Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses
Abstract
:1. Introduction and Aim of this Review
2. Bacterial σ Factor Families
3. Transcription Initiation: σ70 Factor vs. ECFs
4. ECF Classification
5. Regulation of the ECF Activity and Production
6. Examples of Model ECFs: RpoE and EcfG
6.1. RpoE Stress Response
6.2. EcfG as the GSR Regulator
7. Future Perspectives and New Insights
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mogk, A.; Tomoyasu, T.; Goloubinoff, P.; Rüdiger, S.; Röder, D.; Langen, H.; Bukau, B. Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 1999, 18, 6934–6949. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Fujimoto, H.; Nishimura, K.; Charoensuk, K.; Nagamitsu, H.; Raina, S.; Kosaka, T.; Oshima, T.; Ogasawara, N.; Yamada, M. Molecular Strategy for Survival at a Critical High Temperature in Eschierichia coli. PLoS ONE 2011, 6, e20063. [Google Scholar] [CrossRef] [PubMed]
- Storz, G.; Tartaglia, L.A.; Ames, B.N. Transcriptional regulator of oxidative stress-inducible genes: Direct activation by oxidation. Science 1990, 248, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Storz, G.; Tartaglia, L.A.; Ames, B.N. The OxyR regulon. Antonie Leeuwenhoek 1990, 58, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.-F.; Messens, J. Structure, Function, and Mechanism of Thioredoxin Proteins. Antioxid. Redox Signal. 2010, 13, 1205–1216. [Google Scholar] [CrossRef]
- Fernandes, A.P.; Holmgren, A. Glutaredoxins: Glutathione-Dependent Redox Enzymes with Functions Far Beyond a Simple Thioredoxin Backup System. Antioxid. Redox Signal. 2004, 6, 63–74. [Google Scholar] [CrossRef]
- Ruchaud-Sparagano, M.H.; Maresca, M.; Kenny, B. Enteropathogenic Escherichia coli (EPEC) inactivate innate immune responses prior to compromising epithelial barrier function. Cell. Microbiol. 2007, 9, 1909–1921. [Google Scholar] [CrossRef]
- Galperin, M.Y. What bacteria want. Environ. Microbiol. 2018, 20, 4221–4229. [Google Scholar] [CrossRef]
- Cousin, C.; Derouiche, A.; Shi, L.; Pagot, Y.; Poncet, S.; Mijakovic, I. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol. Lett. 2013, 346, 11–19. [Google Scholar] [CrossRef]
- Stancik, I.A.; Šestak, M.S.; Ji, B.; Axelson-Fisk, M.; Franjevic, D.; Jers, C.; Domazet-Lošo, T.; Mijakovic, I. Serine/Threonine Protein Kinases from Bacteria, Archaea and Eukarya Share a Common Evolutionary Origin Deeply Rooted in the Tree of Life. J. Mol. Biol. 2018, 430, 27–32. [Google Scholar] [CrossRef]
- Lonetto, M.A.; Donohue, T.J.; Gross, C.A.; Buttner, M.J. Discovery of the extracytoplasmic function σ factors. Mol. Microbiol. 2019, 112, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Staroń, A.; Sofia, H.J.; Dietrich, S.; Ulrich, L.E.; Liesegang, H.; Mascher, T. The third pillar of bacterial signal transduction: Classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol. Microbiol. 2009, 74, 557–581. [Google Scholar] [CrossRef] [PubMed]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Liu, Q.; Mascher, T. ECF σ Factors with Regulatory Extensions: The One-Component Systems of the σ Universe. Mol. Microbiol. 2019, 112, 399–409. [Google Scholar] [CrossRef]
- Lonetto, M.; Gribskov, M.; Gross, C.A. The sigma 70 family: Sequence conservation and evolutionary relationships. J. Bacteriol. 1992, 174, 3843–3849. [Google Scholar] [CrossRef]
- Hook-Barnard, I.G.; Hinton, D.M. Transcription Initiation by Mix and Match Elements: Flexibility for Polymerase Binding to Bacterial Promoters The Multi-Step Process of Transcription Initiation. Gene Regul. Syst. Bio. 2007, 1, 275–293. [Google Scholar]
- Paget, M.S.B. Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution. Biomolecules 2015, 5, 1245–1265. [Google Scholar] [CrossRef]
- Dupuy, B.; Raffestin, S.; Matamouros, S.; Mani, N.; Popoff, M.R.; Sonenshein, A.L. Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors. Mol. Microbiol. 2006, 60, 1044–1057. [Google Scholar] [CrossRef]
- Dupuy, B.; Matamouros, S. Regulation of toxin and bacteriocin synthesis in Clostridium species by a new subgroup of RNA polymerase sigma-factors. Res. Microbiol. 2006, 157, 201–205. [Google Scholar] [CrossRef]
