A History of Preterm Delivery Is Associated with Aberrant Postpartal MicroRNA Expression Profiles in Mothers with an Absence of Other Pregnancy-Related Complications
Abstract
:1. Introduction
2. Results
2.1. Clinical Outcomes in Mothers with a History of Preterm Delivery
2.2. Substantially Altered Postpartal Expression Profiles in the Peripheral White Blood Cells of Mothers with a History of Preterm Delivery
2.3. The Association between Gestational Age at Delivery and Postpartal Expression of Diabetes/Cardiovascular/Cerebrovascular Disease-Associated MicroRNAs
2.4. The Association between Birth Weight of Newborns and Postpartal Expression of Diabetes/Cardiovascular/Cerebrovascular Disease-Associated MicroRNAs
2.5. Association between the Mode of Delivery and Postpartal Expression of Diabetes/Cardiovascular/Cerebrovascular Disease-Associated MicroRNAs in Maternal Peripheral White Blood Cells
2.6. Association between Maternal Serum C-Reactive Protein Levels during Previous Gestation and Postpartal Expression of Diabetes/Cardiovascular/Cerebrovascular Disease-Associated MicroRNAs in Peripheral White Blood Cells
2.7. Association between Maternal Leukocytosis and Interleukin 6 Levels in the Amniotic Fluid during Previous Gestation and Postpartal Expression of Diabetes/Cardiovascular/Cerebrovascular Disease-Associated MicroRNAs in Peripheral White Blood Cells
2.8. Association between the Application of Corticosteroid, Antibiotic, and Tocolytic Therapies during Previous Gestation and Postpartal Expression of Diabetes/Cardiovascular/Cerebrovascular Disease-Associated MicroRNAs in Peripheral White Blood Cells
2.9. Association between the Condition of Newborns at the Moment of Birth and Postpartal Expression of Diabetes/Cardiovascular/Cerebrovascular Disease-Associated MicroRNAs in Peripheral White Blood Cells
2.10. Information on MicroRNA-Gene-Biological Pathways/Disease Interactions
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Sample Processing, Reverse Transcription, and Relative MicroRNA Quantification
4.3. Data Processing
4.4. Information on MicroRNA-Gene-Biological Pathways/Disease Interactions
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IL-6 | Interleukin 6 |
HR | Hazard ratio |
RR | Risk ratio |
CRP | C-reactive protein |
AUC | Area under the Curve |
ROC | Receive Operating Characteristic |
FPR | False Positive Rate |
CI | Confidence Interval |
LR+ | Positive Likelihood Ratio |
LR- | Negative Likelihood Ratio |
NP | Normal Pregnancies |
BP | Blood Pressure |
SBP | Systolic Blood Pressure |
DBP | Diastolic Blood Pressure |
PPROM | Preterm prelabor rupture of membranes |
PTB | Spontaneous preterm birth |
CS | Caesarean section |
AS | Apgar score |
CVD | Cardiovascular disease |
WBC | White blood cells |
References
- Tanz, L.J.; Stuart, J.J.; Williams, P.L.; Rimm, E.B.; Missmer, S.A.; Rexrode, K.M.; Mukamal, K.J.; Rich-Edwards, J.W. Preterm Delivery and Maternal Cardiovascular Disease in Young and Middle-Aged Adult Women. Circulation 2017, 135, 578–589. [Google Scholar] [CrossRef] [Green Version]
- Catov, J.M.; Dodge, R.; Barinas-Mitchell, E.; Sutton-Tyrrell, K.; Yamal, J.M.; Piller, L.B.; Ness, R.B. Prior preterm birth and maternal subclinical cardiovascular disease 4 to 12 years after pregnancy. J. Women’s Health 2013, 22, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Catov, J.M.; Lewis, C.E.; Lee, M.; Wellons, M.F.; Gunderson, E.P. Preterm birth and future maternal blood pressure, inflammation, and intimal-medial thickness: The CARDIA study. Hypertension 2013, 61, 641–646. [Google Scholar] [CrossRef] [Green Version]
