Circulating miRNAs as Biomarkers for Mitochondrial Neuro-Gastrointestinal Encephalomyopathy
Abstract
:1. Introduction
2. Results
2.1. Study Design
2.2. Study Population
2.3. Discovery Phase
2.3.1. Data Quality Control (QC)
2.3.2. Differentially Expressed miRNAs
2.4. Candidate Screening Phase
2.4.1. Descriptive Analysis of Sequencing Data
2.4.2. miRNA Expression
2.4.3. Differentially Expressed miRNA Profile
2.4.4. NormFinder Analysis
2.5. Validation Phase
2.5.1. Extraction Efficiency and Sample QC
2.5.2. Determination of the Most Stable Reference Genes
2.5.3. Identification of Differentially Expressed miRNA in MNGIE Plasma and Serum Samples
2.5.4. Meta-Analysis of qPCR and Sequencing Data
2.5.5. Elucidation of MNGIE miRNA Panel
2.6. Performance Phase
2.7. Target Gene Prediction and Enrichment Analysis
3. Discussion
4. Materials and Methods
4.1. Study Design and Subjects
4.2. Blood Collection
4.3. miRNA RT-qPCR
4.3.1. RNA Isolation and Sample Quality Control
4.3.2. miRNA Profiling Using RT-qPCR Panels
4.3.3. qPCR Data Collection and Quality Control
4.3.4. Normalisation
4.3.5. Differential Gene Expression Analysis
4.4. miRNA NGS Analysis
4.4.1. RNA Isolation and Quality Control
4.4.2. Library Preparation
4.4.3. Library Quality Control
4.4.4. NGS
4.4.5. Raw Data Processing
4.4.6. Differential Gene Expression Analysis
4.5. Downstream Bioinformatics Analyses
4.5.1. General Bioinformatics and QC
4.5.2. Candidate Phase Micro RNA Signature
4.5.3. Validation Phase
4.5.4. MirRNA Gene Target Identification
4.5.5. Enrichment and Pathway Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample ID | Qubit | DNA Chip | Correlation Factor | ||
---|---|---|---|---|---|
Concentration (ng/µL) | Concentration (nM) | Peak max. (bp) | Concentration 150–200 bp (ng/µL) | ||
SP1 | 0.352 | 3.1 | 156/183 | 0.21 | 1.68 |
SP2 | 8.16 | 72.6 | 168/181 | 6.22 | 1.31 |
SP3 | 6.04 | 53.7 | 164/180/185 | 5.21 | 1.16 |
SP4 | 6.7 | 59.6 | 166/180 | 5.89 | 1.14 |
SP5 | 6.4 | 56.9 | 165/186 | 6.24 | 1.03 |
SP7 | 12.2 | 108.5 | 185 | 9.69 | 1.26 |
SP8 | 7.42 | 66.0 | 170/190 | 5.31 | 1.40 |
SP11 | 7.46 | 66.3 | 168/190 | 4.49 | 1.66 |
SP13 | 6.7 | 59.6 | 168/183 | 5.63 | 1.19 |
SP14 | 3.72 | 33.1 | 172/182 | 2.84 | 1.31 |
SP15 | 8.28 | 73.6 | 184 | 6.33 | 1.31 |
SP16 | 4.72 | 42.0 | 184 | 3.56 | 1.33 |
SP17 | 6.24 | 55.5 | 171/184 | 4.48 | 1.39 |
SP19 | 6.62 | 58.9 | 167/181 | 4.51 | 1.47 |
SP22 | 6.46 | 57.4 | 170/179 | 5.27 | 1.23 |
SP24 | 7.14 | 63.5 | 165/180/185 | 5.59 | 1.28 |
SP25 | 3.46 | 30.8 | 165/185 | 2.91 | 1.19 |
SP26 | 6.06 | 53.9 | 168/186 | 5.28 | 1.15 |
SP28 | 13.8 | 122.7 | 182 | 11.8 | 1.17 |
SP29 | 4.22 | 37.5 | 171/180 | 3.2 | 1.32 |
SC1 | 6.54 | 58.2 | 171/180 | 4.8 | 1.36 |
SC2 | 5 | 44.5 | 171/183 | 3.71 | 1.35 |
SC3 | 4.46 | 39.7 | 167/181 | 3.8 | 1.17 |
SC4 | 4.4 | 39.1 | 167/180/185 | 3.62 | 1.22 |
SC5 | 7.12 | 63.3 | 168/179/188 | 5.39 | 1.32 |
SC7 | 5.9 | 52.5 | 171/181/187 | 5.46 | 1.08 |
SC8 | 4.78 | 42.5 | 172/181/189 | 3.78 | 1.26 |
SC11 | 5.12 | 45.5 | 181 | 4.29 | 1.19 |
SC13 | 5.22 | 46.4 | 181 | 4.57 | 1.14 |
SC14 | 4.62 | 41.1 | 182 | 3.98 | 1.16 |
SC15 | 8 | 71.1 | 170/182 | 6.36 | 1.26 |
SC16 | 5.06 | 45.0 | 172/184 | 3.49 | 1.45 |
SC17 | 6.96 | 61.9 | 169/183 | 5.03 | 1.38 |
SC19 | 6.02 | 53.5 | 184 | 6.02 | 1.00 |
SC22 | 6.52 | 58.0 | 173/184 | 4.82 | 1.35 |
SC24 | 5.58 | 49.6 | 185 | 4 | 1.40 |
SC25 | 8.1 | 72.0 | 170/186 | 6.13 | 1.32 |
SC26 | 11 | 97.8 | 184 | 8.23 | 1.34 |
SC28 | 9.42 | 83.8 | 184 | 6.77 | 1.39 |
SC29 | 6.88 | 61.2 | 167/181 | 5.94 | 1.16 |
Sample | Sample Group | Raw Reads | UMI-Corrected Reads | miRNA | Small RNA | Predicted Putative | Genome-Mapped | Out-Mapped | Unmapped |
---|---|---|---|---|---|---|---|---|---|
SP2 | MNGIE | 20,664,264 | 1,692,257 | 650,817 | 100,763 | 601 | 192,936 | 49,479 | 632,535 |
SP3 | MNGIE | 21,127,109 | 1,224,691 | 278,899 | 251,730 | 329 | 155,978 | 22,154 | 457,945 |
SP4 | MNGIE | 20,333,698 | 1,418,119 | 429,621 | 147,641 | 515 | 181,417 | 29,922 | 562,423 |
SP5 | MNGIE | 21,347,972 | 1,540,800 | 299,838 | 408,812 | 454 | 213,990 | 29,682 | 533,172 |
SP7 | MNGIE | 16,066,719 | 2,302,801 | 467,914 | 482,545 | 734 | 331,453 | 53,819 | 904,822 |
SP8 | MNGIE | 16,838,686 | 1,342,259 | 298,753 | 316,206 | 438 | 182,084 | 35,186 | 453,989 |
SP11 | MNGIE | 20,970,633 | 1,634,817 | 327,706 | 529,716 | 408 | 220,883 | 37,202 | 453,337 |
SP13 | MNGIE | 21,141,959 | 1,421,221 | 678,484 | 132,492 | 335 | 132,793 | 34,691 | 392,973 |
SP14 | MNGIE | 19,296,523 | 1,025,361 | 128,972 | 82,118 | 442 | 168,739 | 31,039 | 571,449 |
SP15 | MNGIE | 16,923,919 | 1,867,653 | 673,649 | 369,350 | 568 | 208,706 | 33,119 | 489,675 |
SP16 | MNGIE | 18,728,561 | 1,439,265 | 492,834 | 197,474 | 384 | 154,024 | 25,586 | 490,468 |
SP17 | MNGIE | 19,990,371 | 1,397,712 | 321,730 | 199,289 | 512 | 184,337 | 30,791 | 583,150 |
SP19 | MNGIE | 19,145,886 | 1,340,770 | 436,842 | 75,179 | 466 | 158,023 | 34,839 | 585,267 |
SP22 | MNGIE | 20,681,925 | 1,670,921 | 459,316 | 307,359 | 721 | 200,093 | 37,713 | 561,858 |
SP24 | MNGIE | 18,239,146 | 1,691,391 | 406,688 | 482,402 | 725 | 215,074 | 50,170 | 464,957 |
SP25 | MNGIE | 18,745,668 | 1,481,231 | 289,439 | 397,076 | 803 | 196,168 | 31,956 | 490,505 |
SP26 | MNGIE | 18,938,821 | 1,616,601 | 223,516 | 560,241 | 404 | 191,187 | 30,643 | 563,797 |
SP28 | MNGIE | 16,249,308 | 2,829,424 | 1,353,115 | 645,863 | 775 | 230,212 | 73,935 | 415,151 |
SP29 | MNGIE | 17,607,954 | 967,760 | 114,637 | 90,282 | 489 | 153,894 | 30,124 | 536,427 |
SC1 | Control | 20,047,242 | 1,425,635 | 246,775 | 223,325 | 749 | 204,667 | 205,037 | 499,649 |
SC2 | Control | 19,174,254 | 1,162,880 | 211,024 | 78,885 | 608 | 173,654 | 30,686 | 627,744 |
