A Potential Role for Fructosamine-3-Kinase in Cataract Treatment
Abstract
:1. Introduction
2. Results
2.1. In Vitro Kinase Activity of FN3K, but Not FN3K–K41L, Is Dose-Dependent
2.2. Ex Vivo Intravitreal FN3K Treatment of Equine Lenses
2.3. FN3K Treatment of AGE-Modified Porcine Lens Fragments Reduces Maillard-Type Autofluorescence
2.4. In Vivo Intravitreal FN3K Injection of Murine Eyes Reduces Maillard-Type Autofluorescence
2.5. FN3K Treatment Does Not Provoke a Systemic Immune Response in Mice
2.6. Gel Filtration of Human Cataractous Lens Fractions Reveals Breakdown Products after FN3K Treatment
2.7. Autofluorescence Kinetics of FN3K Treatment on Cataractous Human Lens Suspensions
2.8. Incubation of Cataractous Human Eye Lenses with FN3K
2.9. Topical Treatment of Post-Mortem Human Eyes
3. Discussion
4. Materials and Methods
4.1. Production of Active and Mutant Fructosamine-3-Kinase
4.1.1. Construct Design
4.1.2. Protein Production and Purification
4.2. Ex Vivo Intravitreal FN3K Injection of Equine Eyes
4.3. Autofluorescence Measurement of AGEs
4.4. FN3K Treatment of AGE-Modified Porcine Lenses
4.5. In Vivo Intravitreal FN3K Injection of Murine Eyes
4.6. Serum Cytokine Levels of FN3K-Treated Mice
4.7. Human Experiments
4.7.1. Gel Filtration of Human Cataractous Lens Fractions before and after FN3K Treatment
4.7.2. Kinetics of FN3K Treatment
4.7.3. FN3K Treatment of Intact Eye Lenses
4.7.4. Topical Treatment of Post-Mortem Eyes
4.8. Statistical Analysis
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADP | Adenosine diphosphate |
AF | Autofluorescence |
AGEs | Advanced glycation end products |
ATP | Adenosine triphosphate |
BMMY | Buffered methanol-complex medium |
DMF | 1-deoxy-1-morpholino-D-fructose |
DTT | Dithiothreitol |
EDTA | Ethylenediaminetetraacetic acid |
ELISA | Enzyme-linked immunosorbent assay |
FN3K | Fructosamine-3-kinase |
HE | Hematoxylin and eosin |
IMAC | Immobilized metal affinity chromatography |
IQR | Interquartile range |
NADPH | Nicotinamide adenine dinucleotide phosphate |
PBS | Phosphate buffered saline |
SDS-PAGE | Sodium dodecyl sulphate–polyacrylamide gel electrophoresis |
WT | Wild-type |
Appendix A. Serum Cytokine Levels of FN3K-Treated Mice
Appendix B
References
- Liu, Y.-C.; Wilkins, M.; Kim, T.; Malyugin, B.; Mehta, J.S. Cataracts. Lancet 2017, 390, 600–612. [Google Scholar] [CrossRef]
- World Health Organization. Blindness and Vision Impairment 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment (accessed on 8 July 2020).
- World Health Organization. Priority Eye Diseases (2020). Available online: http://www.who.int/blindness/causes/priority/en/index1.html (accessed on 8 July 2020).