- Perng, W.; Stuart, J.; Rifas-Shiman, S.L.; Rich-Edwards, J.W.; Stuebe, A.; Oken, E. Preterm birth and long-term maternal cardiovascular health. Ann. Epidemiol. 2015, 25, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; An, S.; Niu, J.; Zhao, H.; Wang, Y.; Wu, S.; Yang, X. Effect of premature birth on long-term systolic blood pressure variability in women. Anatol. J. Cardiol. 2018, 20, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Haas, D.M.; Parker, C.B.; Marsh, D.J.; Grobman, W.A.; Ehrenthal, D.B.; Greenland, P.; Bairey Merz, C.N.; Pemberton, V.L.; Silver, R.M.; Barnes, S.; et al. NHLBI nuMoM2b Heart Health Study. Association of Adverse Pregnancy Outcomes with Hypertension 2 to 7 Years Postpartum. J. Am. Heart Assoc. 2019, 8, e013092. [Google Scholar] [CrossRef] [PubMed]
- Tanz, L.J.; Stuart, J.J.; Williams, P.L.; Missmer, S.A.; Rimm, E.B.; James-Todd, T.M.; Rich-Edwards, J.W. Preterm Delivery and Maternal Cardiovascular Disease Risk Factors: The Nurses’ Health Study II. J. Women’s Health 2019, 28, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Catov, J.M.; Snyder, G.G.; Fraser, A.; Lewis, C.E.; Liu, K.; Althouse, A.D.; Bertolet, M.; Gunderson, E.P. Blood Pressure Patterns and Subsequent Coronary Artery Calcification in Women Who Delivered Preterm Births. Hypertension 2018, 72, 159–166. [Google Scholar] [CrossRef]
- James-Todd, T.M.; Karumanchi, S.A.; Hibert, E.L.; Mason, S.M.; Vadnais, M.A.; Hu, F.B.; Rich-Edwards, J.W. Gestational age, infant birth weight, and subsequent risk of type 2 diabetes in mothers: Nurses’ Health Study II. Prev. Chronic Dis. 2013, 10, E156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lykke, J.A.; Paidas, M.J.; Damm, P.; Triche, E.W.; Kuczynski, E.; Langhoff-Roos, J. Preterm delivery and risk of subsequent cardiovascular morbidity and type-II diabetes in the mother. BJOG 2010, 117, 274–281. [Google Scholar] [CrossRef]
- James-Todd, T.; Wise, L.; Boggs, D.; Rich-Edwards, J.; Rosenberg, L.; Palmer, J. Preterm birth and subsequent risk of type 2 diabetes in black women. Epidemiology 2014, 25, 805–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catov, J.M.; Snyder, G.G.; Bullen, B.L.; Barinas-Mitchell, E.J.M.; Holzman, C. Women with Preterm Birth Have Evidence of Subclinical Atherosclerosis a Decade after Delivery. J. Women’s Health 2019, 28, 621–627. [Google Scholar] [CrossRef]
- Bonamy, A.K.; Parikh, N.I.; Cnattingius, S.; Ludvigsson, J.F.; Ingelsson, E. Birth characteristics and subsequent risks of maternal cardiovascular disease: Effects of gestational age and fetal growth. Circulation 2011, 124, 2839–2846. [Google Scholar] [CrossRef] [Green Version]
- Ngo, A.D.; Chen, J.S.; Figtree, G.; Morris, J.M.; Roberts, C.L. Preterm birth and future risk of maternal cardiovascular disease—is the association independent of smoking during pregnancy? BMC Pregnancy Childbirth 2015, 15, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardi, O.; Zureik, M.; Courbon, D.; Ducimetière, P.; Clavel-Chapelon, F. Preterm delivery of a first child and subsequent mothers’ risk of ischaemic heart disease: A nested case-control study. Eur J. Cardiovasc. Prev. Rehabil. 2006, 13, 281–283. [Google Scholar] [CrossRef]
- Crump, C.; Sundquist, J.; Howell, E.A.; McLaughlin, M.A.; Stroustrup, A.; Sundquist, K. PreTerm Delivery and Risk of Ischemic Heart Disease in Women. J. Am. Coll. Cardiol. 2020, 76, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.C.; Pell, J.P.; Walsh, D. Pregnancy complications and maternal risk of ischaemic heart disease: A retrospective cohort study of 129,290 births. Lancet 2001, 357, 2002–2006. [Google Scholar] [CrossRef]
- Catov, J.M.; Wu, C.S.; Olsen, J.; Sutton-Tyrrell, K.; Li, J.; Nohr, E.A. Early or recurrent preterm birth and maternal cardiovascular disease risk. Ann. Epidemiol. 2010, 20, 604–609. [Google Scholar] [CrossRef] [Green Version]