SC3 | Control | 19,572,619 | 1,165,596 | 254,498 | 180,714 | 475 | 156,400 | 32,348 | 485,578 |
SC4 | Control | 18,977,265 | 1,263,131 | 205,650 | 226,716 | 343 | 172,717 | 19,879 | 566,867 |
SC5 | Control | 19,111,231 | 1,330,492 | 199,993 | 274,267 | 710 | 195,275 | 62,165 | 549,749 |
SC7 | Control | 20,841,960 | 1,686,446 | 260,585 | 574,848 | 551 | 197,661 | 49,943 | 535,706 |
SC8 | Control | 19,707,934 | 1,300,028 | 80,815 | 296,634 | 491 | 210,555 | 41,962 | 623,245 |
SC11 | Control | 18,563,430 | 1,410,021 | 421,605 | 206,912 | 318 | 169,129 | 21,132 | 515,833 |
SC13 | Control | 20,066,962 | 1,708,975 | 330,017 | 281,688 | 1093 | 230,533 | 37,611 | 753,341 |
SC14 | Control | 19,274,934 | 1,445,280 | 449,689 | 192,179 | 533 | 180,822 | 29,709 | 525,387 |
SC15 | Control | 17,987,689 | 1,812,195 | 457,671 | 372,199 | 613 | 223,194 | 36,569 | 610,127 |
SC16 | Control | 18,510,527 | 1,368,296 | 326,311 | 211,476 | 486 | 193,179 | 25,249 | 545,638 |
SC17 | Control | 16,353,105 | 1,193,955 | 253,521 | 160,378 | 464 | 183,340 | 27,742 | 502,454 |
SC19 | Control | 19,108,362 | 1,566,082 | 398,520 | 214,029 | 520 | 199,157 | 28,460 | 632,067 |
SC22 | Control | 20,550,573 | 1,497,595 | 188,307 | 138,580 | 596 | 214,189 | 23,795 | 884,586 |
SC24 | Control | 20,375,566 | 1,462,403 | 492,804 | 196,533 | 404 | 184,880 | 28,799 | 483,227 |
SC25 | Control | 19,301,760 | 1,685,793 | 651,506 | 264,055 | 517 | 198,925 | 39,626 | 455,690 |
SC26 | Control | 18,149,356 | 2,402,158 | 1,036,238 | 474,154 | 540 | 237,515 | 48,912 | 484,333 |
SC28 | Control | 17,447,705 | 1,945,829 | 579,513 | 398,678 | 546 | 216,304 | 40,542 | 614,349 |
SC29 | Control | 18,520,877 | 1,632,676 | 550,777 | 200,806 | 737 | 218,689 | 34,023 | 551,392 |
Average | 19,094,422 | 1,547,962 | 408,425 | 280,605 | 549 | 195,712 | 40,160 | 553,612 | |
% age of UMI-corrected reads | 26.4 | 18.1 | 0.0 | 12.6 |
Biofluid | MicroRNA | Beta | Standard Error | Z | P | Odds Ratio (OR) | 95% Confidence Interval OR | |
---|---|---|---|---|---|---|---|---|
Plasma | miR-34a-5p | 8.11 | 3.46 | 2.34 | 0.0191 | 3334.32 | 28.27 | 58330583.76 |
miR-192-5p | 2.37 | 0.85 | 2.80 | 0.0052 | 10.73 | 2.57 | 77.86 | |
miR-193a-5p | 3.48 | 1.22 | 2.85 | 0.0044 | 32.53 | 4.96 | 673.26 | |
miR-194-5p | 2.69 | 1.03 | 2.61 | 0.0090 | 14.75 | 2.87 | 183.24 | |
miR-215-5p | 3.58 | 1.16 | 3.09 | 0.0020 | 35.82 | 5.48 | 631.51 | |
Serum | miR-34a-5p | 1.74 | 0.68 | 2.58 | 0.0100 | 5.69 | 1.88 | 28.34 |
miR-192-5p | 2.00 | 0.72 | 2.76 | 0.0057 | 7.41 | 2.21 | 39.76 | |
miR-194-5p | 1.51 | 0.61 | 2.47 | 0.0135 | 4.54 | 1.63 | 18.69 |
Target RNA | Notes | Target RNA | Target RNA | Notes |
---|---|---|---|---|
hsa-let-7b-3p | hsa-miR-203a-3p | hsa-miR-4742-3p | ||
hsa-let-7b-5p | Normaliser | hsa-miR-206 | hsa-miR-483-3p | |
hsa-let-7i-5p | Normaliser | hsa-miR-210-3p | hsa-miR-483-5p | |
hsa-miR-425-5p | Normaliser | hsa-miR-214-3p | hsa-miR-484 | |
hsa-miR-30e-5p | Normaliser | hsa-miR-215-5p | hsa-miR-485-3p | |
hsa-miR-101-3p | hsa-miR-219a-2-3p | hsa-miR-486-3p | ||
hsa-miR-106b-5p | hsa-miR-22-3p | hsa-miR-486-5p | ||
hsa-miR-107 | hsa-miR-23b-5p | hsa-miR-487b-3p | ||
hsa-miR-10b-5p | hsa-miR-30d-3p | hsa-miR-501-3p | ||
hsa-miR-1180-3p | hsa-miR-31-5p | hsa-miR-502-3p | ||
hsa-miR-1224-5p | hsa-miR-3168 | hsa-miR-503-5p | ||
hsa-miR-122-5p | hsa-miR-320a | hsa-miR-518b | ||
hsa-miR-125b-5p | hsa-miR-32-5p | hsa-miR-5193 | ||
hsa-miR-1285-3p | hsa-miR-338-3p | hsa-miR-548a-3p | ||
hsa-miR-1294 | hsa-miR-340-3p | hsa-miR-582-3p | ||
hsa-miR-1301-3p | hsa-miR-34a-5p | hsa-miR-629-5p | ||
hsa-miR-130b-3p | hsa-miR-3613-5p | hsa-miR-660-5p | ||
hsa-miR-142-3p | hsa-miR-362-5p | hsa-miR-6721-5p | ||
hsa-miR-151a-5p | hsa-miR-363-3p | hsa-miR-6767-5p | ||
hsa-miR-15a-5p | hsa-miR-370-3p | hsa-miR-6805-5p | ||
hsa-miR-15b-5p | hsa-miR-378a-3p | hsa-miR-744-5p | ||
hsa-miR-16-5p | hsa-miR-382-5p | hsa-miR-7849-3p | ||
hsa-miR-181c-3p | hsa-miR-409-3p | hsa-miR-873-5p | ||
hsa-miR-182-5p | hsa-miR-411-5p | hsa-miR-874-3p | ||
hsa-miR-183-5p | hsa-miR-412-5p | hsa-miR-885-3p | ||
hsa-miR-192-5p | hsa-miR-423-5p | hsa-miR-885-5p | ||
hsa-miR-193a-5p | hsa-miR-4433b-5p | hsa-miR-92a-3p | ||
hsa-miR-193b-3p | hsa-miR-4467 | hsa-miR-942-5p | ||
hsa-miR-193b-5p | hsa-miR-450a-2-3p | SNORD65 | ||
hsa-miR-194-5p | hsa-miR-451a | UniSp3 | Spike-in control for PCR efficiency | |
hsa-miR-195-5p | hsa-miR-455-5p | UniSp6 | Spike-in control for cDNA synthesis inhibition | |
hsa-miR-199a-5p | hsa-miR-4732-5p |
References
- Hirano, M.; Silvestri, G.; Blake, D.M.; Lombes, A.; Minetti, C.; Bonilla, E.; Hays, A.P.; Lovelace, R.E.; Butler, I.; Bertorini, T.E.; et al. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE): Clinical, Biochemical, and Genetic Features of an Autosomal Recessive Mitochondrial Disorder. Neurology 1994, 44, 721–727. [Google Scholar] [CrossRef]
- Nishino, I.; Spinazzola, A.; Hirano, M. Thymidine Phosphorylase Gene Mutations in MNGIE, a Human Mitochondrial Disorder. Science 1999, 283, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Nishino, I.; Spinazzola, A.; Hirano, M. MNGIE: From Nuclear DNA to Mitochondrial DNA. Neuromuscul. Disord. 2001, 11, 7–10. [Google Scholar] [CrossRef]
- Hirano, M.; Nishigaki, Y.; Martí, R. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE): A Disease of Two Genomes. Neurologist 2004, 10, 8–17. [Google Scholar] [CrossRef]
- Nishigaki, Y.; Martí, R.; Copeland, W.C.; Hirano, M. Site-Specific Somatic Mitochondrial DNA Point Mutations in Patients with Thymidine Phosphorylase Deficiency. J. Clin. Investig. 2003, 111, 1913–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garone, C.; Tadesse, S.; Hirano, M. Clinical and Genetic Spectrum of Mitochondrial Neurogastrointestinal Encephalomyopathy. Brain 2011, 134, 3326–3332. [Google Scholar] [CrossRef] [Green Version]