- Stitt, A.W. The Maillard Reaction in Eye Diseases. Ann. N. Y. Acad. Sci. 2005, 1043, 582–597. [Google Scholar] [CrossRef] [Green Version]
- Shiels, A.; Hejtmancik, J.F. Genetics of Human Cataract. Clin. Genet. 2013, 84, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Sergi, D.; Boulestin, H.; Campbell, F.M.; Williams, L.M. The Role of Dietary Advanced Glycation End Products in Metabolic Dysfunction. Mol. Nutr. Food Res. 2021, 65, e1900934. [Google Scholar] [CrossRef]
- Tessier, F.J. The Maillard Reaction in the Human Body. The Main Discoveries and Factors That Affect Glycation. Pathol. Biol. 2010, 58, 214–219. [Google Scholar] [CrossRef]
- Ruiz, H.H.; Ramasamy, R.; Schmidt, A.M. Advanced Glycation End Products: Building on the Concept of the “Common Soil” in Metabolic Disease. Endocrinology 2020, 161. [Google Scholar] [CrossRef]
- Bejarano, E.; Taylor, A. Too Sweet: Problems of Protein Glycation in the Eye. Exp. Eye Res. 2019, 178, 255–262. [Google Scholar] [CrossRef]
- Chaudhuri, J.; Bains, Y.; Guha, S.; Kahn, A.; Hall, D.; Bose, N.; Gugliucci, A.; Kapahi, P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab. 2018, 28, 337–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, J.; Skonieczna, M.; Mandal, K.; Paik, D. The Photochemical Attachment of the O-Glucoside of 3-Hydroxykynurenine to Alpha-Crystallin: A Model for Lenticular Aging. Photochem. Photobiol. 1999, 69, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Javadi, M.-A.; Zarei-Ghanavati, S. Cataracts in Diabetic Patients: A Review Article. J. Ophthalmic. Vis. Res. 2008, 3, 52–65. [Google Scholar]
- Smuda, M.; Henning, C.; Raghavan, C.T.; Johar, K.; Vasavada, A.R.; Nagaraj, R.H.; Glomb, M.A. Comprehensive Analysis of Maillard Protein Modifications in Human Lenses: Effect of Age and Cataract. Biochemistry 2015, 54, 2500–2507. [Google Scholar] [CrossRef]
- Delpierre, G.; Collard, F.; Fortpied, J.; Van Schaftingen, E. Fructosamine 3-Kinase Is Involved in an Intracellular Deglycation Pathway in Human Erythrocytes. Biochem. J. 2002, 365, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Avemaria, F.; Carrera, P.; Lapolla, A.; Sartore, G.; Chilelli, N.C.; Paleari, R.; Ambrosi, A.; Ferrari, M.; Mosca, A. Possible Role of Fructosamine 3-Kinase Genotyping for the Management of Diabetic Patients. Clin. Chem. Lab. Med. 2015, 53, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Conner, J.R.; Beisswenger, P.J.; Szwergold, B.S. The Expression of the Genes for Fructosamine-3-Kinase and Fructosamine-3-Kinase-Related Protein Appears to Be Constitutive and Unaffected by Environmental Signals. Biochem. Biophys. Res. Commun. 2004, 323, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Van Schaftingen, E.; Collard, F.; Wiame, E.; Veiga-da-Cunha, M. Enzymatic Repair of Amadori Products. Amino Acids 2012, 42, 1143–1150. [Google Scholar] [CrossRef]
- Dunmore, S.J.; Al-Derawi, A.S.; Nayak, A.U.; Narshi, A.; Nevill, A.M.; Hellwig, A.; Majebi, A.; Kirkham, P.; Brown, J.E.; Singh, B.M. Evidence That Differences in Fructosamine-3-Kinase Activity May Be Associated With the Glycation Gap in Human Diabetes. Diabetes 2018, 67, 131–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartore, G.; Ragazzi, E.; Burlina, S.; Paleari, R.; Chilelli, N.C.; Mosca, A.; Avemaria, F.; Lapolla, A. Role of Fructosamine-3-Kinase in Protecting against the Onset of Microvascular and Macrovascular Complications in Patients with T2DM. BMJ Open Diabetes Res. Care 2020, 8. [Google Scholar] [CrossRef]
- Kishabongo, A.S.; Katchunga, P.; Cikomola, J.C.; De Somer, F.M.; De Buyzere, M.L.; Speeckaert, M.M.; Delanghe, J.R. The Presence of Fructosamine in Human Aortic Valves Is Associated with Valve Stiffness. J. Clin. Pathol. 2016, 69, 772–776. [Google Scholar] [CrossRef]
- Jurgeleviciene, I.; Stanislovaitiene, D.; Tatarunas, V.; Jurgelevicius, M.; Zaliuniene, D. Assessment of Absorption of Glycated Nail Proteins in Patients with Diabetes Mellitus and Diabetic Retinopathy. Medicina 2020, 56, 658. [Google Scholar] [CrossRef]