- Lykke, J.A.; Langhoff-Roos, J.; Lockwood, C.J.; Triche, E.W.; Paidas, M.J. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery. Paediatr. Perinat Epidemiol. 2010, 24, 323–330. [Google Scholar] [CrossRef]
- Rich-Edwards, J.W.; Klungsoyr, K.; Wilcox, A.J.; Skjaerven, R. Duration of pregnancy, even at term, predicts long-term risk of coronary heart disease and stroke mortality in women: A population-based study. Am. J. Obstet. Gynecol. 2015, 213, 518.e1–518.e8. [Google Scholar] [CrossRef] [Green Version]
- Crump, C.; Sundquist, J.; Sundquist, K. Preterm delivery and long term mortality in women: National cohort and co-sibling study. BMJ 2020, 370, m2533. [Google Scholar] [CrossRef]
- Hastie, C.E.; Smith, G.C.; Mackay, D.F.; Pell, J.P. Maternal risk of ischaemic heart disease following elective and spontaneous PreTerm delivery: Retrospective cohort study of 750 350 singleton pregnancies. Int. J. Epidemiol. 2011, 40, 914–919. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Gulati, M.; Kwok, C.S.; Wong, C.W.; Narain, A.; O’Brien, S.; Chew-Graham, C.A.; Verma, G.; Kadam, U.T.; Mamas, M.A. Preterm Delivery and Future Risk of Maternal Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2018, 7, e007809. [Google Scholar] [CrossRef] [Green Version]
- Walfisch, A.; Kessous, R.; Davidson, E.; Sergienko, R.; Beharier, O.; Sheiner, E. Increased Risk for Ophthalmic Complications in Patients with a History of Preterm Delivery. Am. J. Perinatol. 2016, 33, 708–714. [Google Scholar]
- Barrett, P.M.; McCarthy, F.P.; Evans, M.; Kublickas, M.; Perry, I.J.; Stenvinkel, P.; Kublickiene, K.; Khashan, A.S. Risk of long-term renal disease in women with a history of preterm delivery: A population-based cohort study. BMC Med. 2020, 18, 66. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, A.J.; Wright, L.B.; Schoemaker, M.J.; Jones, M.E. Maternal breast cancer risk in relation to birthweight and gestation of her offspring. Breast Cancer Res. 2018, 20, 110. [Google Scholar] [CrossRef]
- Melbye, M.; Wohlfahrt, J.; Andersen, A.M.; Westergaard, T.; Andersen, P.K. Preterm delivery and risk of breast cancer. Br. J. Cancer 1999, 80, 609–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hromadnikova, I.; Kotlabova, K.; Dvorakova, L.; Krofta, L. Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int. J. Cardiol. 2019, 291, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Hromadnikova, I.; Kotlabova, K.; Dvorakova, L.; Krofta, L. Diabetes Mellitus and Cardiovascular Risk Assessment in Mothers with a History of Gestational Diabetes Mellitus Based on Postpartal Expression Profile of MicroRNAs Associated with Diabetes Mellitus and Cardiovascular and Cerebrovascular Diseases. Int. J. Mol. Sci. 2020, 21, 2437. [Google Scholar] [CrossRef] [Green Version]
- Lai, E.C. Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002, 30, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Berezikov, E.; Cuppen, E.; Plasterk, R.H. Approaches to microRNA discovery. Nat. Genet. 2006, 38, S2–S7. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Shyu, A.B.; Wilkinson, M.F.; van Hoof, A. Messenger RNA regulation: To translate or to degrade. EMBO J. 2008, 27, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Colpaert, R.M.W.; Calore, M. MicroRNAs in Cardiac Diseases. Cells 2019, 8, 737. [Google Scholar] [CrossRef] [Green Version]
- Kaur, A.; Mackin, S.T.; Schlosser, K.; Wong, F.L.; Elharram, M.; Delles, C.; Stewart, D.J.; Dayan, N.; Landry, T.; Pilote, L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc. Res. 2020, 116, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Siasos, G.; Bletsa, E.; Stampouloglou, P.K.; Oikonomou, E.; Tsigkou, V.; Paschou, S.A.; Vlasis, K.; Marinos, G.; Vavuranakis, M.; Stefanadis, C.; et al. MicroRNAs in cardiovascular disease. Hell. J. Cardiol. 2020, 61, 165–173. [Google Scholar] [CrossRef]