- Spinazzola, A.; Marti, R.; Nishino, I.; Andreu, A.L.; Naini, A.; Tadesse, S.; Pela, I.; Zammarchi, E.; Donati, M.A.; Oliver, J.A.; et al. Altered Thymidine Metabolism Due to Defects of Thymidine Phosphorylase. J. Biol. Chem. 2002, 277, 4128–4133. [Google Scholar] [CrossRef] [Green Version]
- La Marca, G.; Malvagia, S.; Casetta, B.; Pasquini, E.; Pela, I.; Hirano, M.; Donati, M.A.; Zammarchi, E. Pre- and Post-Dialysis Quantitative Dosage of Thymidine in Urine and Plasma of a MNGIE Patient by Using HPLC-ESI-MS/MS. J. Mass Spectrom. 2006, 41, 586–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yavuz, H.; Özel, A.; Christensen, M.; Christensen, E.; Schwartz, M.; Elmaci, M.; Vissing, J. Treatment of Mitochondrial Neurogastrointestinal Encephalomyopathy with Dialysis. Arch. Neurol. 2007, 64, 435–438. [Google Scholar] [CrossRef]
- Lara, M.C.; Valentino, M.L.; Torres-Torronteras, J.; Hirano, M.; Martí, R. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE): Biochemical Features and Therapeutic Approaches. Biosci. Rep. 2007, 27, 151–163. [Google Scholar] [CrossRef]
- Levene, M.; Bain, M.; Moran, N.; Nirmalananthan, N.; Poulton, J.; Scarpelli, M.; Filosto, M.; Mandel, H.; MacKinnon, A.; Fairbanks, L.; et al. Safety and Efficacy of Erythrocyte Encapsulated Thymidine Phosphorylase in Mitochondrial Neurogastrointestinal Encephalomyopathy. J. Clin. Med. 2019, 8, 457. [Google Scholar] [CrossRef] [Green Version]
- Bax, B.E.; Levene, M.; Bain, M.D.; Fairbanks, L.D.; Filosto, M.; Kalkan Uçar, S.; Klopstock, T.; Kornblum, C.; Mandel, H.; Rahman, S.; et al. Erythrocyte Encapsulated Thymidine Phosphorylase for the Treatment of Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy: Study Protocol for a Multi-Centre, Multiple Dose, Open Label Trial. J. Clin. Med. 2019, 8, 1096. [Google Scholar] [CrossRef] [Green Version]
- Bax, B.E. Mitochondrial Neurogastrointestinal Encephalomyopathy: Approaches to Diagnosis and Treatment. J. Transl. Genet. Genom. 2019, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Hirano, M.; Martí, R.; Casali, C.; Tadesse, S.; Uldrick, T.; Fine, B.; Escolar, D.M.; Valentino, M.L.; Nishino, I.; Hesdorffer, C.; et al. Allogeneic Stem Cell Transplantation Corrects Biochemical Derangements in MNGIE. Neurology 2006, 67, 1458–1460. [Google Scholar] [CrossRef]
- Halter, J.; Schüpbach, W.M.M.; Casali, C.; Elhasid, R.; Fay, K.; Hammans, S.; Illa, I.; Kappeler, L.; Krähenbühl, S.; Lehmann, T.; et al. Allogeneic Hematopoietic SCT as Treatment Option for Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE): A Consensus Conference Proposal for a Standardized Approach. Bone Marrow Transplant. 2011, 46, 330–337. [Google Scholar] [CrossRef]
- Filosto, M.; Scarpelli, M.; Tonin, P.; Lucchini, G.; Pavan, F.; Santus, F.; Parini, R.; Donati, M.A.; Cotelli, M.S.; Vielmi, V.; et al. Course and Management of Allogeneic Stem Cell Transplantation in Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy. J. Neurol. 2012, 259, 2699–2706. [Google Scholar] [CrossRef]
- D’Angelo, R.; Boschetti, E.; Amore, G.; Costa, R.; Pugliese, A.; Caporali, L.; Gramegna, L.L.; Papa, V.; Vizioli, L.; Capristo, M.; et al. Liver Transplantation in Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE): Clinical Long-Term Follow-up and Pathogenic Implications. J. Neurol. 2020, 267, 3702–3710. [Google Scholar] [CrossRef]
- Kripps, K.A.; Nakayuenyongsuk, W.; Shayota, B.J.; Berquist, W.; Gomez-Ospina, N.; Esquivel, C.O.; Concepcion, W.; Sampson, J.B.; Cristin, D.J.; Jackson, W.E.; et al. Successful Liver Transplantation in Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE). Mol. Genet. Metab. 2020, 130, 58–64. [Google Scholar] [CrossRef]
- Vila-Julià, F.; Cabrera-Pérez, R.; Cámara, Y.; Molina-Berenguer, M.; Lope-Piedrafita, S.; Hirano, M.; Mingozzi, F.; Torres-Torronteras, J.; Martí, R. Efficacy of Adeno-Associated Virus Gene Therapy in a MNGIE Murine Model Enhanced by Chronic Exposure to Nucleosides. EBioMedicine 2020, 62, 103133. [Google Scholar] [CrossRef]
- Bax, B.E. Biomarkers in Rare Diseases. Int. J. Mol. Sci. 2021, 22, 673. [Google Scholar] [CrossRef]
- Kakkis, E.D.; O’Donovan, M.; Cox, G.; Hayes, M.; Goodsaid, F.; Tandon, P.; Furlong, P.; Boynton, S.; Bozic, M.; Orfali, M.; et al. Recommendations for the Development of Rare Disease Drugs Using the Accelerated Approval Pathway and for Qualifying Biomarkers as Primary Endpoints. Orphanet J. Rare Dis. 2015, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The MicroRNA Spectrum in 12 Body Fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA Expression Profiles Classify Human Cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Botta-Orfila, T.; Morató, X.; Compta, Y.; Lozano, J.J.; Falgàs, N.; Valldeoriola, F.; Pont-Sunyer, C.; Vilas, D.; Mengual, L.; Fernández, M.; et al. Identification of Blood Serum Micro-RNAs Associated with Idiopathic and LRRK2 Parkinson’s Disease. J. Neurosci. Res. 2014, 92, 1071–1077. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Sen, S. MicroRNA as Biomarkers and Diagnostics. J. Physiol. 2016, 231, 25–30. [Google Scholar] [CrossRef]
- Levene, M.; Enguita, F.J.; Bax, B.E. Discovery Profiling and Bioinformatics Analysis of Serum MicroRNA in Mitochondrial NeuroGastroIntestinal Encephalomyopathy (MNGIE). Nucleosides Nucleotides Nucleic Acids 2018, 37, 618–629. [Google Scholar] [CrossRef]