- MacLellan, S.R.; Guariglia-Oropeza, V.; Gaballa, A.; Helmann, J.D. A two-subunit bacterial σ-factor activates transcription inBacillus subtilis. Proc. Natl. Acad. Sci. USA 2009, 106, 21323–21328. [Google Scholar] [CrossRef]
- Xue, X.; Davis, M.C.; Steeves, T.; Bishop, A.; Breen, J.; MacEacheron, A.; Kesthely, C.A.; Hsu, F.; MacLellan, S.R. Characterization of a protein–protein interaction within the SigO–RsoA two-subunit σ factor: The σ70 region 2.3-like segment of RsoA mediates interaction with SigO. Microbiology 2016, 162, 1857–1869. [Google Scholar] [CrossRef]
- Campagne, S.; Damberger, F.F.; Kaczmarczyk, A.; Francez-Charlot, A.; Allain, F.H.-T.; Vorholt, J.A. Structural basis for sigma factor mimicry in the general stress response of Alphaproteobacteria. Proc. Natl. Acad. Sci. USA 2012, 109, E1405–E1414. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Chatterjee, S.; Tuske, S.; Ho, M.X.; Arnold, E.; Ebright, R.H. Structural Basis of Transcription Initiation. Science 2012, 338, 1076–1080. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Ebright, R.H. Structural basis of transcription activation. Science 2016, 352, 1330–1333. [Google Scholar] [CrossRef]
- Bae, B.; Davis, E.; Brown, D.; Campbell, E.A.; Wigneshweraraj, S.; Darst, S.A. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1. Proc. Natl. Acad. Sci. USA 2013, 110, 19772–19777. [Google Scholar] [CrossRef]
- Naryshkin, N.; Revyakin, A.; Kim, Y.; Mekler, V.; Ebright, R.H. Structural Organization of the RNA Polymerase-Promoter Open Complex. Cell 2000, 101, 601–611. [Google Scholar] [CrossRef]
- Mekler, V.; Kortkhonjia, E.; Mukhopadhyay, J.; Knight, J.; Revyakin, A.; Kapanidis, A.N.; Niu, W.; Ebright, Y.W.; Levy, R.; Ebright, R.H. Structural Organization of Bacterial RNA Polymerase Holoenzyme and the RNA Polymerase-Promoter Open Complex. Cell 2002, 108, 599–614. [Google Scholar] [CrossRef]
- Hudson, B.P.; Quispe, J.; Lara-González, S.; Kim, Y.; Berman, H.M.; Arnold, E.; Ebright, R.H.; Lawson, C.L. Three-dimensional EM structure of an intact activator-dependent transcription initiation complex. Proc. Natl. Acad. Sci. USA 2009, 106, 19830–19835. [Google Scholar] [CrossRef]
- Murakami, K.S.; Masuda, S.; Darst, S.A. Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 A Resolution. Science 2002, 296, 1280–1284. [Google Scholar] [CrossRef]
- Liu, X.; Bushnell, D.A.; Wang, D.; Calero, G.; Kornberg, R.D. Structure of an RNA Polymerase II–TFIIB Complex and the Transcription Initiation Mechanism. Science 2010, 327, 206–209. [Google Scholar] [CrossRef]
- Kostrewa, D.; Zeller, M.E.; Armache, K.-J.; Seizl, M.; Leike, K.; Thomm, M.; Cramer, P. RNA polymerase II–TFIIB structure and mechanism of transcription initiation. Nat. Cell Biol. 2009, 462, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Treutlein, B.; Muschielok, A.; Andrecka, J.; Jawhari, A.; Buchen, C.; Kostrewa, D.; Hög, F.; Cramer, P.; Michaelis, J. Dynamic Architecture of a Minimal RNA Polymerase II Open Promoter Complex. Mol. Cell 2012, 46, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Grünberg, S.; Warfield, L.; Hahn, S. Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening. Nat. Struct. Mol. Biol. 2012, 19, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Vassylyev, D.G.; Sekine, S.-I.; Laptenko, O.; Lee, J.; Vassylyeva, M.N.; Borukhov, S.; Yokoyama, S. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nat. Cell Biol. 2002, 417, 712–719. [Google Scholar] [CrossRef]
- Li, L.; Fang, C.; Zhuang, N.; Wang, T.; Zhang, Y. Structural basis for transcription initiation by bacterial ECF σ factors. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef]
- Fang, C.; Li, L.; Shen, L.; Shi, J.; Wang, S.; Feng, Y.; Zhang, Y. Structures and mechanism of transcription initiation by bacterial ECF factors. Nucleic Acids Res. 2019, 47, 7094–7104. [Google Scholar] [CrossRef]
- Lin, W.; Mandal, S.; Degen, D.; Cho, M.S.; Feng, Y.; Das, K.; Ebright, R.H. Structural basis of ECF-σ-factor-dependent transcription initiation. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef]