- Pang, J.K.S.; Phua, Q.H.; Soh, B.S. Applications of miRNAs in cardiac development, disease progression and regeneration. Stem Cell Res. Ther. 2019, 10, 336. [Google Scholar] [CrossRef] [Green Version]
- Peters, L.J.F.; Biessen, E.A.L.; Hohl, M.; Weber, C.; van der Vorst, E.P.C.; Santovito, D. Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease. Front. Physiol. 2020, 11, 793. [Google Scholar] [CrossRef]
- Ghantous, C.M.; Kamareddine, L.; Farhat, R.; Zouein, F.A.; Mondello, S.; Kobeissy, F.; Zeidan, A. Advances in Cardiovascular Biomarker Discovery. Biomedicines 2020, 8, 552. [Google Scholar] [CrossRef]
- Melak, T.; Baynes, H.W. Circulating microRNAs as possible biomarkers for coronary artery disease: A narrative review. EJIFCC 2019, 30, 179–194. [Google Scholar]
- Shahshahan, Z.; Rasouli, O. The use of maternal C-reactive protein in the predicting of preterm labor and tocolytic therapy in preterm labor women. Adv. Biomed. Res. 2014, 3, 154. [Google Scholar] [CrossRef]
- Hvilsom, G.B.; Thorsen, P.; Jeune, B.; Bakketeig, L.S. C-reactive protein: A serological marker for preterm delivery? Acta Obstet. Gynecol. Scand. 2002, 81, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Pitiphat, W.; Gillman, M.W.; Joshipura, K.J.; Williams, P.L.; Douglass, C.W.; Rich-Edwards, J.W. Plasma C-reactive protein in early pregnancy and preterm delivery. Am. J. Epidemiol. 2005, 162, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Vogel, I.; Grove, J.; Thorsen, P.; Moestrup, S.K.; Uldbjerg, N.; Møller, H.J. Preterm delivery predicted by soluble CD163 and CRP in women with symptoms of preterm delivery. BJOG 2005, 112, 737–742. [Google Scholar] [CrossRef]
- Catov, J.M.; Bodnar, L.M.; Ness, R.B.; Barron, S.J.; Roberts, J.M. Inflammation and dyslipidemia related to risk of spontaneous preterm birth. Am. J. Epidemiol. 2007, 166, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Lohsoonthorn, V.; Qiu, C.; Williams, M.A. Maternal serum C-reactive protein concentrations in early pregnancy and subsequent risk of preterm delivery. Clin. Biochem. 2007, 40, 330–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.S.; Ha, E.H.; Park, H.S.; Kim, Y.J.; Lee, S.S. Relationships between pregnancy outcomes, biochemical markers and pre-pregnancy body mass index. Int. J. Obes. 2011, 35, 570–577. [Google Scholar] [CrossRef] [Green Version]
- Bullen, B.L.; Jones, N.M.; Holzman, C.B.; Tian, Y.; Senagore, P.K.; Thorsen, P.; Skogstrand, K.; Hougaard, D.M.; Sikorskii, A. C-reactive protein and preterm delivery: Clues from placental findings and maternal weight. Reprod. Sci. 2013, 20, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Kuller, L.H.; Tracy, R.P.; Shaten, J.; Meilahn, E.N. Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Multiple Risk Factor Intervention Trial. Am. J. Epidemiol. 1996, 144, 537–547. [Google Scholar]
- Tracy, R.P.; Lemaitre, R.N.; Psaty, B.M.; Ives, D.G.; Evans, R.W.; Cushman, M.; Meilahn, E.N.; Kuller, L.H. Relationship of C-reactive protein to risk of cardiovascular disease in the elderly. Results from the Cardiovascular Health Study and the Rural Health Promotion Project. Arterioscler. Thromb Vasc. Biol. 1997, 17, 1121–1127. [Google Scholar] [CrossRef]
- Koenig, W.; Sund, M.; Fröhlich, M.; Fischer, H.G.; Löwel, H.; Döring, A.; Hutchinson, W.L.; Pepys, M.B. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: Results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 1999, 99, 237–242. [Google Scholar]
- Danesh, J.; Whincup, P.; Walker, M.; Lennon, L.; Thomson, A.; Appleby, P.; Gallimore, J.R.; Pepys, M.B. Low grade inflammation and coronary heart disease: Prospective study and updated meta-analyses. BMJ 2000, 321, 199–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, C.M.; Ma, J.; Rifai, N.; Stampfer, M.J.; Ridker, P.M. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 2002, 105, 2595–2599. [Google Scholar] [CrossRef]