- Moussa, M.; Papatsoris, A.G.; Abou Chakra, M.; Moussa, Y. Update on Cystine Stones: Current and Future Concepts in Treatment. Intractable Rare Dis. Res. 2020, 9, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Yang, T.; Wang, E.; Li, M.; Chen, C.; Ma, L.; Zhou, Y.; Cui, Y. Efficacy and Safety of Sapropterin Dihydrochloride in Patients with Phenylketonuria: A Meta-Analysis of Randomized Controlled Trials. Br. J. Clin. Pharmacol. 2019, 85, 893–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Pino, M.; Andrés, A.; Bernabéu, A.Á.; De Juan-Rivera, J.; Fernández, E.; De Dios García Díaz, J.; Hernández, D.; Luño, J.; Fernández, I.M.; Paniagua, J.; et al. Fabry Nephropathy: An Evidence-Based Narrative Review. Kidney Blood Press. Res. 2018, 43, 406–421. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, N.J.; Charrow, J.; Andersson, H.C.; Kaplan, P.; Kolodny, E.H.; Mistry, P.; Pastores, G.; Rosenbloom, B.E.; Scott, C.R.; Wappner, R.S.; et al. Effectiveness of Enzyme Replacement Therapy in 1028 Patients with Type 1 Gaucher Disease after 2 to 5 Years of Treatment: A Report from the Gaucher Registry. Am. J. Med. 2002, 113, 112–119. [Google Scholar] [CrossRef]
- Malinová, V.; Balwani, M.; Sharma, R.; Arnoux, J.; Kane, J.; Whitley, C.B.; Marulkar, S.; Abel, F. Sebelipase Alfa for Lysosomal Acid Lipase Deficiency: 5-year Treatment Experience from a Phase 2 Open-label Extension Study. Liver Int. 2020, 40, 2203–2214. [Google Scholar] [CrossRef]
- Hirano, M.; Carelli, V.; De Giorgio, R.; Pironi, L.; Accarino, A.; Cenacchi, G.; D’Alessandro, R.; Filosto, M.; Martí, R.; Nonino, F.; et al. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE): Position Paper on Diagnosis, Prognosis, and Treatment by the MNGIE International Network. J. Inherit. Metab. Dis. 2020. [Google Scholar] [CrossRef]
- Eisenberg, I.; Eran, A.; Nishino, I.; Moggio, M.; Lamperti, C.; Amato, A.A.; Lidov, H.G.; Kang, P.B.; North, K.N.; Mitrani-Rosenbaum, S.; et al. Distinctive Patterns of MicroRNA Expression in Primary Muscular Disorders. Proc. Natl. Acad. Sci. USA 2007, 104, 17016–17021. [Google Scholar] [CrossRef] [Green Version]
- Hébert, S.S.; De Strooper, B. Alterations of the MicroRNA Network Cause Neurodegenerative Disease. Trends Neurosci. 2009, 32, 199–206. [Google Scholar] [CrossRef]
- Yong, F.L.; Wang, C.W.; Tan, K.S. MicroRNA Expression Profile of a Malaysian Bajau Family with Familial Mitochondrial Neurogastrointestinal Encephalomyopathy. Genet. Mol. Res. 2015, 14, 13172–13183. [Google Scholar] [CrossRef]
- Lin, H.; Ewing, L.E.; Koturbash, I.; Gurley, B.J.; Miousse, I.R. MicroRNAs as biomarkers for liver injury: Current knowledge, challenges and future prospects. Food Chem. Toxicol. 2017, 110, 229–239. [Google Scholar] [CrossRef]
- Oses, M.; Margareto Sanchez, J.; Portillo, M.P.; Aguilera, C.M.; Labayen, I. Circulating miRNAs as biomarkers of obesity and obesity-associated comorbidities in children and adolescents: A systematic review. Nutrients 2019, 11, 2890. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Wei, X.; Sun, Y.; Gao, H.; Zheng, X.; Wong, L.L.; Jin, L.; Liu, N.; Hernandez, B.; Peplowska, K.; et al. miR-192-5p Silencing by Genetic Aberrations Is a Key Event in Hepatocellular Carcinomas with Cancer Stem Cell Features. Cancer Res. 2019, 941–953. [Google Scholar] [CrossRef] [Green Version]
- Ren, F.J.; Yao, Y.; Cai, X.Y.; Fang, G.Y. Emerging Role of MiR-192-5p in Human Diseases. Front. Pharmacol. 2021, 12, 160. [Google Scholar] [CrossRef]
- Kirschner, M.B.; Edelman, J.J.; Kao, S.C.; Vallely, M.P.; Van Zandwijk, N.; Reid, G. The impact of hemolysis on cell-free microRNA biomarkers. Front. Genet. 2013, 4, 94. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zheng, Y.; Cheng, X.; Xu, F.; Zhang, P.; Zhou, X.; Zhao, H. Inhibition of microRNA-34a Suppresses Epileptiform Discharges Through Regulating Notch Signaling and Apoptosis in Cultured Hippocampal Neurons. Neurochem. Res. 2019, 44, 1252–1261. [Google Scholar]
- Fan, F.; Zhuang, J.; Zhou, P.; Liu, X.; Luo, Y. MicroRNA-34a promotes mitochondrial dysfunction-induced apoptosis in human lens epithelial cells by targeting Notch2. Oncotarget 2017, 8, 110209–110220. [Google Scholar] [CrossRef] [Green Version]
- Nie, D.; Fu, J.; Chen, H.; Cheng, J.; Fu, J. Roles of MicroRNA-34a in Epithelial to Mesenchymal Transition, Competing Endogenous RNA Sponging and Its Therapeutic Potential. Int. J. Mol. Sci. 2019, 20, 861. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Tang, Y.; Cheng, Y.S. MiR-34a Inhibits Pancreatic Cancer Progression through Snail1-Mediated Epithelial-Mesenchymal Transition and the Notch Signaling Pathway. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Gang, L.; Qun, L.; Liu, W.D.; Li, Y.S.; Xu, Y.Z.; Yuan, D.T. MicroRNA-34a Promotes Cell Cycle Arrest and Apoptosis and Suppresses Cell Adhesion by Targeting DUSP1 in Osteosarcoma. Am. J. Transl. Res. 2017, 9, 5388–5399. [Google Scholar] [PubMed]
- Wang, X.; Zhao, Y.; Lu, Q.; Fei, X.; Lu, C.; Li, C.; Chen, H. MiR-34a-5p Inhibits Proliferation, Migration, Invasion and Epithelial-Mesenchymal Transition in Esophageal Squamous Cell Carcinoma by Targeting LEF1 and Inactivation of the Hippo-YAP1/TAZ Signaling Pathway. J. Cancer 2020, 11, 3072–3081. [Google Scholar] [CrossRef]
- Bukeirat, M.; Sarkar, S.N.; Hu, H.; Quintana, D.D.; Simpkins, J.W.; Ren, X. MiR-34a Regulates Blood-Brain Barrier Permeability and Mitochondrial Function by Targeting Cytochrome C. J. Cereb. Blood Flow Metab. 2016, 36, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Gramegna, L.L.; Pisano, A.; Testa, C.; Manners, D.N.; D’Angelo, R.; Boschetti, E.; Giancola, F.; Pironi, L.; Caporali, L.; Capristo, M.; et al. Cerebral Mitochondrial Microangiopathy Leads to Leukoencephalopathy in Mitochondrial Neurogastrointestinal Encephalopathy. Am. J. Neuroradiol. 2018, 39, 427–434. [Google Scholar] [CrossRef]
