Influence of a Natural Plant Antioxidant on the Ageing Process of Ethylene-norbornene Copolymer (Topas)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Free Energy (SFE)
2.2. Fourier-Transform Infrared Spectroscopy (FT-IR) Analysis
2.3. Change of Colour Measurement
2.4. Mechanical Properties
2.5. Thermogravimetric Analysis (TGA)
2.6. Oxidation Induction Time (OIT)
2.7. Scanning Electron Microscopy (SEM) Analysis
3. Materials and Methods
3.1. Mixture Reagents
3.2. Method of Topas Blends Preparation with Natural Additives
3.3. Weathering Aging
3.4. Measurement Methods
3.4.1. Surface Free Energy (SFE)
3.4.2. Fourier-Transform Infrared Spectroscopy (FT-IR) Analysis
3.4.3. Change of Colour Measurement
3.4.4. Mechanical Properties
3.4.5. Thermogravimetric Analysis (TGA)
3.4.6. Oxidative-Induction Time (OIT)
3.4.7. Scanning Electron Microscopy (SEM) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- PlasticsEurope. Plastics-the Facts 2019. An analysis of European Plastics Production, Demand and Waste Data. Available online: https://www.plasticseurope.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_the_facts2019_14102019.pdf (accessed on 7 February 2021).
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact During Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Kiruthika, C.; Lavanya Prabha, S.; Neelamegam, M. Different Aspects of Polyester Polymer Concrete for Sustainable Construction. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Wan, Y.J.; Li, G.; Yao, Y.M.; Zeng, X.L.; Zhu, P.L.; Sun, R. Recent Advances in Polymer-Based Electronic Packaging Materials. Compos. Commun. 2020, 19, 154–167. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Jouyandeh, M.; Ganjali, M.R.; Shirkavand, B.; Mozafari, M.; Sheiko, S.S. Thermo-Sensitive Polymers in Medicine: A Review. Eur. Polym. J. 2019, 117, 402–423. [Google Scholar] [CrossRef]
- Sunder Selwyn, T. Formation, Characterization and Suitability Analysis of Polymer Matrix Composite Materials for Automotive Bumper. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Zheng, F.; Chen, L.; Zhang, P.; Zhou, J.; Lu, X.; Tian, W. Carbohydrate Polymers Exhibit Great Potential as Effective Elicitors in Organic Agriculture: A Review. Carbohydr. Polym. 2019, 230, 115637. [Google Scholar] [CrossRef] [PubMed]
- Blanco, I.; Ingrao, C.; Siracusa, V. Life-Cycle Assessment in the Polymeric Sector: A Comprehensive Review of Application Experiences on the Italian Scale. Polymers 2020, 12, 1212. [Google Scholar] [CrossRef]
- Plota, A.; Masek, A. Lifetime Prediction Methods for Degradable Polymeric Materials—A Short Review. Materials 2020, 13, 4507. [Google Scholar] [CrossRef]
- Achilias, D.S.; Roupakias, C.; Megalokonomos, P.; Lappas, A.A.; Antonakou, V. Chemical Recycling of Plastic Wastes Made from Polyethylene (LDPE and HDPE) and Polypropylene (PP). J. Hazard. Mater. 2007, 149, 536–542. [Google Scholar] [CrossRef]
- Rojek, M. Metodologia Badań Diagnostycznych Warstwowych Materiałów Kompozytowych o Osnowie Polimerowej; Dobrzański, L.A., Ed.; International OCSCO World Press: Gliwice, Poland, 2011; ISBN 83-89728-89-3. [Google Scholar]