- Sakkinen, P.; Abbott, R.D.; Curb, J.D.; Rodriguez, B.L.; Yano, K.; Tracy, R.P. C-reactive protein and myocardial infarction. J. Clin. Epidemiol. 2002, 55, 445–451. [Google Scholar] [CrossRef]
- Ridker, P.M. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003, 107, 363–369. [Google Scholar] [CrossRef]
- Folsom, A.R.; Chambless, L.E.; Ballantyne, C.M.; Coresh, J.; Heiss, G.; Wu, K.K.; Boerwinkle, E.; Mosley, T.H., Jr.; Sorlie, P.; Diao, G.; et al. An assessment of incremental coronary risk prediction using C-reactive protein and other novel risk markers: The atherosclerosis risk in communities study. Arch. Intern. Med. 2006, 166, 1368–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davey Smith, G.; Timpson, N.; Lawlor, D.A. C-reactive protein and cardiovascular disease risk: Still an unknown quantity? Ann. Intern. Med. 2006, 145, 70–72. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.W.; Nam, B.H.; Pencina, M.; D’Agostino, R.B.S.; Benjamin, E.J.; O’Donnell, C.J. C-reactive protein and risk of cardiovascular disease in men and women from the Framingham Heart Study. Arch. Intern. Med. 2005, 165, 2473–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ørn, S.; Manhenke, C.; Ueland, T.; Damås, J.K.; Mollnes, T.E.; Edvardsen, T.; Aukrust, P.; Dickstein, K. C-reactive protein, infarct size, microvascular obstruction, and left-ventricular remodelling following acute myocardial infarction. Eur. Heart J. 2009, 30, 1180–1186. [Google Scholar] [CrossRef] [Green Version]
- Schiele, F.; Meneveau, N.; Seronde, M.F.; Chopard, R.; Descotes-Genon, V.; Dutheil, J.; Bassand, J.P.; Reseau de Cardiologie de Franche Comte. C-reactive protein improves risk prediction in patients with acute coronary syndromes. Eur. Heart J. 2010, 31, 290–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, R.; Camargo, M.C.; Thorsen, P.; Lombardi, S.J.; Fortunato, S.J. Amniotic fluid interleukin-6 increase is an indicator of spontaneous preterm birth in white but not black Americans. Am. J. Obstet. Gynecol. 2008, 198, 77.e1–77.e7. [Google Scholar] [CrossRef] [PubMed]
- Chaemsaithong, P.; Romero, R.; Korzeniewski, S.J.; Martinez-Varea, A.; Dong, Z.; Yoon, B.H.; Hassan, S.S.; Chaiworapongsa, T.; Yeo, L. A rapid interleukin-6 bedside test for the identification of intra-amniotic inflammation in preterm labor with intact membranes. J. Matern Fetal Neonatal. Med. 2016, 29, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Bacchiega, B.C.; Bacchiega, A.B.; Usnayo, M.J.; Bedirian, R.; Singh, G.; Pinheiro, G.D. Interleukin 6 Inhibition and Coronary Artery Disease in a High-Risk Population: A Prospective Community-Based Clinical Study. J. Am. Heart Assoc. 2017, 6, e005038. [Google Scholar] [CrossRef] [PubMed]
- Enquobahrie, D.A.; Abetew, D.F.; Sorensen, T.K.; Willoughby, D.; Chidambaram, K.; Williams, M.A. Placental microRNA expression in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol. 2011, 204, 178.e12–178.e21. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.R.; Li, S.C.; Tseng, W.N.; Tain, Y.L.; Chen, C.C.; Sheen, J.M.; Tiao, M.M.; Kuo, H.C.; Huang, C.C.; Hsieh, K.S.; et al. Early and late effects of prenatal corticosteroid treatment on the microRNA profiles of lung tissue in rats. Exp. Ther. Med. 2016, 11, 753–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, L.; Li, S.C.; Moodie, M. How Does Preterm Delivery Contribute to the Increased Burden of Cardiovascular Disease? Quantifying the Economic Impact of Cardiovascular Disease in Women with a History of Preterm Delivery. J. Women’s Health 2020, 29, 1392–1400. [Google Scholar] [CrossRef]