- Campbell, H.K.; Maiers, J.L.; DeMali, K.A. Interplay between Tight Junctions & Adherens Junctions. Exp. Cell Res. 2017, 358, 39–44. [Google Scholar]
- Feng, Z.; Zhang, C.; Wu, R.; Hu, W. Tumor Suppressor P53 Meets MicroRNAs. J. Mol. Cell Biol. 2011, 3, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Hermeking, H. MicroRNAs in the P53 Network: Micromanagement of Tumour Suppression. Nat. Rev. Cancer 2012, 12, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, Y.; Pilpel, Y.; Oren, M. MicroRNAs and Alu Elements in the P53-Mdm2-Mdm4 Regulatory Network. J. Mol. Cell Biol. 2014, 6, 192–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hünten, S.; Siemens, H.; Kaller, M.; Hermeking, H. The P53/MicroRNA Network in Cancer: Experimental and Bioinformatics Approaches. Adv. Exp. Med. Biol. 2013, 774, 77–101. [Google Scholar]
- Tazawa, H.; Tsuchiya, N.; Izumiya, M.; Nakagama, H. Tumor-Suppressive MiR-34a Induces Senescence-like Growth Arrest through Modulation of the E2F Pathway in Human Colon Cancer Cells. Proc. Natl. Acad. Sci. USA 2007, 104, 15472–15477. [Google Scholar] [CrossRef] [Green Version]
- Christoffersen, N.R.; Shalgi, R.; Frankel, L.B.; Leucci, E.; Lees, M.; Klausen, M.; Pilpel, Y.; Nielsen, F.C.; Oren, M.; Lund, A.H. P53-Independent Upregulation of MiR-34a during Oncogene-Induced Senescence Represses MYC. Cell Death Differ. 2010, 17, 236–245. [Google Scholar] [CrossRef]
- Xu, X.; Chen, W.; Miao, R.; Zhou, Y.; Wang, Z.; Zhang, L.; Wan, Y.; Dong, Y.; Qu, K.; Liu, C. MiR-34a Induces Cellular Senescence via Modulation of Telomerase Activity in Human Hepatocellular Carcinoma by Targeting FoxM1/c-Myc Pathway. Oncotarget 2015, 6, 3988–4004. [Google Scholar] [CrossRef] [Green Version]
- Hermeking, H. The MiR-34 Family in Cancer and Apoptosis. Cell Death Differ. 2010, 17, 193–199. [Google Scholar] [CrossRef]
- Park, J.H.; Zhuang, J.; Li, J.; Hwang, P.M.; Just, W. P53 as Guardian of the Mitochondrial Genome. FEBS Lett. 2016, 590, 924–934. [Google Scholar] [CrossRef]
- Achanta, G.; Sasaki, R.; Feng, L.; Carew, J.S.; Lu, W.; Pelicano, H.; Keating, M.J.; Huang, P. Novel Role of P53 in Maintaining Mitochondrial Genetic Stability through Interaction with DNA Pol γ. EMBO J. 2005, 24, 3482–3492. [Google Scholar] [CrossRef] [Green Version]
- Siemens, H.; Jackstadt, R.; Kaller, M.; Hermeking, H. Repression of C-Kit by P53 Is Mediated by MiR-34 and Is Associated with Reduced Chemoresistance, Migration and Stemness. Oncotarget 2013, 4, 1399–1415. [Google Scholar] [CrossRef] [Green Version]
- Hulzinga, J.D.; Thuneberg, L.; Klüppel, M.; Malysz, J.; Mikkelsen, H.B.; Bernstein, A. W/Kit Gene Required for Interstitial Cells of Cajal and for Intestinal Pacemaker Activity. Nature 1995, 373, 347–349. [Google Scholar] [CrossRef]
- Beckett, E.A.H.; Ro, S.; Bayguinov, Y.; Sanders, K.M.; Ward, S.M. Kit Signaling Is Essential for Development and Maintenance of Interstitial Cells of Cajal and Electrical Rhythmicity in the Embryonic Gastrointestinal Tract. Dev. Dyn. 2007, 236, 60–72. [Google Scholar] [CrossRef]
- Maeda, H.; Yamagata, A.; Nishlkawa, S.; Yoshinaga, K.; Kobayashi, S.; Nishi, K.; Nishikawa, S.I. Requirement of C-Kit for Development of Intestinal Pacemaker System. Development 1992, 116, 369–375. [Google Scholar]
- Torihashi, S.; Nishi, K.; Tokutomi, Y.; Nishi, T.; Ward, S.; Sanders, K.M. Blockade of Kit Signaling Induces Transdifferentiation of Interstitial Cells of Cajal to a Smooth Muscle Phenotype. Gastroenterology 1999, 117, 140–148. [Google Scholar] [CrossRef]
- Zimmer, V.; Feiden, W.; Becker, G.; Zimmer, A.; Reith, W.; Raedle, J.; Lammert, F.; Zeuzem, S.; Hirano, M.; Menges, M. Absence of the Interstitial Cell of Cajal Network in Mitochondrial Neurogastrointestinal Encephalomyopathy. Neurogastroenterol. Motil. 2009, 21, 627–631. [Google Scholar] [CrossRef]
- Yadak, R.; Boot, M.V.; Van Til, N.P.; Cazals-Hatem, D.; Finkenstedt, A.; Bogaerts, E.; De Coo, I.F.; Bugiani, M. Transplantation, Gene Therapy and Intestinal Pathology in MNGIE Patients and Mice. BMC Gastroenterol. 2018, 18, 149. [Google Scholar] [CrossRef]
- Perez, F.; Pernet-Gallay, K.; Nizak, C.; Goodson, H.V.; Kreis, T.E.; Goud, B. CLIPR-59, a New Trans-Golgi/TGN Cytoplasmic Linker Protein Belonging to the CLIP-170 Family. J. Cell Biol. 2002, 156, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Wei, H.; Lou, D.; Sun, B.; Chen, H.; Zhang, Y.; Wang, Y. Changes in CLIP3 Expression after Sciatic Nerve Injury in Adult Rats. J. Mol. Histol. 2012, 43, 669–679. [Google Scholar] [CrossRef]
- Chen, X.; Chen, C.; Hao, J.; Zhang, J.; Zhang, F. Effect of CLIP3 Upregulation on Astrocyte Proliferation and Subsequent Glial Scar Formation in the Rat Spinal Cord via STAT3 Pathway After Injury. J. Mol. Neurosci. 2018, 64, 117–128. [Google Scholar] [CrossRef]
- O’Dowd, B.F.; Nguyen, T.; Jung, B.P.; Marchese, A.; Cheng, R.; Heng, H.H.Q.; Kolakowski, L.F.; Lynch, K.R.; George, S.R. Cloning and Chromosomal Mapping of Four Putative Novel Human G-Protein-Coupled Receptor Genes. Gene 1997, 187, 75–81. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Hadley, W. HadleyyWickham Ggplot2 Elegant Graphics for Data Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Gu, Z.; Eils, R.; Schlesner, M. Complex Heatmaps Reveal Patterns and Correlations in Multidimensional Genomic Data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent. J. Stat. Softw. 2011, 39, 1–13. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. PROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Pajak, M.; Simpson, T. miRNAtap miRNAtap microRNA Targets—Aggregated Predict; R Packag. Version 1.24.0. 2020. Available online: https://rdrr.io/bioc/miRNAtap/man/miRNAtap.html (accessed on 20 March 2021).