- Campbell, E.A.; Muzzin, O.; Chlenov, M.; Sun, J.L.; Olson, C.A.; Weinman, O.; Trester-Zedlitz, M.L.; Darst, S.A. Structure of the Bacterial RNA Polymerase Promoter Specificity sigma Subunit. Mol. Cell 2002, 9, 527–539. [Google Scholar] [CrossRef]
- Paget, M.S.; Helmann, J.D. The σ70 family of sigma factors. Genome Biol. 2003, 4, 203. [Google Scholar] [CrossRef]
- Haugen, S.P.; Ross, W.; Manrique, M.; Gourse, R.L. Fine structure of the promoter-sigma region 1.2 interaction. Proc. Natl. Acad. Sci. USA 2008, 105, 3292–3297. [Google Scholar] [CrossRef]
- Zenkin, N.; Kulbachinskiy, A.; Yuzenkova, Y.; Mustaev, A.; Bass, I.; Severinov, K.; Brodolin, K. Region 1.2 of the RNA polymerase sigma subunit controls recognition of the −10 promoter element. EMBO J. 2007, 26, 955–964. [Google Scholar] [CrossRef]
- Leibman, M.; Hochschild, A. A sigma-core interaction of the RNA polymerase holoenzyme that enhances promoter escape. EMBO J. 2007, 26, 1579–1590. [Google Scholar] [CrossRef]
- Basu, R.S.; Warner, B.A.; Molodtsov, V.; Pupov, D.; Esyunina, D.; Fernández-Tornero, C.; Kulbachinskiy, A.; Murakami, K.S. Structural Basis of Transcription Initiation by Bacterial RNA Polymerase Holoenzyme. J. Biol. Chem. 2014, 289, 24549–24559. [Google Scholar] [CrossRef]
- Kulbachinskiy, A.; Mustaev, A. Region 3.2 of the sigma Subunit Contributes to the Binding of the 3′-Initiating Nucleotide in the RNA Polymerase Active Center and Facilitates Promoter Clearance during Initiation. J. Biol. Chem. 2006, 281, 18273–18276. [Google Scholar] [CrossRef]
- Lane, W.J.; Darst, S.A. The Structural Basis for Promoter -35 Element Recognition by the Group IV Sigma Factors. PLoS Biol 2006, 4, e269. [Google Scholar] [CrossRef]
- Campagne, S.; Marsh, M.E.; Capitani, G.; Vorholt, J.A.; Allain, F.H.-T. Structural basis for −10 promoter element melting by environmentally induced sigma factors. Nat. Struct. Mol. Biol. 2014, 21, 269–276. [Google Scholar] [CrossRef]
- Kwon, E.; Devkota, S.R.; Pathak, D.; Dahal, P.; Kim, D.Y. Structural analysis of the recognition of the -35 promoter element by SigW from Bacillus subtilis. PLoS ONE 2019, 14, e0221666. [Google Scholar] [CrossRef]
- Feklístov, A.; Sharon, B.D.; Darst, S.A.; Gross, C.A. Bacterial Sigma Factors: A Historical, Structural, and Genomic Perspective. Annu. Rev. Microbiol. 2014, 68, 357–376. [Google Scholar] [CrossRef]
- Campagne, S.; Allain, F.H.-T.; Vorholt, J.A. Extra Cytoplasmic Function sigma factors, recent structural insights into promoter recognition and regulation. Curr. Opin. Struct. Biol. 2015, 30, 71–78. [Google Scholar] [CrossRef]
- Todor, H.; Osadnik, H.; Campbell, E.A.; Myers, K.S.; Li, H.; Donohue, T.J.; Gross, C.A. Rewiring the specificity of extracytoplasmic function sigma factors. Proc. Natl. Acad. Sci. USA 2020, 117, 33496–33506. [Google Scholar] [CrossRef]
- Jogler, C.; Waldmann, J.; Huang, X.; Jogler, M.; Glöckner, F.O.; Mascher, T.; Kolter, R. Identification of Proteins Likely To Be Involved in Morphogenesis, Cell Division, and Signal Transduction in Planctomycetes by Comparative Genomics. J. Bacteriol. 2012, 194, 6419–6430. [Google Scholar] [CrossRef]
- Huang, X.; Pinto, D.; Fritz, G.; Mascher, T. Environmental Sensing in Actinobacteria: A Comprehensive Survey on the Signaling Capacity of This Phylum. J. Bacteriol. 2015, 197, 2517–2535. [Google Scholar] [CrossRef]
- Pinto, D.; Mascher, T. The ECF classification: A phylogenetic reflection of the regulatory diversity in the extracytoplasmic function sigma factor protein family. In Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 1st ed.; De Bruijn, F.J., Ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2016; pp. 64–96. [Google Scholar]
- Nickels, B.E.; Garrity, S.J.; Mekler, V.; Minakhin, L.; Severinov, K.; Ebright, R.H.; Hochschild, A. The Interaction between 70 and the b-Flap of Escherichia coli RNA Polymerase Inhibits Extension of Nascent RNA during Early Elongation. Proc. Natl. Acad. Sci. USA 2005, 102, 4488–4493. [Google Scholar] [CrossRef]