- White, J.R. Polymer Ageing: Physics, Chemistry or Engineering? Time to Reflect. 2006, 9, 1396–1408. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Photodegradation and Photostabilization of Polymers, Especially Polystyrene: Review. Springerplus 2013, 2, 1–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrady, A.L.; Pandey, K.K.; Heikkilä, A.M. Interactive Effects of Solar UV Radiation and Climate Change on Material Damage. Photochem. Photobiol. Sci. 2019, 18, 804–825. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, G. Plastics Additives an A-Z Reference, 1st ed.; Springer Science+Business Media Dordrecht: Berlin/Heidelberg, Germany, 1998; Volume 1, ISBN 9788578110796. [Google Scholar]
- Celina, M.; Mathew, C. Review of Polymer Oxidation and its Relationship with Materials Performance and Lifetime Prediction. Polym. Degrad. Stab. 2013, 98, 2419–2429. [Google Scholar] [CrossRef]
- Ljungberg, N.; Wesslén, B. The Effects of Plasticizers on the Dynamic Mechanical and Thermal Properties of Poly(Lactic Acid). J. Appl. Polym. Sci. 2002, 86, 1227–1234. [Google Scholar] [CrossRef]
- Masek, A.; Latos-Brozio, M.; Kałuzna-Czaplińska, J.; Rosiak, A.; Chrzescijanska, E. Antioxidant Properties of Green Coffee Extract. Forests 2020, 11, 557. [Google Scholar] [CrossRef]
- Strakowska, A.; Członka, S.; Konca, P.; Strzelec, K. New Flame Retardant Systems Based on Expanded Graphite for Rigid Polyurethane Foams. Appl. Sci. 2020, 5817. [Google Scholar] [CrossRef]
- Coulier, L.; Kaal, E.R.; Tienstra, M.; Hankemeier, T. Identification and Quantification of (Polymeric) Hindered-Amine Light Stabilizers in Polymers Using Pyrolysis-Gas Chromatography-Mass Spectrometry and Liquid Chromatography-Ultraviolet Absorbance Detection-Evaporative Light Scattering Detection. J. Chromatogr. A 2005, 1062, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.N.; Wazzan, A.A. Evaluation of New Thermal Stabilizers and Antifatigue Agents for Rubber Vulcanizates. Polym. Plast. Technol. Eng. 2006, 45, 751–758. [Google Scholar] [CrossRef]
- Marzec, A.; Szadkowski, B. Improved Aging Stability of Ethylene-Norbornene Composites Filled with Lawsone-Based Hybrid Pigment. Polymers 2019, 11, 723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirschweng, B.; Tátraaljai, D.; Földes, E.; Pukánszky, B. Natural Antioxidants as Stabilizers for Polymers. Polym. Degrad. Stab. 2017, 145, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Fusco, D.; Colloca, G.; Lo Monaco, M.R.; Cesari, M. Effects of Antioxidant Supplementation on the Aging Process. Clin. Interv. Aging 2007, 2, 377–387. [Google Scholar] [PubMed]
- Rigoussen, A.; Verge, P.; Raquez, J.; Dubois, P. Natural Phenolic Antioxidants as a Source of Bio-Compatibilizers for Immiscible Polymer Blends. ACS Sustain. Chem. Eng. 2018, 6, 13349–13357. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Mold, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Masek, A. Flavonoids as Natural Stabilizers and Color Indicators of Ageing for Polymeric Materials. Polymers 2015, 7, 1125–1144. [Google Scholar] [CrossRef]
- Masek, A.; Latos, M.; Piotrowska, M.; Zaborski, M. The Potential of Quercetin as an Effective Natural Antioxidant and Indicator for Packaging Materials. Food Packag. Shelf Life 2018, 16, 51–58. [Google Scholar] [CrossRef]