- Vlachos, I.S.; Kostoulas, N.; Vergoulis, T.; Georgakilas, G.; Reczko, M.; Maragkakis, M.; Paraskevopoulou, M.D.; Prionidis, K.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA MiRPath v.2.0: Investigating the Combinatorial Effect of MicroRNAs in Pathways. Nucleic Acids Res. 2012, 40, W498–W504. [Google Scholar] [CrossRef]
- Krek, A.; Grün, D.; Poy, M.N.; Wolf, R.; Rosenberg, L.; Epstein, E.J.; MacMenamin, P.; Da Piedade, I.; Gunsalus, K.C.; Stoffel, M.; et al. Combinatorial MicroRNA Target Predictions. Nat. Genet. 2005, 37, 495–500. [Google Scholar] [CrossRef]
- Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting Effective MicroRNA Target Sites in Mammalian MRNAs. Elife 2015, 4, e05005. [Google Scholar] [CrossRef]
- Betel, D.; Wilson, M.; Gabow, A.; Marks, D.S.; Sander, C. The MicroRNA.Org Resource: Targets and Expression. Nucleic Acids Res. 2008, 36, D149–D153. [Google Scholar] [CrossRef] [Green Version]
- Alexa, A.; Rahnenfuhrer, J. topGO Enrich. Anal. Gene Ontol. R Packag. Version 2.42.0. 2020. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113886/ (accessed on 20 March 2021).
- Zhao, S.; Guo, Y.; Shyr, Y. KEGGprofile An. Annot. Vis. Packag. Multi-Types Multi-Groups Expr. Data KEGG pathway. R Packag. Version 1.33.0. 2020. Available online: https://rdrr.io/bioc/KEGGprofile/ (accessed on 20 March 2021).
Differentially Expressed miRNA | p Value | Fold Change |
---|---|---|
hsa-miR-29c-3p | 0.0002 | 2.2 |
hsa-miR-193a-5p | 0.0029 | 3.3 |
hsa-miR-378a-3p | 0.0029 | 2.6 |
hsa-miR-1260a | 0.0039 | 3.0 |
hsa-miR-34a-5p | 0.0043 | 7.1 |
hsa-miR-194-5p | 0.0064 | 2.5 |
hsa-miR-22-3p | 0.0074 | 2.3 |
hsa-miR-99a-5p | 0.0097 | 2.2 |
hsa-miR-885-5p | 0.0110 | 5.8 |
hsa-miR-210-3p | 0.0215 | 2.1 |
hsa-miR-629-5p | 0.0226 | 2.6 |
hsa-miR-660-5p | 0.0226 | 2.1 |
hsa-miR-1972 | 0.0226 | 4.1 |
hsa-miR-215-5p | 0.0278 | 2.4 |
hsa-miR-374b-5p | 0.0029 | -2.6 |
hsa-miR-199a-5p | 0.0104 | -3.0 |
hsa-miR-199a-3p | 0.0110 | -2.3 |
hsa-miR-744-5p | 0.0137 | -2.3 |
hsa-miR-221-3p | 0.0211 | -2.1 |
hsa-miR-485-3p | 0.0219 | -3.5 |
hsa-miR-382-5p | 0.0226 | -2.5 |
hsa-miR-543 | 0.0233 | -2.8 |
hsa-miR-409-3p | 0.0255 | -4.6 |
hsa-miR-339-5p | 0.0255 | -2.1 |
hsa-miR-127-3p | 0.0278 | -6.1 |
hsa-miR-28-5p | 0.0376 | -2.2 |
hsa-miR-375 | 0.0472 | -2.4 |
Age Range * | miRNA ID | MNGIE Mean TMM | Healthy Control Mean TMM | Log FC | p-Value | FDR |
---|---|---|---|---|---|---|
miRNAs over-expressed in MNGIE vs. healthy controls | ||||||
≤19 | hsa-miR-215-5p | 183 | 6 | 4.60 | <0.0001 | 0.0211 |
20–29 | hsa-miR-451a | 14,019 | 4301 | 1.70 | <0.0001 | 0.0004 |
hsa-miR-32-5p | 227 | 39 | 2.52 | <0.0001 | 0.0028 | |
hsa-miR-363-3p | 315 | 99 | 1.66 | <0.0001 | 0.0028 | |
hsa-miR-501-3p | 274 | 91 | 1.56 | <0.0001 | 0.0028 | |
hsa-miR-194-5p | 588 | 203 | 1.53 | <0.0001 | 0.0028 | |
hsa-miR-502-3p | 69 | 18 | 1.89 | 0.0001 | 0.0028 | |
hsa-miR-4732-5p | 1927 | 320 | 2.59 | 0.0001 | 0.0029 | |
hsa-miR-214-3p | 14 | 1 | 2.84 | 0.0001 | 0.0030 | |
hsa-miR-210-3p | 34 | 8 | 1.98 | 0.0001 | 0.0030 | |
hsa-miR-107 | 866 | 236 | 1.88 | 0.0001 | 0.0030 | |
hsa-miR-22-3p | 1239 | 362 | 1.77 | 0.0001 | 0.0040 | |
hsa-miR-34a-5p | 82 | 21 | 1.93 | 0.0002 | 0.0060 | |
hsa-miR-106b-5p | 43 | 13 | 1.68 | 0.0002 | 0.0060 | |
hsa-miR-942-5p | 149 | 69 | 1.09 | 0.0002 | 0.0060 | |
hsa-miR-192-5p | 991 | 376 | 1.40 | 0.0003 | 0.0075 | |
hsa-miR-486-5p | 262,731 | 103,131 | 1.35 | 0.0004 | 0.0086 | |
hsa-miR-130b-3p | 108 | 33 | 1.69 | 0.0004 | 0.0089 | |
hsa-miR-16-5p | 360,834 | 151,980 | 1.25 | 0.0005 | 0.0099 | |
hsa-miR-15a-5p | 800 | 256 | 1.64 | 0.0006 | 0.0108 | |
hsa-miR-660-5p | 751 | 332 | 1.17 | 0.0006 | 0.0110 | |
hsa-miR-1285-3p | 7 | 0 | 4.77 | 0.0008 | 0.0121 | |
hsa-miR-484 | 1831 | 647 | 1.50 | 0.0007 | 0.0121 | |
hsa-miR-182-5p | 1745 | 632 | 1.46 | 0.0008 | 0.0121 | |
hsa-miR-378a-3p | 247 | 121 | 1.02 | 0.0010 | 0.0146 | |
hsa-miR-183-5p | 1230 | 459 | 1.42 | 0.0017 | 0.0225 | |
hsa-miR-1224-5p | 83 | 19 | 2.16 | 0.0019 | 0.0237 | |
hsa-miR-320a | 9249 | 3080 | 1.59 | 0.0019 | 0.0237 | |
hsa-miR-629-5p | 618 | 261 | 1.24 | 0.0019 | 0.0237 | |
hsa-miR-503-5p | 55 | 23 | 1.23 | 0.0023 | 0.0258 | |
hsa-miR-92a-3p | 53,636 | 25,118 | 1.09 | 0.0023 | 0.0258 | |
hsa-miR-3613-5p | 182 | 57 | 1.66 | 0.0028 | 0.0296 | |
hsa-miR-483-5p | 1689 | 579 | 1.54 | 0.0030 | 0.0296 | |
hsa-miR-4467 | 13 | 1 | 3.15 | 0.0033 | 0.0323 | |
hsa-miR-423-5p | 82,538 | 33,034 | 1.32 | 0.0035 | 0.0330 | |
hsa-miR-6805-5p | 16 | 3 | 2.21 | 0.0047 | 0.0404 | |
hsa-miR-450a-2-3p | 4 | 0 | 2.50 | 0.0049 | 0.0408 | |
hsa-miR-101-3p | 1911 | 886 | 1.11 | 0.0051 | 0.0420 | |
hsa-miR-1294 | 70 | 30 | 1.20 | 0.0053 | 0.0422 | |