- Johnston, E.B.; Lewis, P.J.; Griffith, R. The interaction of Bacillus subtilis σA with RNA polymerase. Protein Sci. 2009, 18, 2287–2297. [Google Scholar] [CrossRef]
- Casas-Pastor, D.; Müller, R.R.; Jaenicke, S.; Brinkrolf, K.; Becker, A.; Buttner, M.J.; Gross, C.A.; Mascher, T.; Goesmann, A.; Fritz, G. Expansion and re-classification of the extracytoplasmic function (ECF) σ factor family. Nucleic Acids Res. 2021, 49, 986–1005. [Google Scholar] [CrossRef]
- Hu, Y.; Kendall, S.; Stoker, N.G.; Coates, A.R. The Mycobacterium tuberculosis sigJ gene controls sensitivity of the bacterium to hydrogen peroxide. FEMS Microbiol. Lett. 2004, 237, 415–423. [Google Scholar] [CrossRef]
- Wecke, T.; Halang, P.; Staroń, A.; Dufour, Y.S.; Donohue, T.J.; Mascher, T. Extracytoplasmic function σ factors of the widely distributed group ECF41 contain a fused regulatory domain. Microbiologyopen 2012, 1, 194–213. [Google Scholar] [CrossRef]
- Pinto, D.; da Fonseca, R.R. Evolution of the extracytoplasmic function σ factor protein family. NAR Genom. Bioinform. 2020, 2, lqz026. [Google Scholar] [CrossRef]
- Schumacher, M.A.; Bush, M.J.; Bibb, M.J.; Ramos-León, F.; Chandra, G.; Zeng, W.; Buttner, M.J. The crystal structure of the RsbN–σBldN complex from Streptomyces venezuelae defines a new structural class of anti-σ factor. Nucleic Acids Res. 2018, 46, 7405–7417. [Google Scholar] [CrossRef]
- Casas-Pastor, D.; Diehl, A.; Fritz, G. Coevolutionary Analysis Reveals a Conserved Dual Binding Interface between Extracytoplasmic Function σ Factors and Class I Anti-σ Factors. mSystems 2020, 5. [Google Scholar] [CrossRef]
- Campbell, E.A.; Tupy, J.L.; Gruber, T.M.; Wang, S.; Sharp, M.M.; Gross, C.A. Crystal Structure of Escherichia Coli σE with the Cytoplasmic Domain of Its Anti-RseA and Temperature and Chemical Stress. Mol. Cell. 2003, 11, 1067–1078. [Google Scholar] [CrossRef]
- Devkota, S.R.; Kwon, E.; Ha, S.C.; Chang, H.W.; Kim, D.Y. Structural insights into the regulation of Bacillus subtilis SigW activity by anti-sigma RsiW. PLoS ONE 2017, 12, e0174284. [Google Scholar] [CrossRef] [PubMed]
- Maillard, A.P.; Girard, E.; Ziani, W.; Petit-Härtlein, I.; Kahn, R.; Covès, J. The Crystal Structure of the Anti-σ Factor CnrY in Complex with the σ Factor CnrH Shows a New Structural Class of Anti-σ Factors Targeting Extracytoplasmic Function σ Factors. J. Mol. Biol. 2014, 426, 2313–2327. [Google Scholar] [CrossRef] [PubMed]
- Bayer-Santos, E.; Lima, L.D.P.; Ceseti, L.D.M.; Ratagami, C.Y.; De Santana, E.S.; Da Silva, A.M.; Farah, C.S.; Alvarez-Martinez, C.E. Xanthomonas citri T6SS mediates resistance to Dictyostelium predation and is regulated by an ECF σ factor and cognate Ser/Thr kinase. Environ. Microbiol. 2018, 20, 1562–1575. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.C.; Casas-Pastor, D.; Kraus, D.; Mann, P.; Schirner, K.; Glatter, T.; Fritz, G.; Ringgaard, S. Transcriptional regulation by σ factor phosphorylation in bacteria. Nat. Microbiol. 2020, 5, 395–406. [Google Scholar] [CrossRef]
- Lane, W.J.; Darst, S.A. Molecular Evolution of Multisubunit RNA Polymerases: Structural Analysis. J. Mol. Biol. 2010, 395, 686–704. [Google Scholar] [CrossRef]
- Goutam, K.; Gupta, A.K.; Gopal, B. The fused SnoaL_2 domain in the Mycobacterium tuberculosis sigma factor σJ modulates promoter recognition. Nucleic Acids Res. 2017, 45, 9760–9772. [Google Scholar] [CrossRef]
- Liu, Q.; Pinto, D.; Mascher, T.; Henkin, T.M. Characterization of the Widely Distributed Novel ECF42 Group of Extracytoplasmic Function σ Factors in Streptomyces venezuelae. J. Bacteriol. 2018, 200, 2020. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Q.; Casas-Pastor, D.; Dürr, F.; Mascher, T.; Fritz, G. The role of C-terminal extensions in controlling ECF σ factor activity in the widely conserved groups ECF41 and ECF42. Mol. Microbiol. 2019, 112, 498–514. [Google Scholar] [CrossRef]
- Moraleda-Muñoz, A.; Marcos-Torres, F.J.; Pérez, J.; Muñoz-Dorado, J. Metal-responsive RNA polymerase extracytoplasmic function (ECF) sigma factors. Mol. Microbiol. 2019, 112, 385–398. [Google Scholar] [CrossRef]