- Hano, C.; Tungmunnithum, D. Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Latos, M.; Masek, A.; Zaborski, M. The Potential of Juglone as Natural Dye and Indicator for Biodegradable Polyesters. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 276–285. [Google Scholar] [CrossRef]
- Olejnik, O.; Masek, A. Natural Antioxidants as Multifunctional Additives for Polymeric Materials. Fibres Text. East. Eur. 2020, 28, 37–43. [Google Scholar] [CrossRef]
- Masek, A.; Latos-Brozio, M. The Effect of Substances of Plant Origin on the Thermal and Thermo-Oxidative Ageing of Aliphatic Polyesters (PLA, PHA). Polymers. 2018, 10, 1252. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Hryb, A.B.; Cunha, M.P.; Kaster, M.P.; Rodrigues, A.L.S. Natural Polyphenols and Terpenoids for Depression Treatment: Current Status; Elsevier B.V.: Amsterdam, The Netherlands, 2018; ISBN 9780444640680. [Google Scholar]
- Nagarajan, S.; Nagarajan, R.; Kumar, J.; Salemme, A.; Togna, A.R.; Saso, L.; Bruno, F. Antioxidant Activity of Synthetic Polymers of Phenolic Compounds. Polymers 2020, 12, 1646. [Google Scholar] [CrossRef]
- Tritto, I.; Boggioni, L.; Scalcione, G.; Sidari, D.; Galotto, N.G. Novel Norbornene Copolymers with Transition Metal Catalysts. J. Organomet. Chem. 2015, 798, 367–374. [Google Scholar] [CrossRef]
- Groch, P.; Bihun-Kisiel, A.; Piontek, A.; Ochędzan-Siodłak, W. Structural and Thermal Properties of Ethylene-Norbornene Copolymers Obtained Using Vanadium Homogeneous and Sil Catalysts. Polymers 2020, 12, 2433. [Google Scholar] [CrossRef] [PubMed]
- Lago, W.S.R.; Aymes-Chodur, C.; Ahoussou, A.P.; Yagoubi, N. Physico-Chemical Ageing of Ethylene–Norbornene Copolymers: A Review. J. Mater. Sci. 2017, 52, 6879–6904. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A.; Rylski, A. Cellulose Modification for Improved Compatibility with the Polymer Matrix: Mechanical Characterization of the Composite Material. Materials 2020, 13, 5519. [Google Scholar] [CrossRef]
- Szadkowski, B.; Kuśmierek, M.; Rybiński, P.; Zukowski, W.; Marzec, A. Application of Earth Pigments in Cycloolefin Copolymer: Protection Against Combustion and Accelerated Aging in the Full Sunlight Spectrum. Materials 2020, 13, 3381. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Villarreal, M.H.; Zavala-Betancourt, S.A. Thermo-Oxidative Stability of Cyclic Olefin Copolymers in the Presence of Fe, Co and Mn Stearates as Pro-Degradant Additives. Polym. Plast. Technol. Eng. 2014, 53, 1804–1810. [Google Scholar] [CrossRef]
- Jung, Y.C.; Bhushan, B. Contact Angle, Adhesion and Friction Properties of Micro-and Nanopatterned Polymers for Superhydrophobicity. Nanotechnology 2006, 17, 4970–4980. [Google Scholar] [CrossRef]
- De Sousa, A.R.; Patrícia Dornas, G.; Cota Carvalho, I.; Francisca Da Silva Santos, R. Photodegradation of UHMWPE Compounded with Annatto and Beetroot Extracts. Int. J. Polym. Sci. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, B.J.; Santos, A.P.; de Almeida de Melo, E.; Campos, A.; Lins, L.; Boyano-Orozco, L.C. Chapter 8 Bioactive Compounds and Their Potential Use as Ingredients for Food and Its Application in Food Packaging. In Bioactive Compounds: Health Benefits and Potential Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 143–156. ISBN 9780128147757. [Google Scholar]