hsa-miR-15b-5p | 1428 | 703 | 1.02 | 0.0053 | 0.0422 | |
hsa-miR-1180-3p | 232 | 98 | 1.24 | 0.0060 | 0.0452 | |
hsa-miR-486-3p | 225 | 102 | 1.13 | 0.0065 | 0.0460 | |
hsa-miR-885-5p | 60 | 13 | 2.15 | 0.0071 | 0.0494 | |
≥30 | hsa-miR-483-5p | 2391 | 478 | 2.32 | <0.0001 | 0.0031 |
hsa-miR-215-5p | 142 | 37 | 1.97 | 0.0001 | 0.0034 | |
hsa-miR-34a-5p | 108 | 31 | 1.75 | 0.0001 | 0.0034 | |
hsa-let-7b-3p | 45 | 14 | 1.60 | 0.0001 | 0.0034 | |
hsa-miR-192-5p | 1150 | 487 | 1.24 | 0.0001 | 0.0043 | |
hsa-miR-193b-3p | 9 | 0 | 4.84 | 0.0001 | 0.0053 | |
hsa-miR-193b-5p | 199 | 51 | 1.96 | 0.0002 | 0.0053 | |
hsa-miR-193a-5p | 1001 | 409 | 1.29 | 0.0002 | 0.0054 | |
hsa-miR-214-3p | 27 | 5 | 2.56 | 0.0003 | 0.0084 | |
hsa-miR-206 | 928 | 145 | 2.67 | 0.0004 | 0.0085 | |
hsa-miR-125b-5p | 2115 | 989 | 1.09 | 0.0003 | 0.0085 | |
hsa-miR-194-5p | 618 | 259 | 1.25 | 0.0006 | 0.0128 | |
hsa-miR-122-5p | 160,505 | 52,033 | 1.63 | 0.0007 | 0.0137 | |
hsa-miR-10b-5p | 1093 | 514 | 1.09 | 0.0007 | 0.0137 | |
hsa-miR-885-3p | 156 | 40 | 1.94 | 0.0010 | 0.0202 | |
hsa-miR-874-3p | 86 | 38 | 1.19 | 0.0020 | 0.0346 | |
hsa-miR-4467 | 15 | 2 | 2.86 | 0.0026 | 0.0412 | |
hsa-miR-423-5p | 59,588 | 33,945 | 0.81 | 0.0028 | 0.0432 | |
miRNAs under-expressed in MNGIE vs. healthy controls | ||||||
20–29 | hsa-miR-181c-3p | 2 | 26 | −3.09 | <0.0001 | 0.0004 |
hsa-miR-1301-3p | 66 | 172 | −1.36 | <0.0001 | 0.0028 | |
hsa-miR-142-3p | 3476 | 7917 | −1.19 | 0.0002 | 0.0050 | |
hsa-miR-5193 | 0 | 7 | −3.66 | 0.0002 | 0.0060 | |
hsa-miR-744-5p | 546 | 1169 | −1.10 | 0.0005 | 0.0106 | |
hsa-miR-582-3p | 3 | 15 | −2.32 | 0.0006 | 0.0108 | |
hsa-miR-3168 | 0 | 6 | −3.37 | 0.0008 | 0.0121 | |
hsa-miR-151a-5p | 84 | 182 | −1.09 | 0.0013 | 0.0179 | |
hsa-miR-873-5p | 0 | 4 | −3.85 | 0.0028 | 0.0296 | |
hsa-miR-340-3p | 3 | 12 | −2.16 | 0.0037 | 0.0330 | |
hsa-miR-7849-3p | 1 | 6 | −2.55 | 0.0044 | 0.0385 | |
hsa-miR-4433b-5p | 327 | 949 | −1.54 | 0.0059 | 0.0450 | |
hsa-miR-31-5p | 2 | 11 | −2.21 | 0.0061 | 0.0456 | |
hsa-miR-6721-5p | 10 | 32 | −1.62 | 0.0065 | 0.0460 | |
≥30 | hsa-miR-487b-3p | 11 | 64 | −2.42 | <0.0001 | 0.0005 |
hsa-miR-370-3p | 55 | 235 | −2.07 | <0.0001 | 0.0013 | |
hsa-miR-485-3p | 114 | 492 | −2.12 | <0.0001 | 0.0013 | |
hsa-miR-485-5p | 28 | 87 | −1.65 | 0.0001 | 0.0034 | |
hsa-miR-412-5p | 0 | 9 | −3.57 | 0.0001 | 0.0051 | |
hsa-miR-411-5p | 7 | 41 | −2.35 | 0.0002 | 0.0053 | |
hsa-miR-6767-5p | 0 | 6 | −4.30 | 0.0004 | 0.0085 | |
hsa-miR-362-5p | 0 | 5 | −4.15 | 0.0011 | 0.0203 | |
hsa-miR-409-3p | 626 | 1788 | −1.51 | 0.0017 | 0.0307 | |
hsa-miR-30d-3p | 0 | 6 | −2.91 | 0.0031 | 0.0458 | |
hsa-miR-199a-5p | 31 | 67 | −1.02 | 0.0035 | 0.0498 |
Name | Stability/Mean TPM | Stability | Mean TPM |
---|---|---|---|
hsa-miR-30e-5p | 0.142288503 | 262.38 | 1844 |
hsa-miR-425-5p | 0.277956693 | 706.01 | 2540 |
hsa-let-7i-5p | 0.296527468 | 1597.69 | 5388 |
hsa-let-7b-5p | 0.306335853 | 11,346.68 | 37,040 |
hsa-miR-148a-3p | 0.31205228 | 1122.14 | 3596 |
hsa-miR-142-5p | 0.334079031 | 524.17 | 1569 |
hsa-miR-21-5p | 0.341387813 | 969.2 | 2839 |
hsa-let-7a-5p | 0.35729798 | 8206.42 | 22,968 |
hsa-miR-146a-5p | 0.361150677 | 1227.19 | 3398 |
hsa-miR-93-5p | 0.374529201 | 942.69 | 2517 |
Biofluid | miRNA | Log2 Fold Change | Regulation | Benjamini–Hochberg Adjusted p-Value |
---|---|---|---|---|
Plasma | hsa-miR-34a-5p * | 3.14095 | Up | 0.000072 |
hsa-miR-142-3p | −2.68394 | Down | 0.000072 | |
hsa-miR-107 * | −1.05870 | Down | 0.000072 | |
hsa-miR-363-3p * | 1.47048 | Up | 0.000115 | |
hsa-miR-193a-5p * | 2.86444 | Up | 0.000115 | |
hsa-miR-423-5p * | 1.48452 | Up | 0.000209 | |
hsa-miR-660-5p | 1.36373 | Up | 0.000285 | |
hsa-miR-92a-3p | 1.07172 | Up | 0.000285 | |
hsa-miR-378a-3p | 1.84138 | Up | 0.000419 | |
hsa-miR-4732-5p | 2.48124 | Up | 0.000419 | |
hsa-miR-501-3p * | 1.80138 | Up | 0.000449 | |
hsa-miR-486-5p | 1.66803 | Up | 0.000540 | |
hsa-miR-502-3p * | 1.28134 | Up | 0.001049 | |
hsa-miR-215-5p * | 1.84928 | Up | 0.001049 | |
hsa-miR-411-5p * | −1.45695 | Down | 0.001049 | |
hsa-miR-320a * | 1.27269 | Up | 0.001196 | |
hsa-miR-629-5p * | 1.46049 | Up | 0.001413 | |
hsa-miR-193b-3p | 3.02042 | Up | 0.001799 | |
hsa-miR-10b-5p * | 1.4974 | Up | 0.001838 | |
hsa-miR-370-3p | −1.70755 | Down | 0.003432 | |
hsa-miR-885-5p | 2.89025 | Up | 0.004502 | |
hsa-miR-192-5p * | 1.60991 | Up | 0.005376 | |
hsa-miR-183-5p | 1.60648 | Up | 0.005376 | |
hsa-miR-874-3p * | 1.15817 | Up | 0.006205 | |
hsa-miR-122-5p * | 2.83981 | Up | 0.008159 | |
hsa-miR-194-5p | 1.67026 | Up | 0.008929 | |
hsa-miR-340-3p * | −1.65444 | Down | 0.008929 | |
hsa-miR-1180-3p | 1.61073 | Up | 0.010158 | |