- Romero, R.; Espinoza, J.; Kusanovic, J.P.; Gotsch, F.; Hassan, S.; Erez, O.; Chaiworapongsa, T.; Mazor, M. The preterm parturition syndrome. BJOG 2006, 113, 17–42. [Google Scholar] [CrossRef]
- Guinn, D.A.; Goldenberg, R.L.; Hauth, J.C.; Andrews, W.W.; Thom, E.; Romero, R. Risk factors for the development of preterm premature rupture of the membranes after arrest of preterm labor. Am. J. Obstet. Gynecol. 1995, 173, 1310–1315. [Google Scholar] [CrossRef]
- Challis, J.R.; Lockwood, C.J.; Myatt, L.; Norman, J.E.; Strauss, J.F., 3rd; Petraglia, F. Inflammation and pregnancy. Reprod. Sci. 2009, 16, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Keelan, J.A. Pharmacological inhibition of inflammatory pathways for the prevention of preterm birth. J. Reprod. Immunol. 2011, 88, 176–184. [Google Scholar] [CrossRef]
- Ekwo, E.E.; Gosselink, C.A.; Woolson, R.; Moawad, A. Risks for premature rupture of amniotic membranes. Int. J. Epidemiol. 1993, 22, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Hadley, C.B.; Main, D.M.; Gabbe, S.G. Risk factors for preterm premature rupture of the fetal membranes. Am. J. Perinatol. 1990, 7, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Naeye, R.L.; Peters, E.C. Causes and consequences of premature rupture of fetal membranes. Lancet 1980, 1, 192–197. [Google Scholar] [CrossRef]
- Menon, R.; Boldogh, I.; Hawkins, H.K.; Woodson, M.; Polettini, J.; Syed, T.A.; Fortunato, S.J.; Saade, G.R.; Papaconstantinou, J.; Taylor, R.N. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am. J. Pathol. 2014, 184, 1740–1751. [Google Scholar] [CrossRef]
- Menon, R.; Polettini, J.; Syed, T.A.; Saade, G.R.; Boldogh, I. Expression of 8-oxoguanine glycosylase in human fetal membranes. Am. J. Reprod. Immunol. 2014, 72, 75–84. [Google Scholar] [CrossRef]
- Menon, R.; Yu, J.; Basanta-Henry, P.; Brou, L.; Berga, S.L.; Fortunato, S.J.; Taylor, R.N. Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS ONE 2013, 7, e31136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef]
- Moutquin, J.M.; Milot Roy, V.; Irion, O. Preterm prevention: Effectivenss of current strategies. J. Soc. Obstet. Gynaecol. Can. 1996, 18, 571–588. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics. Practice Bulletin No. 172: Premature Rupture of Membranes. Obstet. Gynecol. 2016, 128, e165–e177. [Google Scholar] [CrossRef]
- Abbassi-Ghanavati, M.; Greer, L.G.; Cunningham, F.G. Pregnancy and laboratory studies: A reference table for clinicians. Obstet. Gynecol. 2009, 114, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.H.; Romero, R.; Moon, J.B.; Shim, S.S.; Kim, M.; Kim, G.; Jun, J.K. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Obstet. Gynecol. 2001, 185, 1130–1136. [Google Scholar] [CrossRef]
- Committee on Obstetric Practice. Committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obstet. Gynecol. 2017, 130, e102–e109. [Google Scholar] [CrossRef] [PubMed]
- Miracle, X.; Di Renzo, G.C.; Stark, A.; Fanaroff, A.; Carbonell-Estrany, X.; Saling, E.; Coordinators of World Associatin of Perinatal Medicine Prematurity Working Group. Guideline for the use of antenatal corticosteroids for fetal maturation. J. Perinat. Med. 2008, 36, 191–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skoll, A.; Boutin, A.; Bujold, E.; Burrows, J.; Crane, J.; Geary, M.; Jain, V.; Lacaze-Masmonteil, T.; Liauw, J.; Mundle, W.; et al. No. 364-Antenatal Corticosteroid Therapy for Improving Neonatal Outcomes. J. Obstet. Gynaecol. Can. 2018, 40, 1219–1239. [Google Scholar] [CrossRef]
- The WHO Reproductive Health Library. Available online: https://extranet.who.int/rhl/topics/preconception-pregnancy-childbirth-and-postpartum-care/pregnancy-complications/preterm-birth/who-reccommendation-on-routine-antibiotic-administration-for-women-in-preterm-labour-with-intact-amniotic-membranes (accessed on 13 October 2020).
