Development of Pigmentation-Regulating Agents by Drug Repositioning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection
3. Signaling Pathways in the Regulation of Melanogenesis
3.1. The α-MSH/MC1R Signaling Pathway
3.2. Wnt/β-Catenin Signaling Pathway
3.3. SCF/KIT Signaling Pathway
3.4. Endothelin Signaling Pathway
3.5. Acetylcholine Signaling Pathway
3.6. Phosphatidylinositol 3-Kinase/AKT Signaling Pathway
3.7. Extracellular Signal-Regulated Protein Kinase Signaling Pathway
4. Drug Repositioning
4.1. Concept and Advantage of Drug Repositioning
4.2. Examples of Drug Repositioning in Dermatology
5. Research Results to Develop Pigmentation-Regulating Agents by Drug Repositioning
5.1. Induction of Pigmentation by a Small Molecule Tyrosine Kinase Inhibitor Nilotinib
5.2. Sorafenib Induces Pigmentation via the Regulation of β-Catenin Signaling Pathway in Melanoma Cells
5.3. Wnt/β-Catenin Signaling Inhibitor ICG-001 Enhances Pigmentation of Cultured Melanoma Cells
5.4. Inhibitory Effect of 5-Iodotubercidin on Pigmentation
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
α-MSH | α-melanocyte-stimulating hormone |
ACh | acetylcholine |
AChE | acetylcholinesterase |
AChR | acetylcholine receptor |
AKT | protein kinase B |
APC | adenomatous polyposis coli |
cAMP | cyclic adenosine monophosphate |
c-KIT | tyrosine kinase receptor |
CBP | CREB-binding protein |
CML | chronic myeloid leukemia |
CREB | cAMP response element-binding protein |
DDR | discoidin domain receptor |
DHT | dihydrotestosterone |
ERK | extracellular signal-regulated protein kinase |
GSK3β | glycogen synthase kinase 3β |
HCC | hepatocellular carcinoma |
MAPK | mitogen-activated protein kinase |
MC1R | melanocortin 1 receptor |
MITF | microphthalmia-associated transcription factor |
PDGF | platelet-derived growth factor |
PI3K | phosphatidylinositol 3-kinase |
PKA | protein kinase A |
RCC | renal cell carcinoma |
S9 | serine 9 |
SCF | stem cell factor |
TRPs | tyrosinase-related proteins |
VEGF | vascular endothelial growth factor |
Wnt | wingless-related integration site |
Y216 | tyrosine 216 |
References
- Bastonini, E.; Kovacs, D.; Picardo, M. Skin Pigmentation and Pigmentary Disorders: Focus on Epidermal/Dermal Cross-Talk. Ann. Dermatol. Ann. Dermatol. 2016, 28, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Imokawa, G.; Ishida, K. Inhibitors of intracellular signaling pathways that lead to stimulated epidermal pigmentation: Perspective of anti-pigmenting agents. Int. J. Mol. Sci. 2014, 15, 8293–8315. [Google Scholar] [CrossRef] [Green Version]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [Green Version]
- Badria, F.A.; Elgazar, A.A. Drug Repurposing in Dermatology: Molecular Biology and Omics Approach. In Drug Repurposing-Hypothesis, Molecular Aspects and Therapeutic Applications; IntechOpen: London, UK, 2020; pp. 1–15. [Google Scholar]
- Qian, W.; Liu, W.; Zhu, D.; Cao, Y.; Tang, A.; Gong, G.; Su, H. Natural skin-whitening compounds for the treatment of melanogenesis (Review). Exp. Ther. Med. 2020, 20, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Im, S.; Moro, O.; Peng, F.; Medrano, E.E.; Cornelius, J.; Babcock, G.; Nordlund, J.J.; Abdel-Malek, Z.A. Activation of the cyclic AMP pathway by alpha-melanotropin mediates the response of human melanocytes to ultraviolet B radiation. Cancer Res. 1998, 58, 47–54. [Google Scholar] [PubMed]