hsa-let-7b-3p * | 1.04539 | Up | 0.013040 | |
hsa-miR-483-5p | 2.97892 | Up | 0.014706 | |
hsa-miR-486-3p | 1.21158 | Up | 0.016641 | |
hsa-miR-199a-5p | −1.34595 | Down | 0.022482 | |
hsa-miR-1285-3p | 1.54743 | Up | 0.031837 | |
Serum | hsa-miR-215-5p | 1.23468 | Up | 0.023866 |
hsa-miR-34a-5p | 1.50986 | Up | 0.025611 | |
hsa-miR-192-5p | 1.02344 | Up | 0.026616 |
Plasma | Serum | ||||
---|---|---|---|---|---|
miR | Combined p-Value | Rank | miR | Combined p-Value | Rank |
hsa-miR-34a-5p | 1.38598 × 10−9 | 1 | hsa-miR-34a-5p | 3.75631 × 10−7 | 1 |
hsa-miR-192-5p | 1.68099 × 10−7 | 2 | hsa-miR-192-5p | 7.64172 × 10−7 | 2 |
hsa-miR-193a-5p | 2.07056 × 10−6 | 3 | hsa-miR-194-5p | 2.61277 × 10−5 | 3 |
hsa-miR-194-5p | 5.05358 × 10−6 | 4 | hsa-miR-215-5p | 0.000294246 | 4 |
hsa-miR-215-5p | 1.64213 × 10−5 | 5 | hsa-miR-122-5p | 0.00250717 | 5 |
hsa-miR-22-3p | 0.000128536 | 6 | hsa-miR-193a-5p | 0.004645046 | 6 |
hsa-miR-10b-5p | 0.000169857 | 7 | hsa-miR-193b-3p | 0.012087665 | 7 |
hsa-miR-363-3p | 0.000235272 | 8 | hsa-miR-485-3p | 0.019741786 | 8 |
hsa-miR-107 | 0.000294182 | 9 | hsa-miR-885-5p | 0.022468769 | 9 |
hsa-miR-122-5p | 0.000473464 | 10 | hsa-miR-10b-5p | 0.035076107 | 10 |
Patient | Treatment month (Age at Start of Therapy) | EE-TP Dose (U/kg/4 wks) | Plasma Metabolites (µmol/L) | Clinical Observations | |
---|---|---|---|---|---|
Thy | dUrd | ||||
A | Pre-therapy (37 years) | - | 10.5 | 18.8 | Sensorimotor polyneuropathy, external ophthalmoplegia, leukoencephalopathy, intestinal dysmotility with cachexia. Weight:40.6 kg |
1 | 129 | 0.5 | 0.3 | No changes observed | |
2 | 129 | 1.1 | 4.1 | Greater appetite, experienced tingling sensations in feet compared to no sensation pre-therapy, improved swallowing and dysgeusia, tongue less glossitic. Weight: 40.6 kg | |
B | Pre-therapy (26 years) | - | 12 | 19 | Sensorimotor polyneuropathy, external ophthalmoplegia, intestinal dysmotility, anorexia and cachexia. Weight: 31.7 kg |
3 | 108 | 2.1 | 3.9 | No changes observed | |
C | Pre-therapy (25 years) | - | 9.0 | 19.0 | Sensorimotor polyneuropathy, external ophthalmoplegia, intestinal dysmotility, anorexia and cachexia. Weight:32 kg |
4 | 9 | 5.09 | 16.0 | Reduction in nausea and vomiting Weight: 34.9 kg | |
11 | 29 | 4.6 | 10.8 | Intestinal bacterial overgrowth, commencement of TPN for weight loss between months 7 and 10. Weight: 35 kg | |
D | Pre-therapy (28 years) | - | 21.0 | 31.0 | Sensorimotor polyneuropathy, external ophthalmoplegia, minimal intestinal dysmotility. MRC sum score: 56, sensory sum score: 21. Creatine kinase:1200 U/L. Weight 57.4 kg |
4 | 29 | 0.0 | 0.0 | Improved distal sensation. Creatine kinase: 448 U/L. Weight: 59 kg | |
18 | 47 | 0.0 | 0.0 | MRC sum score: 74, sensory sum score: 19. Creatine kinase:406 U/L. Weight 63.2 kg | |
58 | 47 | 0.0 | 0.2 | MRC sum score: 74, sensory sum score: 19. Creatine kinase: 272 U/L. Weight 59 kg |
Pathway | Target Genes | p-Value | FDR p-Value |
---|---|---|---|
Notch signaling pathway | APH1A, DLL1, JAG1, NOTCH1, NOTCH2, NUMBL | 1.1 × 10−5 | 0.0024 |
Adherens junction | LEF1, MET, NECTIN1, PTPRM, SMAD4, WASF1 | 0.0002 | 0.0143 |
p53 signalling pathway | CCNE2, CDK6, EI24, IGFBP3, MDM4, SERPINE1 | 0.0001 | 0.0143 |
Pancreatic cancer | CDK6, E2F3, PGF, RALGDS, SMAD4 | 0.0010 | 0.0460 |
Glycosaminoglycan biosynthesis—heparan sulfate/heparin | GLCE, NDST1, XYLT1 | 0.0008 | 0.0460 |
N-Glycan biosynthesis | B4GALT2, FUT8, MGAT4A, MGAT5B | 0.0012 | 0.0473 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mencias, M.; Levene, M.; Blighe, K.; Bax, B.E.; on behalf of the Project Group. Circulating miRNAs as Biomarkers for Mitochondrial Neuro-Gastrointestinal Encephalomyopathy. Int. J. Mol. Sci. 2021, 22, 3681. https://doi.org/10.3390/ijms22073681
Mencias M, Levene M, Blighe K, Bax BE, on behalf of the Project Group. Circulating miRNAs as Biomarkers for Mitochondrial Neuro-Gastrointestinal Encephalomyopathy. International Journal of Molecular Sciences. 2021; 22(7):3681. https://doi.org/10.3390/ijms22073681
Chicago/Turabian StyleMencias, Mark, Michelle Levene, Kevin Blighe, Bridget E. Bax, and on behalf of the Project Group. 2021. "Circulating miRNAs as Biomarkers for Mitochondrial Neuro-Gastrointestinal Encephalomyopathy" International Journal of Molecular Sciences 22, no. 7: 3681. https://doi.org/10.3390/ijms22073681
APA StyleMencias, M., Levene, M., Blighe, K., Bax, B. E., & on behalf of the Project Group. (2021). Circulating miRNAs as Biomarkers for Mitochondrial Neuro-Gastrointestinal Encephalomyopathy. International Journal of Molecular Sciences, 22(7), 3681. https://doi.org/10.3390/ijms22073681