- Wiegand, S.; Jogler, M.; Boedeker, C.; Pinto, D.; Vollmers, J.; Rivas-Marín, E.; Kohn, T.; Peeters, S.H.; Heuer, A.; Rast, P.; et al. Cultivation and functional characterization of 79 planctomycetes uncovers their unique biology. Nat. Microbiol. 2020, 5, 126–140. [Google Scholar] [CrossRef]
- Merighi, M.; Majerczak, D.R.; Stover, E.H.; Coplin, D.L. The HrpX/HrpY Two-Component System Activates hrpS Expression, the First Step in the Regulatory Cascade Controlling the Hrp Regulon in Pantoea stewartii subsp. stewartii. Mol. Plant Microbe Interact. 2003, 16, 238–248. [Google Scholar] [CrossRef]
- De Dios, R.; Rivas-Marin, E.; Santero, E.; Reyes-Ramírez, F. Two paralogous EcfG σ factors hierarchically orchestrate the activation of the General Stress Response in Sphingopyxis granuli TFA. Sci. Rep. 2020, 10, 5177. [Google Scholar] [CrossRef]
- Bastiat, B.; Sauviac, L.; Bruand, C. Dual Control of Sinorhizobium meliloti RpoE2 Sigma Factor Activity by Two PhyR-Type Two-Component Response Regulators. J. Bacteriol. 2010, 192, 2255–2265. [Google Scholar] [CrossRef]
- Jans, A.; Vercruysse, M.; Gao, S.; Engelen, K.; Lambrichts, I.; Fauvart, M.; Michiels, J. Canonical and non-canonical EcfG sigma factors control the general stress response inRhizobium etli. Microbiologyopen 2013, 2, 976–987. [Google Scholar] [CrossRef]
- Campbell, E.A.; Greenwell, R.; Anthony, J.R.; Wang, S.; Lim, L.; Das, K.; Sofia, H.J.; Donohue, T.J.; Darst, S.A. A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Bacteria. Mol. Cell 2007, 27, 793–805. [Google Scholar] [CrossRef]
- Campbell, E.A.; Darst, S.A. Regulation of bacterial transcription by anti-s factors. In Structural Biology of Bacterial Pathogenesis; Waksman, G., Caparon, M., Hultgren, S., Eds.; American Society for Microbiology Press: Washington, WA, USA, 2005; pp. 1–15. [Google Scholar]
- Erickson, J.W.; Gross, C.A. Identification of the sigma E subunit of Escherichia coli RNA polymerase: A second alternate sigma factor involved in high-temperature gene expression. Genes Dev. 1989, 3, 1462–1471. [Google Scholar] [CrossRef]
- Raina, S.; Missiakas, D.; Georgopoulos, C. The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. EMBO J. 1995, 14, 1043–1055. [Google Scholar] [CrossRef]
- Mecsas, J.; Rouviere, P.E.; Erickson, J.W.; Donohue, T.J.; Gross, C.A. The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev. 1993, 7, 2618–2628. [Google Scholar] [CrossRef]
- Lima, S.; Guo, M.S.; Chaba, R.; Gross, C.A.; Sauer, R.T. Dual Molecular Signals Mediate the Bacterial Response to Outer-Membrane Stress. Science 2013, 340, 837–841. [Google Scholar] [CrossRef]
- Kim, D.Y. Two stress sensor proteins for the expression of sigmaE regulon: DegS and RseB. J. Microbiol. 2015, 53, 306–310. [Google Scholar] [CrossRef]
- Costanzo, A.; Ades, S.E. Growth Phase-Dependent Regulation of the Extracytoplasmic Stress Factor, sigmaE, by Guanosine 3′,5′-Bispyrophosphate (ppGpp). J. Bacteriol. 2006, 188, 4627–4634. [Google Scholar] [CrossRef]
- Chassaing, B.; Darfeuille-Michaud, A.; Wen, Y.; Feng, J.; Sachs, G. The σE Pathway Is Involved in Biofilm Formation by Crohn’s Disease-Associated Adherent-Invasive Escherichia coli. J. Bacteriol. 2013, 195, 76–84. [Google Scholar] [CrossRef]
- Vidovic, S.; Medihala, P.; Dynes, J.J.; Daida, P.; Vujanovic, V.; Hitchcock, A.P.; Shetty, D.; Zhang, H.; Brown, D.R.; Lawrence, J.R.; et al. Importance of the RpoE Regulon in Maintaining the Lipid Bilayer during Antimicrobial Treatment with the Polycationic Agent, Chlorhexidine. Proteomics 2018, 18, 3–4. [Google Scholar] [CrossRef]
- Rhodius, V.A.; Suh, W.C.; Nonaka, G.; West, J.; Gross, C.A. Conserved and Variable Functions of the sigmaE Stress Response in Related Genomes. PLoS Biol. 2006, 4, e2. [Google Scholar] [CrossRef]
- Klein, G.; Lindner, B.; Brade, H.; Raina, S. Molecular Basis of Lipopolysaccharide Heterogeneity in Escherichia coli: Envelope stress-responsive regulators control the incorporation of glycoforms with a third 3-deoxy-α-D-manno-oct-2-ulosonic acid and rhamnose. J. Biol. Chem. 2011, 286, 42787–42807. [Google Scholar] [CrossRef]