- Coopman, R.; Van de Vyver, T.; Kishabongo, A.S.; Katchunga, P.; Van Aken, E.H.; Cikomola, J.; Monteyne, T.; Speeckaert, M.M.; Delanghe, J.R. Glycation in Human Fingernail Clippings Using ATR-FTIR Spectrometry, a New Marker for the Diagnosis and Monitoring of Diabetes Mellitus. Clin. Biochem. 2017, 50, 62–67. [Google Scholar] [CrossRef]
- De Bruyne, S.; Van Dorpe, J.; Himpe, J.; Van Biesen, W.; Delanghe, S.; Speeckaert, M.M.; Delanghe, J.R. Detection and Characterization of a Biochemical Signature Associated with Diabetic Nephropathy Using Near-Infrared Spectroscopy on Tissue Sections. J. Clin. Med. 2019, 8, 1022. [Google Scholar] [CrossRef] [Green Version]
- De Bruyne, S.; Vandenbroecke, C.; Vrielinck, H.; Khelifi, S.; De Wever, O.; Bracke, K.; Huizing, M.; Boston, N.; Himpe, J.; Speeckaert, M.; et al. Fructosamine-3-Kinase as a Potential Treatment Option for Age-Related Macular Degeneration. J. Clin. Med. 2020, 9, 2869. [Google Scholar] [CrossRef]
- Truscott, R.J.W.; Zhu, X. Presbyopia and Cataract: A Question of Heat and Time. Prog. Retin. Eye Res. 2010, 29, 487–499. [Google Scholar] [CrossRef]
- Stitt, A.W. Advanced Glycation: An Important Pathological Event in Diabetic and Age Related Ocular Disease. Br. J. Ophthalmol. 2001, 85, 746–753. [Google Scholar] [CrossRef]
- Forrester, J.V.; Dick, A.D.; McMenamin, P.G.; Roberts, F.; Pearlman, E. Chapter 1-Anatomy of the eye and orbit. Eye Basic Sci. Pract. 2002, 2, 66–90. [Google Scholar] [CrossRef]
- Kumar, P.A.; Kumar, M.S.; Reddy, G.B. Effect of Glycation on Alpha-Crystallin Structure and Chaperone-like Function. Biochem. J. 2007, 408, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharyya, J.; Shipova, E.V.; Santhoshkumar, P.; Sharma, K.K.; Ortwerth, B.J. Effect of a Single AGE Modification on the Structure and Chaperone Activity of Human AlphaB-Crystallin. Biochemistry 2007, 46, 14682–14692. [Google Scholar] [CrossRef]
- Nagaraj, R.H.; Linetsky, M.; Stitt, A.W. The Pathogenic Role of Maillard Reaction in the Aging Eye. Amino Acids 2012, 42, 1205–1220. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.A.; Reddy, G.B. Modulation of α-Crystallin Chaperone Activity: A Target to Prevent or Delay Cataract? IUBMB Life 2009, 61, 485–495. [Google Scholar] [CrossRef]
- Khairallah, M.; Kahloun, R.; Bourne, R.; Limburg, H.; Flaxman, S.R.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; Pesudovs, K.; et al. Number of People Blind or Visually Impaired by Cataract Worldwide and in World Regions, 1990 to 2010. Invest Ophthalmol. Vis. Sci. 2015, 56, 6762–6769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, E.; Mahroo, O.A.R.; Spalton, D.J. Complications of Cataract Surgery. Clin. Exp. Optom. 2010, 93, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Michael, R.; Bron, A.J. The Ageing Lens and Cataract: A Model of Normal and Pathological Ageing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 1278–1292. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.B.; Rajagopala, M.; Ravishankar, B. Etiopathogenesis of Cataract: An Appraisal. Indian J. Ophthalmol. 2014, 62, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Puttaiah, S.; Zhang, Y.; Pilch, H.A.; Pfahler, C.; Oya-Ito, T.; Sayre, L.M.; Nagaraj, R.H. Detection of Dideoxyosone Intermediates of Glycation Using a Monoclonal Antibody: Characterization of Major Epitope Structures. Arch. Biochem. Biophys. 2006, 446, 186–196. [Google Scholar] [CrossRef]
- Lyons, T.J.; Silvestri, G.; Dunn, J.A.; Dyer, D.G.; Baynes, J.W. Role of Glycation in Modification of Lens Crystallins in Diabetic and Nondiabetic Senile Cataracts. Diabetes 1991, 40, 1010–1015. [Google Scholar] [CrossRef]
- Schey, K.L.; Petrova, R.S.; Gletten, R.B.; Donaldson, P.J. The Role of Aquaporins in Ocular Lens Homeostasis. Int. J. Mol. Sci. 2017, 18, 2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaghefi, E.; Donaldson, P.J. The Lens Internal Microcirculation System Delivers Solutes to the Lens Core Faster than Would Be Predicted by Passive Diffusion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R994–R1002. [Google Scholar] [CrossRef]