- Sanches-Silva, A.; Costa, D.; Albuquerque, T.G.; Buonocore, G.G.; Ramos, F.; Castilho, M.C.; Machado, A.V.; Costa, H.S. Trends in the Use of Natural Antioxidants in Active Food Packaging: A Review. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 374–395. [Google Scholar] [CrossRef]
- Contini, C.; Katsikogianni, M.G.; O’Neill, F.T.; O’Sullivan, M.; Dowling, D.P.; Monahan, F.J. Development of Active Packaging Containing Natural Antioxidants. Procedia. Food Sci. 2011, 1, 224–228. [Google Scholar] [CrossRef] [Green Version]
- Nwakaudu, A.A.; Nwakaudu, M.S.; Owuamanam, C.I.; Iheaturu, N.C. The Use of Natural Antioxidant Active Polymer Packaging Films for Food Preservation. Appl. Signals Rep. 2015, 2, 38–50. [Google Scholar]
- Park, S. Cyclic Glucans Enhance Solubility of Bioavailable Flavonoids. Molecules 2016, 21, 1556. [Google Scholar] [CrossRef] [Green Version]
- Winkel-Shirley, B. Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Grotewold, E. Plant Metabolic Diversity: A Regulatory Perspective. Trends Plant. Sci. 2005, 10, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Mlodzinska, E. Survey of Plant Pigments: Molecular and Environmental Determinants of Plant Colors. Acta Biol. Crac. 2009, 51, 7–16. [Google Scholar]
- Martínez de Arenaza, I.; Sadaba, N.; Larrañaga, A.; Zuza, E.; Sarasua, J.R. High Toughness Biodegradable Radiopaque Composites Based on Polylactide and Barium Sulphate. Eur. Polym. J. 2015, 73, 88–93. [Google Scholar] [CrossRef]
- Masek, A.; Chrzescijanska, E.; Zaborski, M. Morin Hydrate as Pro-Ecological Antioxidant and Pigment for Polyolefin Polymers. Comptes Rendus Chim. 2013, 16, 990–996. [Google Scholar] [CrossRef]
- Samper, M.D.; Fages, E.; Fenollar, O.; Boronat, T.; Balart, R. The Potential of Flavonoids as Natural Antioxidants and UV Light Stabilizers for Polypropylene. J. Appl. Polym. Sci. 2013, 129, 1707–1716. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A. Thermal Behavior of Green Cellulose-Filled Thermoplastic Elastomer Polymer Blends. Molecules 2020, 25, 1279. [Google Scholar] [CrossRef] [Green Version]
- Almond, J.; Sugumaar, P.; Wenzel, M.N.; Hill, G.; Wallis, C. Determination of the Carbonyl Index of Polyethylene and Polypropylene Using Specified Area Under Band Methodology with ATR-FTIR Spectroscopy. E-Polymers 2020, 20, 369–381. [Google Scholar] [CrossRef]
- Olejnik, O.; Masek, A. Bio-Based Packaging Materials Containing Substances Derived from Coffee and Tea plants. Materials 2020, 13, 5719. [Google Scholar] [CrossRef] [PubMed]
- Latos-Brozio, M.; Masek, A. Environmentally Friendly Polymer Compositions with Natural Amber Acid. Int. J. Mol. Sci. 2021, 22, 1556. [Google Scholar] [CrossRef] [PubMed]
Liquid | Contact Angle after Weathering Aging [°] | ||||
---|---|---|---|---|---|
Reference | 100 h | 200 h | 300 h | 400 h | |
Topas | |||||
Water | 87.6 | 90.6 | 98.2 | 97.8 | 97.6 |
Diiodomethane | 61.6 | 59.9 | 55.4 | 62.5 | 53.8 |
Ethylene glycol | 63.3 | 65.4 | 74.9 | 75.0 | 69.5 |
Topas/Silica | |||||
Water | 96.1 | 103.9 | 94.9 | 88.7 | 87.9 |
Diiodomethane | 61.5 | 54.7 | 55.3 | 51.5 | 52.4 |
