combined Treatment of C. auris with Fluconazole and Selected Peptides
4.7. Assessment of the Viability of Human Keratinocytes
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Low, C.Y.; Rotstein, C. Emerging fungal infections in immunocompromised patients. F1000 Med. Rep. 2011, 3, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandeputte, P.; Ferrari, S.; Coste, A.T. Antifungal Resistance and New Strategies to Control Fungal Infections. Int. J. Microbiol. 2012, 2012, 713687. [Google Scholar] [CrossRef]
- Brauer, V.S.; Rezende, C.P.; Pessoni, A.M.; De Paula, R.G.; Rangappa, K.S.; Nayaka, S.C.; Gupta, V.K.; Almeida, F. Antifungal Agents in Agriculture: Friends and Foes of Public Health. Biomolecules 2019, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Wang, G. The antimicrobial peptide database provides a platform for decoding the design principles of naturally occurring antimicrobial peptides. Protein Sci. 2020, 29, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Mergaert, P.; Uchiumi, T.; Alunni, B.; Evanno, G.; Cheron, A.; Catrice, O.; Mausset, A.E.; Barloy-Hubler, F.; Galibert, F.; Kondorosi, A.; et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc. Natl. Acad. Sci. USA 2006, 103, 5230–5235. [Google Scholar] [CrossRef] [Green Version]
- Van de Velde, W.; Zehirov, G.; Szatmari, A.; Debreczeny, M.; Ishihara, H.; Kevei, Z.; Farkas, A.; Mikulass, K.; Nagy, A.; Tiricz, H.; et al. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 2010, 327, 1122–1126. [Google Scholar] [CrossRef] [PubMed]
- Montiel, J.; Downie, J.A.; Farkas, A.; Bihari, P.; Herczeg, R.; Balint, B.; Mergaert, P.; Kereszt, A.; Kondorosi, E. Morphotype of bacteroids in different legumes correlates with the number and type of symbiotic NCR peptides. Proc. Natl. Acad. Sci. USA 2017, 114, 5041–5046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nallu, S.; Silverstein, K.A.; Zhou, P.; Young, N.D.; Vandenbosch, K.A. Patterns of divergence of a large family of nodule cysteine-rich peptides in accessions of Medicago truncatula. Plant. J. 2014, 78, 697–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, R.M.; Kylarova, S.; Mergaert, P.; Kondorosi, E. Unexplored Arsenals of Legume Peptides With Potential for Their Applications in Medicine and Agriculture. Front. Microbiol. 2020, 11, 1307. [Google Scholar] [CrossRef]
- Tiricz, H.; Szucs, A.; Farkas, A.; Pap, B.; Lima, R.M.; Maroti, G.; Kondorosi, E.; Kereszt, A. Antimicrobial nodule-specific cysteine-rich peptides induce membrane depolarization-associated changes in the transcriptome of Sinorhizobium meliloti. Appl. Environ. Microbiol. 2013, 79, 6737–6746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkas, A.; Maroti, G.; Durgo, H.; Gyorgypal, Z.; Lima, R.M.; Medzihradszky, K.F.; Kereszt, A.; Mergaert, P.; Kondorosi, E. Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proc. Natl. Acad. Sci. USA 2014, 111, 5183–5188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penterman, J.; Abo, R.P.; De Nisco, N.J.; Arnold, M.F.; Longhi, R.; Zanda, M.; Walker, G.C. Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis. Proc. Natl. Acad. Sci. USA 2014, 111, 3561–3566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenei, S.; Tiricz, H.; Szolomajer, J.; Timar, E.; Klement, E.; Al Bouni, M.A.; Lima, R.M.; Kata, D.; Harmati, M.; Buzas, K.; et al. Potent Chimeric Antimicrobial Derivatives of the Medicago truncatula NCR247 Symbiotic Peptide. Front. Microbiol. 2020, 11, 270. [Google Scholar] [CrossRef]
- Ordogh, L.; Voros, A.; Nagy, I.; Kondorosi, E.; Kereszt, A. Symbiotic plant peptides eliminate Candida albicans both in vitro and in an epithelial infection model and inhibit the proliferation of immortalized human cells. Biomed. Res. Int. 2014, 2014, 320796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velivelli, S.L.S.; Czymmek, K.J.; Li, H.; Shaw, J.B.; Buchko, G.W.; Shah, D.M. Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. Proc. Natl. Acad. Sci. USA 2020, 117, 16043–16054. [Google Scholar] [CrossRef]