- Korlimbinis, A.; Berry, Y.; Thibault, D.; Schey, K.L.; Truscott, R.J.W. Protein Aging: Truncation of Aquaporin 0 in Human Lens Regions Is a Continuous Age-Dependent Process. Exp. Eye Res. 2009, 88, 966–973. [Google Scholar] [CrossRef] [Green Version]
- Truscott, R.J. Age-Related Nuclear Cataract: A Lens Transport Problem. Ophthalmic. Res. 2000, 32, 185–194. [Google Scholar] [CrossRef]
- Schoonooghe, S.; Kaigorodov, V.; Zawisza, M.; Dumolyn, C.; Haustraete, J.; Grooten, J.; Mertens, N. Efficient Production of Human Bivalent and Trivalent Anti-MUC1 Fab-ScFv Antibodies in Pichia Pastoris. BMC Biotechnol. 2009, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.E.; DeLoache, W.C.; Cervantes, B.; Dueber, J.E. A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. ACS Synth. Biol. 2015, 4, 975–986. [Google Scholar] [CrossRef]
- Lin-Cereghino, J.; Wong, W.W.; Xiong, S.; Giang, W.; Luong, L.T.; Vu, J.; Johnson, S.D. Condensed Protocol for Competent Cell Preparation and Transformation of the Methylotrophic Yeast Pichia Pastoris. BioTechniques 2005, 38, 44, 46, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenbeke, M.; De Bruyne, S.; Van Aken, E.; Glorieux, G.; Van Biesen, W.; Himpe, J.; De Meester, G.; Speeckaert, M.; Delanghe, J. UV Fluorescence-Based Determination of Urinary Advanced Glycation End Products in Patients with Chronic Kidney Disease. Diagnostics 2020, 10, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Singh, C.N.; Glybina, I.V.; Mahmoud, T.H.; Yu, F.-S.X. Toll-like Receptor 2 Ligand-Induced Protection against Bacterial Endophthalmitis. J. Infect. Dis. 2010, 201, 255–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarina, S.; Zhao, H.R.; Abraham, E.C. Advanced Glycation End Products in Human Senile and Diabetic Cataractous Lenses. Mol. Cell Biochem. 2000, 210, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Roe, J.H. A colorimetric method for the determination of fructose in blood and urine. J. Biol. Chem. 1934, 107, 15–22. [Google Scholar] [CrossRef]
Type of Topical Treatment | Time Interval | Measurement Point AF value | AF Value | % Change Compared to Baseline |
---|---|---|---|---|
Left eye | ||||
None | Baseline | 0 h | 0.0166 | 0 |
Saline | 0–6 h | 6 h | 0.0162 | −2.4 |
None | 6–18 h | 18 h | 0.0173 | +4.2 |
FN3K | 18–24 h | 24 h | 0.0077 | −53.9 |
Right eye | ||||
None | Baseline | 0 h | 0.0101 | 0 |
FN3K | 0–6 h | 6 h | 0.0084 | −16.4 |
None | 6–18 h | 18 h | 0.0079 | −21.5 |
Saline | 18–24 h | 24 h | 0.0086 | −14.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Bruyne, S.; van Schie, L.; Himpe, J.; De Somer, F.; Everaert, I.; Derave, W.; Van den Broecke, C.; Huizing, M.; Bostan, N.; Speeckaert, M.; et al. A Potential Role for Fructosamine-3-Kinase in Cataract Treatment. Int. J. Mol. Sci. 2021, 22, 3841. https://doi.org/10.3390/ijms22083841
De Bruyne S, van Schie L, Himpe J, De Somer F, Everaert I, Derave W, Van den Broecke C, Huizing M, Bostan N, Speeckaert M, et al. A Potential Role for Fructosamine-3-Kinase in Cataract Treatment. International Journal of Molecular Sciences. 2021; 22(8):3841. https://doi.org/10.3390/ijms22083841
Chicago/Turabian StyleDe Bruyne, Sander, Loes van Schie, Jonas Himpe, Filip De Somer, Inge Everaert, Wim Derave, Caroline Van den Broecke, Manon Huizing, Nezahat Bostan, Marijn Speeckaert, and et al. 2021. "A Potential Role for Fructosamine-3-Kinase in Cataract Treatment" International Journal of Molecular Sciences 22, no. 8: 3841. https://doi.org/10.3390/ijms22083841
APA StyleDe Bruyne, S., van Schie, L., Himpe, J., De Somer, F., Everaert, I., Derave, W., Van den Broecke, C., Huizing, M., Bostan, N., Speeckaert, M., Callewaert, N., Van Aken, E., & Delanghe, J. R. (2021). A Potential Role for Fructosamine-3-Kinase in Cataract Treatment. International Journal of Molecular Sciences, 22(8), 3841. https://doi.org/10.3390/ijms22083841