Ethylene glycol | 73.6 | 78.7 | 69.7 | 65.7 | 64.1 |
Topas/Silica/Hesperidin | |||||
Water | 87.2 | 97.9 | 99.0 | 98.1 | 98.9 |
Diiodomethane | 63.9 | 57.2 | 66.0 | 54.5 | 51.9 |
Ethylene glycol | 67.2 | 71.9 | 78.1 | 71.0 | 73.4 |
Sample | L* śr. [–] | a* śr. [–] | b* śr. [–] | ΔL [–] | Δa [–] | Δb [–] |
---|---|---|---|---|---|---|
Topas | 89.13 | 0.15 | 3.47 | 0.74 | 0.05 | 0.29 |
Topas-silica | 86.02 | 0.08 | 4.79 | 0.14 | 0.08 | 0.29 |
Topas-silica-hesperidin | 86.21 | −2.97 | 16.92 | 0.26 | 0.02 | 0.25 |
Sample | Aging Time | SE100 | SE200 | SE300 | TFmax | EFmax | σ | ε |
---|---|---|---|---|---|---|---|---|
[h] | [MPa] | [MPa] | [MPa] | [MPa] | [%] | [MPa] | [%] | |
Topas | Reference | 6.67 | 7.86 | 10.04 | 33.9 | 976 | 32.5 | 959.7 |
100 | 7.13 | 8.48 | 10.60 | 34.9 | 993 | - | - | |
200 | 6.86 | 8.26 | 10.30 | 34.4 | 993 | - | - | |
300 | 6.84 | 8.02 | 10.00 | 34.8 | 994 | - | - | |
400 | 6.67 | 7.82 | 9.72 | 29.7 | 946 | 28.5 | 898.3 | |
Topas/silica | Reference | 7.42 | 8.89 | 11.40 | 40.8 | 989 | 39.4 | 980.2 |
100 | 7.79 | 9.28 | 11.50 | 40.8 | 994 | - | - | |
200 | 8.30 | 9.70 | 11.70 | 25.8 | 728 | 25.3 | 729.2 | |
300 | 8.32 | 9.26 | 10.80 | 16.9 | 555 | 16.7 | 557.4 | |
400 | 7.98 | 8.47 | 9.47 | 10.3 | 369 | 9.8 | 374.4 | |
Topas/silica/hesperidin | Reference | 7.57 | 9.09 | 11.60 | 39.6 | 970 | 39.4 | 958.3 |
100 | 7.75 | 9.26 | 11.70 | 41.5 | 993 | - | - | |
200 | 8.04 | 9.54 | 11.80 | 38.4 | 993 | - | - | |
300 | 8.31 | 9.96 | 12.30 | 38.7 | 952 | 38.7 | 951.9 | |
400 | 8.42 | 10.10 | 12.60 | 33.7 | 820 | 33.2 | 820.5 |
Mixture | Temperatures of Mass Change [°C] | ||||||
---|---|---|---|---|---|---|---|
T2% | T5% | T10% | T20% | T50% | T70% | T90% | |
Topas | 432.5 | 449.2 | 456.7 | 464.2 | 475.8 | 480.8 | 487.5 |
Topas/silica | 439.2 | 451.7 | 460.0 | 467.5 | 479.2 | 485.8 | 497.5 |
Topas/silica/hesperidin | 434.2 | 449.2 | 457.5 | 465.8 | 478.3 | 485.8 | 497.5 |
Mixture | OIT Value [min] | Energy of Oxidation [J/g] |
---|---|---|
Topas | 5.09 | 170 |
Topas/silica | 1.93 | 247 |
Topas/silica/hesperidin | 3.23 | 256 |
Mixture | Weight Composition [phr] | ||
---|---|---|---|
Topas | Silica A380 | Hesperidin | |
1 | 100 | - | - |
2 | 100 | 10 | - |
3 | 100 | 10 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masek, A.; Plota, A. Influence of a Natural Plant Antioxidant on the Ageing Process of Ethylene-norbornene Copolymer (Topas). Int. J. Mol. Sci. 2021, 22, 4018. https://doi.org/10.3390/ijms22084018
Masek A, Plota A. Influence of a Natural Plant Antioxidant on the Ageing Process of Ethylene-norbornene Copolymer (Topas). International Journal of Molecular Sciences. 2021; 22(8):4018. https://doi.org/10.3390/ijms22084018
Chicago/Turabian StyleMasek, Anna, and Angelika Plota. 2021. "Influence of a Natural Plant Antioxidant on the Ageing Process of Ethylene-norbornene Copolymer (Topas)" International Journal of Molecular Sciences 22, no. 8: 4018. https://doi.org/10.3390/ijms22084018
APA StyleMasek, A., & Plota, A. (2021). Influence of a Natural Plant Antioxidant on the Ageing Process of Ethylene-norbornene Copolymer (Topas). International Journal of Molecular Sciences, 22(8), 4018. https://doi.org/10.3390/ijms22084018