- Deorukhkar, S.C.; Saini, S.; Mathew, S. Virulence Factors Contributing to Pathogenicity of Candida tropicalis and Its Antifungal Susceptibility Profile. Int. J. Microbiol. 2014, 2014, 456878. [Google Scholar] [CrossRef] [Green Version]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Jin, S.; Wang, M.; Pang, Q.; Liu, C.; Liu, R.; Wang, Y.; Yang, H.; Liu, F.; Liu, Y. The Critical Role of Tryptophan in the Antimicrobial Activity and Cell Toxicity of the Duck Antimicrobial Peptide DCATH. Front. Microbiol. 2020, 11, 1146. [Google Scholar] [CrossRef]
- Taff, H.T.; Mitchell, K.F.; Edward, J.A.; Andes, D.R. Mechanisms of Candida biofilm drug resistance. Future Microbiol. 2013, 8, 1325–1337. [Google Scholar] [CrossRef] [Green Version]
- Gulati, M.; Ennis, C.L.; Rodriguez, D.L.; Nobile, C.J. Visualization of Biofilm Formation in Candida albicans Using an Automated Microfluidic Device. J. Vis. Exp. 2017, e56743. [Google Scholar] [CrossRef]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revie, N.M.; Iyer, K.R.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: Evolution, mechanisms and impact. Curr. Opin. Microbiol. 2018, 45, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919–3931. [Google Scholar] [PubMed]
- Fernandez de Ullivarri, M.; Arbulu, S.; Garcia-Gutierrez, E.; Cotter, P.D. Antifungal Peptides as Therapeutic Agents. Front. Cell Infect. Microbiol. 2020, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Rathinakumar, R.; Walkenhorst, W.F.; Wimley, W.C. Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: The importance of interfacial activity. J. Am. Chem. Soc. 2009, 131, 7609–7617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buda De Cesare, G.; Cristy, S.A.; Garsin, D.A.; Lorenz, M.C. Antimicrobial Peptides: A New Frontier in Antifungal Therapy. mBio 2020, 11. [Google Scholar] [CrossRef]
- Bondaryk, M.; Staniszewska, M.; Zielinska, P.; Urbanczyk-Lipkowska, Z. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. J. Fungi 2017, 3, 46. [Google Scholar] [CrossRef]
- Haag, A.F.; Kerscher, B.; Dall’Angelo, S.; Sani, M.; Longhi, R.; Baloban, M.; Wilson, H.M.; Mergaert, P.; Zanda, M.; Ferguson, G.P. Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide. J. Biol. Chem. 2012, 287, 10791–10798. [Google Scholar] [CrossRef] [Green Version]
- Shabab, M.; Arnold, M.F.; Penterman, J.; Wommack, A.J.; Bocker, H.T.; Price, P.A.; Griffitts, J.S.; Nolan, E.M.; Walker, G.C. Disulfide cross-linking influences symbiotic activities of nodule peptide NCR247. Proc. Natl. Acad. Sci. USA 2016, 113, 10157–10162. [Google Scholar] [CrossRef] [Green Version]
- Gow, N.A.; van de Veerdonk, F.L.; Brown, A.J.; Netea, M.G. Candida albicans morphogenesis and host defence: Discriminating invasion from colonization. Nat. Rev. Microbiol. 2011, 10, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Do Nascimento Dias, J.; de Souza Silva, C.; de Araujo, A.R.; Souza, J.M.T.; de Holanda Veloso, P.H., Jr.; Cabral, W.F.; da Gloria da Silva, M.; Eaton, P.; de Souza de Almeida Leite, J.R.; Nicola, A.M.; et al. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Sci. Rep. 2020, 10, 10327. [Google Scholar] [CrossRef] [PubMed]
- Lamiable, A.; Thevenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tuffery, P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016, 44, W449–W454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Maupetit, J.; Derreumaux, P.; Tuffery, P. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. J. Chem. Theory Comput. 2014, 10, 4745–4758. [Google Scholar] [CrossRef]
- Thevenet, P.; Shen, Y.; Maupetit, J.; Guyon, F.; Derreumaux, P.; Tuffery, P. PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res. 2012, 40, W288–W293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leber, A.L. (Ed.) Clinical Microbiology Procedures Handbook, 4th ed.; ASM Press: Washington, DC, USA, 2016. [Google Scholar]