- Rodríguez, C.I.; Setaluri, V. Cyclic AMP (cAMP) signaling in melanocytes and melanoma. Arch. Biochem. Biophys. 2014, 563, 22–27. [Google Scholar] [CrossRef]
- Beurel, E.; Grieco, S.F.; Jope, R.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther. 2015, 148, 114–131. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Chen, G.; Kuan, S.F.; Zhang, D.H.; Schlaepfer, D.D.; Hu, J. FAK/PYK2 promotes the Wnt/β-catenin pathway and intestinal tumorigenesis by phosphorylating GSK3β. eLife 2015, 4, e10072. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G.; Kobayashi, T.; Miyagishi, M.; Higashi, K.; Yada, Y. The role of endothelin-1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis. Pigment. Cell Res. 1997, 10, 218–228. [Google Scholar] [CrossRef]
- Imokawa, G.; Miyagishi, M.; Yada, Y. Endothelin-1 as a new melanogen: Coordinated expression of its gene and the tyrosinase gene in UVB-exposed human epidermis. J. Investig. Dermatol. 1995, 105, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Xia, Y.; Dai, K.; Bai, P.; Kwan, K.K.L.; Guo, M.S.S.; Dong, T.T.X.; Tsim, K.W.K. Solar light induces the release of acetylcholine from skin keratinocytes affecting melanogenesis. FASEB J. 2020, 34, 8941–8958. [Google Scholar] [CrossRef]
- Wu, Q.; Bai, P.; Xia, Y.; Lai, Q.W.; Guo, M.S.; Dai, K.; Zheng, Z.; Ling, C.S.; Dong, T.T.; Pi, R.; et al. Solar light induces expression of acetylcholinesterase in skin keratinocytes: Signalling mediated by activator protein 1 transcription factor. Neurochem. Int. 2020, 141, 104861. [Google Scholar] [CrossRef]
- Oka, M.; Nagai, H.; Ando, H.; Fukunaga, M.; Matsumura, M.; Araki, K.; Ogawa, W.; Miki, T.; Sakaue, M.; Tsukamoto, K.; et al. Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells. J. Investig. Dermatol. 2000, 115, 699–703. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Kim, S.Y.; Chung, J.H.; Kim, K.H.; Eun, H.C.; Park, K.C. Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes. Cell. Signal. 2002, 14, 779–785. [Google Scholar] [CrossRef]
- Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of Drug Repositioning Approaches and Resources. Int. J. Biol. Sci. 2018, 14, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- Adhya, Z.; Karim, Y. Doxepin may be a useful pharmacotherapeutic agent in chronic urticaria. Clin. Exp. Allergy 2015, 45, 1370. [Google Scholar] [CrossRef]
- Libecco, J.F.; Bergfeld, W.F. Finasteride in the treatment of alopecia. Expert Opin. Pharmacother. 2004, 5, 933–940. [Google Scholar] [CrossRef]
- Weiss, V.C.; West, D.P.; Fu, T.S.; Fobinson, L.A.; Cook, B.; Cohen, R.L.; Chambers, D.A. Alopecia Areata Treated With Topical Minoxidil. Arch. Dermatol. 1984, 120, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Tse, T.W.; Hui, E. Tranexamic acid: An important adjuvant in the treatment of melasma. J. Cosmet. Dermatol. 2013, 12, 57–66. [Google Scholar] [CrossRef]
- Nisticò, S.P.; Tolone, M.; Zingoni, T.; Tamburi, F.; Scali, E.; Bennardo, L.; Cannarozzo, G. A New 675 nm Laser Device in the Treatment of Melasma: Results of a Prospective Observational Study. Photobiomodul. Photomed. Laser Surg. 2020, 38, 560–564. [Google Scholar] [CrossRef]