- Klein, G.; Kobylak, N.; Lindner, B.; Stupak, A.; Raina, S. Assembly of Lipopolysaccharide in Escherichia coli Requires the Essential LapB Heat Shock Protein. J. Biol. Chem. 2014, 289, 14829–14853. [Google Scholar] [CrossRef]
- Gogol, E.B.; Rhodius, V.A.; Papenfort, K.; Vogel, J.; Gross, C.A. Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon. Proc. Natl. Acad. Sci. USA 2011, 108, 12875–12880. [Google Scholar] [CrossRef]
- Coornaert, A.; Lu, A.; Mandin, P.; Springer, M.; Gottesman, S.; Guillier, M. MicA sRNA links the PhoP regulon to cell envelope stress. Mol. Microbiol. 2010, 76, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.; Raina, S. Regulated Assembly of LPS, Its Structural Alterations and Cellular Response to LPS Defects. Int. J. Mol. Sci. 2019, 20, 356. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.S.; Updegrove, T.B.; Gogol, E.B.; Shabalina, S.A.; Gross, C.A.; Storz, G. MicL, a new E-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev. 2014, 28, 1620–1634. [Google Scholar] [CrossRef] [PubMed]
- Melamed, S.; Peer, A.; Faigenbaum-Romm, R.; Gatt, Y.E.; Reiss, N.; Bar, A.; Altuvia, Y.; Argaman, L.; Margalit, H. Global Mapping of Small RNA-Target Interactions in Bacteria. Mol. Cell 2016, 63, 884–897. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.; Stupak, A.; Biernacka, D.; Wojtkiewicz, P.; Lindner, B.; Raina, S. Multiple Transcriptional Factors Regulate Transcription of the rpoE Gene in Escherichia coli under Different Growth Conditions and When the Lipopolysaccharide Biosynthesis Is Defective. J. Biol. Chem. 2016, 291, 22999–23019. [Google Scholar] [CrossRef]
- Barchinger, S.E.; Ades, S.E. Regulated Proteolysis: Control of the Escherichia coli σE-Dependent Cell Envelope Stress Response. Prokaryotic Cytoskelet. 2013, 66, 129–160. [Google Scholar] [CrossRef]
- Kim, E.; Sheng, M. PDZ domain proteins of synapses. Nat. Rev. Neurosci. 2004, 5, 771–781. [Google Scholar] [CrossRef]
- Walsh, N.P.; Alba, B.M.; Bose, B.; Gross, C.A.; Sauer, R.T. OMP Peptide Signals Initiate the Envelope-Stress Response by Activating DegS Protease via Relief of Inhibition Mediated by Its PDZ Domain. Cell 2003, 113, 61–71. [Google Scholar] [CrossRef]
- Wilken, C.; Kitzing, K.; Kurzbauer, R.; Ehrmann, M.; Clausen, T. Crystal Structure of the DegS Stress Sensor: How a PDZ domain recognizes misfolded protein and activates a protease. Cell 2004, 117, 483–494. [Google Scholar] [CrossRef]
- Flynn, J.M.; Levchenko, I.V.; Sauer, R.T.; Baker, T.A. Modulating substrate choice: The SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev. 2004, 18, 2292–2301. [Google Scholar] [CrossRef]
- Klein, G.; Dartigalongue, C.; Raina, S. Phosphorylation-mediated regulation of heat shock response in Escherichia coli. Mol. Microbiol. 2003, 48, 269–285. [Google Scholar] [CrossRef]
- Costanzo, A.; Nicoloff, H.; Barchinger, S.E.; Banta, A.B.; Gourse, R.L.; Ades, S.E. ppGpp and DksA likely regulate the activity of the extracytoplasmic stress factor sigmaE In Escherichia coli by both direct and indirect mechanisms. Mol. Microbiol. 2008, 67, 619–632. [Google Scholar] [CrossRef]
- Gourse, R.L.; Chen, A.Y.; Gopalkrishnan, S.; Sanchez-Vazquez, P.; Myers, A.; Ross, W. Transcriptional Responses to ppGpp and DksA. Annu. Rev. Microbiol. 2018, 72, 163–184. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.; Wojtkiewicz, P.; Biernacka, D.; Stupak, A.; Gorzelak, P.; Raina, S. Identification of Substrates of Cytoplasmic Peptidyl-Prolyl Cis/Trans Isomerases and Their Collective Essentiality in Escherichia Coli. Int. J. Mol. Sci. 2020, 21, 4212. [Google Scholar] [CrossRef] [PubMed]
- Wojtkiewicz, P.; Biernacka, D.; Gorzelak, P.; Stupak, A.; Klein, G.; Raina, S. Multicopy Suppressor Analysis of Strains Lacking Cytoplasmic Peptidyl-Prolyl cis/trans Isomerases Identifies Three New PPIase Activities in Escherichia coli That Includes the DksA Transcription Factor. Int. J. Mol. Sci. 2020, 21, 5843. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, A.; Herrou, J.; Willett, J.W.; Crosson, S. General Stress Signaling in the Alphaproteobacteria. Annu. Rev. Genet. 2015, 49, 603–625. [Google Scholar] [CrossRef]