Peptide | Sequence of the Peptide | No. AA | pI | Net Charge |
---|---|---|---|---|
NCR335N1–19 | RLNTTFRPLNFKMLRFWGQ | 19 | 14 | +5 |
NCR335N1–15 | RLNTTFRPLNFKMLR | 15 | 14 | +5 |
NCR335N7–21 | RPLNFKMLRFWGQNR | 15 | 14 | +5 |
NCR335N16–29 | FWGQNRNIMKHRGQ | 14 | 14 | +4.1 |
NCR335C1–33 | HFSLILSDCKTNKDCPKLRRANVRCRKSYCVPI | 33 | 10.37 | +6.8 |
NCR335C13–33 | KDCPKLRRANVRCRKSYCVPI | 21 | 10.91 | +6.8 |
NCR335C17–33 | KLRRANVRCRKSYCVPI | 17 | 11.73 | +6.9 |
NCR335C17–27 | KLRRANVRCRK | 11 | 12.59 | +6.9 |
NCR335C1–8 | HFSLILSD | 8 | 7.57 | +0.1 |
NCR335C9–16 | CKTNKDCP | 8 | 9.23 | +1.9 |
NCR335C1–16 | HFSLILSDCKTNKDCP | 16 | 8.07 | +1.0 |
NCR169C17–38 | KSKKPLFKIWKCVENVCVLWYK | 22 | 10.48 | +5.9 |
NCR169C17–38ox | KSKKPLFKIWKĈVENVĈVLWYK | 22 | 11.01 | +6 |
NCR169C17–38W10,20/A | KSKKPLFKIAKCVENVCVLAYK | 22 | 10.48 | +6 |
Peptide | Ca ATCC 10231 | Ca SC 5314 | Ca SZMC 1458 | Cau 0381 | Cg CBS 138 | Cp CBS 604 | Ct CBS 94 |
---|---|---|---|---|---|---|---|
NCR335N1–19 | 25 | - | - | - | - | 12.50 | - |
NCR335N1–15 | - | - | - | - | - | - | - |
NCR335N7–21 | 25 | 25 | 25 | - | 25 | - | 6.25 |
NCR335N16–29 | - | - | - | - | - | - | - |
NCR335C1–33 | 25 | 12.50 | 12.50 | - | 25 | 25 | - |
NCR335C13–33 | - | 12.50 | - | - | - | - | - |
NCR335C17–33 | 12.50 | 12.50 | 12.50 | - | 25 | 12.50 | 3.12 |
NCR335C17–27 | - | - | - | - | - | - | - |
NCR335C1–8 | - | - | - | - | - | - | - |
NCR335C9–16 | - | - | - | - | - | - | - |
NCR335C1–16 | - | - | - | - | - | - | - |
NCR169C17–38 | 25 | 12.50 | 12.50 | 6.25 | 25 | - | 3.12 |
NCR169C17–38 ox | 6.25 | 6.25 | 6.25 | 12.50 | 6.25 | - | 3.12 |
NCR169C17–38W10,20/A | 25 | 12.50 | 6.25 | - | 12.50 | - | 6.25 |
Fluconazole | 200 | 12.50 | 1.56 | 25 | 200 | 6.25 | 100 |
Amphotericin B | 3.12 | 3.12 | 3.12 | 6.25 | 1.56 | 3.12 | 6.25 |
Drug A | Drug B | FICA (µM) | FICB (µM) | FIC | Action |
---|---|---|---|---|---|
Fluconazole | NCR335C17–33 | 1 (25) | 0.125 * (1.56) | 1.125 * | Indifferent |
NCR169C17–38 | 0.5 (12.50) | 0.125 (0.78) | 0.625 | Additive | |
NCR169C17–38ox | 0.25 (6.25) | 0.25 (1.56) | 0.5 | Synergism | |
NCR169C17–38 | NCR335C17–33 | 0.125 (1.56) | 0.25 * (3.12) | 0.375 * | Synergism |
NCR169C17–38ox | 0.25 (3.12) | 0.25 (1.56) | 0.5 | Synergism |
Species | Strain Number |
---|---|
Candida albicans | ATCC 10231 |
Candida albicans | SC 5314 |
Candida albicans | SZMC 1458 |
Candida auris | 0381 |
Candida glabrata | CBS 138 |
Candida parapsilosis | CBS 604 |
Candida tropicalis | CBS 94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szerencsés, B.; Gácser, A.; Endre, G.; Domonkos, I.; Tiricz, H.; Vágvölgyi, C.; Szolomajer, J.; Howan, D.H.O.; Tóth, G.K.; Pfeiffer, I.; et al. Symbiotic NCR Peptide Fragments Affect the Viability, Morphology and Biofilm Formation of Candida Species. Int. J. Mol. Sci. 2021, 22, 3666. https://doi.org/10.3390/ijms22073666
Szerencsés B, Gácser A, Endre G, Domonkos I, Tiricz H, Vágvölgyi C, Szolomajer J, Howan DHO, Tóth GK, Pfeiffer I, et al. Symbiotic NCR Peptide Fragments Affect the Viability, Morphology and Biofilm Formation of Candida Species. International Journal of Molecular Sciences. 2021; 22(7):3666. https://doi.org/10.3390/ijms22073666
Chicago/Turabian StyleSzerencsés, Bettina, Attila Gácser, Gabriella Endre, Ildikó Domonkos, Hilda Tiricz, Csaba Vágvölgyi, János Szolomajer, Dian H. O. Howan, Gábor K. Tóth, Ilona Pfeiffer, and et al. 2021. "Symbiotic NCR Peptide Fragments Affect the Viability, Morphology and Biofilm Formation of Candida Species" International Journal of Molecular Sciences 22, no. 7: 3666. https://doi.org/10.3390/ijms22073666
APA StyleSzerencsés, B., Gácser, A., Endre, G., Domonkos, I., Tiricz, H., Vágvölgyi, C., Szolomajer, J., Howan, D. H. O., Tóth, G. K., Pfeiffer, I., & Kondorosi, É. (2021). Symbiotic NCR Peptide Fragments Affect the Viability, Morphology and Biofilm Formation of Candida Species. International Journal of Molecular Sciences, 22(7), 3666. https://doi.org/10.3390/ijms22073666