- Wu, S.; Shi, H.; Wu, H.; Yan, S.; Guo, J.; Sun, Y.; Pan, L. Treatment of melasma with oral administration of tranexamic acid. Aesthetic Plast. Surg. 2012, 36, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Park, S.J.; Jee, J.G. Analogues of ethionamide, a drug used for multidrug-resistant tuberculosis, exhibit potent inhibition of tyrosinase. Eur. J. Med. Chem. 2015, 106, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, Y.M.; Jee, J.G. Thiopurine Drugs Repositioned as Tyrosinase Inhibitors. Int. J. Mol. Sci. 2017, 19, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.P.; Brunton, H.; Rowling, E.J.; Ferguson, J.; Arozarena, I.; Miskolczi, Z.; Lee, J.L.; Girotti, M.R.; Marais, R.; Levesque, M.P.; et al. Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy. Cancer Cell 2016, 29, 270–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Raouf, H.; Aly, U.F.; Medhat, W.; Ahmed, S.S.; Abdel-Aziz, R.T.A. A novel topical combination of minoxidil and spironolactone for androgenetic alopecia: Clinical, histopathological, and physicochemical study. Dermatol. Ther. 2020, 15, e14678. [Google Scholar]
- Ghaoui, N.; Hanna, E.; Abbas, O.; Kibbi, A.G.; Kurban, M. Update on the use of dapsone in dermatology. Int. J. Dermatol. 2020, 59, 787–795. [Google Scholar] [CrossRef]
- Ullah, S.; Park, C.; Ikram, M.; Kang, D.; Lee, S.; Yang, J.; Park, Y.; Yoon, S.; Chun, P.; Moon, H.R. Tyrosinase inhibition and anti-melanin generation effect of cinnamamide analogues. Bioorg. Chem. 2019, 87, 43–55. [Google Scholar] [CrossRef]
- Goenka, S.; Simon, S.R. Organogold drug Auranofin exhibits anti-melanogenic activity in B16F10 and MNT-1 melanoma cells. Arch. Dermatol. Res. 2019, 312, 213–221. [Google Scholar] [CrossRef]
- Jarkowski, A.; Sweeney, R.P. Nilotinib: A new tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Pharmacotherapy 2008, 28, 1374–1382. [Google Scholar] [CrossRef]
- O’Hare, T.; Walters, D.K.; Deininger, M.W.; Druker, B.J. AMN107: Tightening the grip of imatinib. Cancer Cell 2005, 7, 117–119. [Google Scholar] [CrossRef] [Green Version]
- Contreras, O.; Villarreal, M.; Brandan, E. Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation. Skelet. Muscle 2018, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeitany, M.; Leroy, C.; Tosti, P.; Lafitte, M.; Le Guet, J.; Simon, V.; Bonenfant, D.; Robert, B.; Grillet, F.; Mollevi, C.; et al. Inhibition of DDR1-BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer. EMBO Mol. Med. 2018, 10, e7918. [Google Scholar] [CrossRef]
- Kim, K.I.; Jo, J.W.; Lee, J.H.; Kim, C.D.; Yoon, T.J. Induction of pigmentation by a small molecule tyrosine kinase inhibitor nilotinib. Biochem. Biophys. Res. Commun. 2018, 503, 2271–2276. [Google Scholar] [CrossRef] [PubMed]
- Khaled, M.; Larribere, L.; Bille, K.; Aberdam, E.; Ortonne, J.P.; Ballotti, R.; Bertolotto, C. Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis. J. Biol. Chem. 2002, 277, 33690–33697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelgalil, A.A.; Alkahtani, H.M.; Al-Jenoobi, F.I. Sorafenib. Profiles Drug Subst. Excip. Relat. Methodol. 2019, 44, 239–266. [Google Scholar]