- Gourion, B.; Rossignol, M.; Vorholt, J.A.; Lindow, S.E. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc. Natl. Acad. Sci. USA 2006, 103, 13186–13191. [Google Scholar] [CrossRef]
- Gourion, B.; Francez-Charlot, A.; Vorholt, J.A. PhyR Is Involved in the General Stress Response of Methylobacterium extorquens AM1. J. Bacteriol. 2008, 190, 1027–1035. [Google Scholar] [CrossRef]
- Francez-Charlot, A.; Frunzke, J.; Reichen, C.; Ebneter, J.Z.; Gourion, B.; Vorholt, J.A.; Lindow, S.E. Sigma factor mimicry involved in regulation of general stress response. Proc. Natl. Acad. Sci. USA 2009, 106, 3467–3472. [Google Scholar] [CrossRef]
- Gottschlich, L.; Bortfeld-Miller, M.; Gäbelein, C.; Dintner, S.; Vorholt, J.A. Phosphorelay through the bifunctional phosphotransferase PhyT controls the general stress response in an alphaproteobacterium. PLoS Genet. 2018, 14, e1007294. [Google Scholar] [CrossRef]
- Lori, C.; Kaczmarczyk, A.; De Jong, I.; Jenal, U. A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria. mBio 2018, 9. [Google Scholar] [CrossRef]
- Kaczmarczyk, A.; Hochstrasser, R.; Vorholt, J.A.; Francez-Charlot, A. Complex two-component signaling regulates the general stress response in Alphaproteobacteria. Proc. Natl. Acad. Sci. USA 2014, 111, E5196–E5204. [Google Scholar] [CrossRef]
- Kaczmarczyk, A.; Hochstrasser, R.; Vorholt, J.A.; Francez-Charlot, A. Two-Tiered Histidine Kinase Pathway Involved in Heat Shock and Salt Sensing in the General Stress Response of Sphingomonas melonis Fr1. J. Bacteriol. 2015, 197, 1466–1477. [Google Scholar] [CrossRef]
- Campagne, S.; Dintner, S.; Gottschlich, L.; Thibault, M.; Bortfeld-Miller, M.; Kaczmarczyk, A.; Francez-Charlot, A.; Allain, F.H.-T.; Vorholt, J.A. Role of the PFXFATG [G/Y] Motif in the Activation of SdrG, a Response Regulator Involved in the Alphaproteobacterial General Stress Response. Structure 2016, 24, 1237–1247. [Google Scholar] [CrossRef]
- Herrou, J.; Willett, J.W.; Crosson, S. Structured and Dynamic Disordered Domains Regulate the Activity of a Multifunctional Anti-σ Factor. mBio 2015, 6. [Google Scholar] [CrossRef]
- Alvarez-Martinez, C.E.; Lourenço, R.F.; Baldini, R.L.; Laub, M.T.; Gomes, S.L. The ECF sigma factor σT is involved in osmotic and oxidative stress responses in Caulobacter crescentus. Mol. Microbiol. 2007, 66, 1240–1255. [Google Scholar] [CrossRef]
- Francez-Charlot, A.; Frunzke, J.; Zingg, J.; Kaczmarczyk, A.; Vorholt, J.A. Multiple σEcfG and NepR Proteins Are Involved in the General Stress Response in Methylobacterium extorquens. PLoS ONE 2016, 11, e0152519. [Google Scholar] [CrossRef]
- Lourenço, R.F.; Kohler, C.; Gomes, S.L. A two-component system, an anti-sigma factor and two paralogous ECF sigma factors are involved in the control of general stress response in Caulobacter crescentus. Mol. Microbiol. 2011, 80, 1598–1612. [Google Scholar] [CrossRef]
- Sauviac, L.; Bruand, C.; Kaur, G.; Sengupta, S.; Kumar, V.; Kumari, A.; Ghosh, A.; Parrack, P.; Dutta, D. A Putative Bifunctional Histidine Kinase/Phosphatase of the HWE Family Exerts Positive and Negative Control on the Sinorhizobium meliloti General Stress Response. J. Bacteriol. 2014, 196, 2526–2535. [Google Scholar] [CrossRef]
- Gourion, B.; Sulser, S.; Frunzke, J.; Francez-Charlot, A.; Stiefel, P.; Pessi, G.; Vorholt, J.A.; Fischer, H.-M. The PhyR-σEcfGsignalling cascade is involved in stress response and symbiotic efficiency inBradyrhizobium japonicum. Mol. Microbiol. 2009, 73, 291–305. [Google Scholar] [CrossRef]
- Britos, L.; Abeliuk, E.; Taverner, T.; Lipton, M.; McAdams, H.; Shapiro, L. Regulatory Response to Carbon Starvation in Caulobacter crescentus. PLoS ONE 2011, 6, e18179. [Google Scholar] [CrossRef]
- Mecsas, J.; Welch, R.; Erickson, J.W.; Gross, C.A. Identification and characterization of an outer membrane protein, OmpX, in Escherichia coli that is homologous to a family of outer membrane proteins including Ail of Yersinia enterocolitica. J. Bacteriol. 1995, 177, 799–804. [Google Scholar] [CrossRef]
- Missiakas, D.; Betton, J.-M.; Raina, S. New components of protein folding in extracytoplasmic compartments ofEscherichia coliSurA, FkpA and Skp/OmpH. Mol. Microbiol. 1996, 21, 871–884. [Google Scholar] [CrossRef]
- Rouvière, P.E.; De Las Peñas, A.; Mecsas, J.; Lu, C.Z.; Rudd, K.E.; Gross, C.A. rpoE, the gene encoding the second heat-shock sigma factor, sigma E, in Escherichia coli. EMBO J. 1995, 14, 1032–1042. [Google Scholar] [CrossRef]
- Rouviere, P.E.; Gross, C.A. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 1996, 10, 3170–3182. [Google Scholar] [CrossRef]
- Hayden, J.D.; Ades, S.E. The Extracytoplasmic Stress Factor, sigmaE, Is Required to Maintain Cell Envelope Integrity in Escherichia coli. PLoS ONE 2008, 3, e1573. [Google Scholar] [CrossRef]
- Miller, H.K.; Carroll, R.K.; Burda, W.N.; Krute, C.N.; Davenport, J.E.; Shaw, L.N. The Extracytoplasmic Function Sigma Factor σS Protects against both Intracellular and Extracytoplasmic Stresses in Staphylococcus aureus. J. Bacteriol. 2012, 194, 4342–4354. [Google Scholar] [CrossRef]
- Gottschlich, L.; Geiser, P.; Bortfeld-Miller, M.; Field, C.M.; Vorholt, J.A. Complex general stress response regulation in Sphingomonas melonis Fr1 revealed by transcriptional analyses. Sci. Rep. 2019, 9, 9404. [Google Scholar] [CrossRef]
- Cornforth, D.M.; Foster, K.R. Competition sensing: The social side of bacterial stress responses. Nat. Rev. Microbiol. 2013, 11, 285–293. [Google Scholar] [CrossRef]
- Browning, D.F.; Busby, S.J.W. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2004, 2, 57–65. [Google Scholar] [CrossRef]
- Rhodius, V.A.; Segall-Shapiro, T.H.; Sharon, B.D.; Ghodasara, A.N.; Orlova, E.; Tabakh, H.; Burkhardt, D.H.; Clancy, K.; Peterson, T.C.; Gross, C.A.; et al. Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters. Mol. Syst. Biol. 2013, 9, 702. [Google Scholar] [CrossRef]
- Jamithireddy, A.K.; Runthala, A.; Gopal, B. Evaluation of specificity determinants in Mycobacterium tuberculosis σ/anti-σ factor interactions. Biochem. Biophys. Res. Commun. 2020, 521, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Shukla, J.; Gupta, R.; Thakur, K.G.; Gokhale, R.; Gopal, B. Structural basis for the redox sensitivity of theMycobacterium tuberculosisSigK–RskA σ–anti-σ complex. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014, 70, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-S.; Hahn, M.-Y.; Cho, Y.; Cho, S.-N.; Roe, J.-H. Positive and negative feedback regulatory loops of thiol-oxidative stress response mediated by an unstable isoform of σR in actinomycetes. Mol. Microbiol. 2009, 73, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Bervoets, I.; Van Brempt, M.; Van Nerom, K.; Van Hove, B.; Maertens, J.; De Mey, M.; Charlier, D. A sigma factor toolbox for orthogonal gene expression in Escherichia coli. Nucleic Acids Res. 2018, 46, 2133–2144. [Google Scholar] [CrossRef] [PubMed]
- Van Brempt, M.; Clauwaert, J.; Mey, F.; Stock, M.; Maertens, J.; Waegeman, W.; De Mey, M. Predictive design of sigma factor-specific promoters. Nat. Commun. 2020, 11, 5822. [Google Scholar] [CrossRef]
- Pinto, D.; Dürr, F.; Froriep, F.; Araújo, D.; Liu, Q.; Mascher, T. Extracytoplasmic Function σ Factors Can Be Implemented as Robust Heterologous Genetic Switches in Bacillus subtilis. iScience 2019, 13, 380–390. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Dios, R.; Santero, E.; Reyes-Ramírez, F. Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses. Int. J. Mol. Sci. 2021, 22, 3900. https://doi.org/10.3390/ijms22083900
de Dios R, Santero E, Reyes-Ramírez F. Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses. International Journal of Molecular Sciences. 2021; 22(8):3900. https://doi.org/10.3390/ijms22083900
Chicago/Turabian Stylede Dios, Rubén, Eduardo Santero, and Francisca Reyes-Ramírez. 2021. "Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses" International Journal of Molecular Sciences 22, no. 8: 3900. https://doi.org/10.3390/ijms22083900
APA Stylede Dios, R., Santero, E., & Reyes-Ramírez, F. (2021). Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses. International Journal of Molecular Sciences, 22(8), 3900. https://doi.org/10.3390/ijms22083900