- Gauthier, A.; Ho, M. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update. Hepatol. Res. 2012, 43, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.I.; Jung, K.E.; Shin, Y.B.; Kim, C.D.; Yoon, T.J. Sorafenib induces pigmentation via the regulation of β-catenin signaling pathway in melanoma cells. Exp. Dermatol. 2020. (Epub ahead of print). [Google Scholar] [CrossRef]
- Handeli, S.; Simon, J.A. A small-molecule inhibitor of Tcf/β-catenin signaling down-regulates PPARγ and PPAR δ activities. Mol. Cancer Ther. 2008, 7, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.I.; Jeong, D.S.; Jung, E.C.; Lee, J.H.; Kim, C.D.; Yoon, T.J. Wnt/β-catenin signaling inhibitor ICG-001 enhances pigmentation of cultured melanoma cells. J. Dermatol. Sci. 2016, 84, 160–168. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, D.; Liu, H.; Zhu, N.; Zhang, W.; Feng, J.; Yin, J.; Hao, B.; Cui, D.; Deng, Y.; et al. Identification of 5-Iodotubercidin as a genotoxic drug with anti-cancer potential. PLoS ONE 2013, 8, e62527. [Google Scholar] [CrossRef]
- Kim, K.I.; Jeong, H.B.; Ro, H.; Lee, J.H.; Kim, C.D.; Yoon, T.J. Inhibitory effect of 5-iodotubercidin on pigmentation. Biochem. Biophys. Res. Commun. 2017, 490, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
Generic | Original Indication | New Indication | Reference |
---|---|---|---|
Doxepin | Depressive disorder | Chronic urticaria, Pruritus | [17] |
Finasteride | Benign prostatic hyperplasia | Androgenic alopecia | [18] |
Minoxidil | Hypertension | Androgenic alopecia | [19] |
Tranexamic acid | Anticoagulant | Melasma | [20,21,22] |
Ethionamide | Tuberculosis | Anti-melanogenesis | [23] |
Thiopurine | Acute leukemia | Anti-melanogenesis | [24] |
Nelfinavir | HIV1-protease inhibitor | Melanoma | [25] |
Spironolactone | Hypertension | Androgenic alopecia | [26] |
Dapsone | Leprosy | Dermatitis herpetiformis, Acne vulgaris | [27] |
Author | Year of Publication | Results |
---|---|---|
Choi J et al. [23]. | 2015 |
|
Smith MP et al. [25]. | 2016 |
|
Choi J et al. [24]. | 2017 |
|
Ullah S et al. [28]. | 2019 |
|
Goenka S et al. [29]. | 2020 |
|
Substances or Drugs | Pigmentation | Pigmentation— Related Gene Expression | Signal Pathway | Original Indication | |
---|---|---|---|---|---|
Melanin Content | Tyrosinase Activity | ||||
Nilotinib | ↑ | ↑ | ↑ | AKT↓ cAMP/PKA↑ | CML |
Sorafenib | ↑ | ↑ | ↑ | AKT/ERK↓ Wnt/β-catenin↑ | HCC, RCC |
ICG-001 | ↑ | ↑ | ↑ | cAMP/PKA↑ | Colorectal cancer |
5-Iodotubercidin | ↓ | ↓ | ↓ | AKT/ERK↑ cAMP/PKA↓ | Anti-cancer drug |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-M.-G.; Yoon, T.-J. Development of Pigmentation-Regulating Agents by Drug Repositioning. Int. J. Mol. Sci. 2021, 22, 3894. https://doi.org/10.3390/ijms22083894
Jeong S-M-G, Yoon T-J. Development of Pigmentation-Regulating Agents by Drug Repositioning. International Journal of Molecular Sciences. 2021; 22(8):3894. https://doi.org/10.3390/ijms22083894
Chicago/Turabian StyleJeong, Seo-Mi-Gon, and Tae-Jin Yoon. 2021. "Development of Pigmentation-Regulating Agents by Drug Repositioning" International Journal of Molecular Sciences 22, no. 8: 3894. https://doi.org/10.3390/ijms22083894
APA StyleJeong, S. -M. -G., & Yoon, T. -J. (2021). Development of Pigmentation-Regulating Agents by Drug Repositioning. International Journal of Molecular Sciences, 22(8), 3894. https://doi.org/10.3390/ijms22083894