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics. Practice Bulletin No. 171: Management of Preterm Labor. Obstet. Gynecol. 2016, 128, e155–e164. [Google Scholar] [CrossRef] [PubMed]
- The WHO Reproductive Health Library. Available online: https://extranet.who.int/rhl/topics/preconception-pregnancy-childbirth-and-postpartum-care/pregnancy-complications/preterm-birth/who-reccommendation-on-the-use-of-tocolytic-treatment-for-inhibiting-preterm-labour (accessed on 13 October 2020).
- Miyazaki, C.; Moreno Garcia, R.; Ota, E.; Swa, T.; Oladapo, O.T.; Mori, R. Tocolysis for inhibiting preterm birth in extremely preterm birth, multiple gestations and in growth-restricted fetuses: A systematic review and meta-analysis. Reprod. Health 2016, 13, 4. [Google Scholar] [CrossRef] [Green Version]
- The World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 13 October 2020).
- Quinn, J.A.; Munoz, F.M.; Gonik, B.; Frau, L.; Cutland, C.; Mallett-Moore, T.; Kissou, A.; Wittke, F.; Das, M.; Nunes, T.; et al. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine 2016, 34, 6047–6056. [Google Scholar] [PubMed] [Green Version]
- MSD Manual. Available online: https://www.msdmanuals.com/professional/pediatrics/perinatal-problems/premature-infants (accessed on 13 January 2021).
- The WHO Reproductive Health Library. Available online: https://extranet.who.int/rhl/topics/preconception-pregnancy-childbirth-and-postpartum-care/pregnancy-complications/preterm-birth/who-reccommendation-on-the-optimal-mode-of-birth-for-women-in-refractory-preterm-labour (accessed on 13 October 2020).
- Morfaw, F.; Gao, A.; Moore, G.; Bacchini, F.; Santaguida, P.; Mukerji, A.; McDonald, S.D. Experiences, knowledge, and preferences of Canadian parents regarding preterm mode of birth. J. Obstet. Gynaecol. Can. 2020, S1701–S2163, 30967–30971. [Google Scholar]
- Thanh, B.Y.L.; Lumbiganon, P.; Pattanittum, P.; Laopaiboon, M.; Vogel, J.P.; Oladapo, O.T.; Pileggi-Castro, C.; Mori, R.; Jayaratne, K.; Qureshi, Z.; et al. Mode of delivery and pregnancy outcomes in preterm birth: A secondary analysis of the WHO Global and Multi-country Surveys. Sci. Rep. 2019, 9, 15556. [Google Scholar] [CrossRef]
- The American College of Obstetricans and Gynecologists. Available online: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2015/10/the-apgar-score (accessed on 14 October 2020).
- Apgar, V. A proposal for a new method of evaluation of the newborn infant. Curr. Res. Anesth. Analg. 1953, 32, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Apgar, V.; Holaday, D.A.; James, L.S.; Weisbrot, I.M.; Berrien, C. Evaluation of the newborn infant; second report. J. Am. Med. Assoc. 1958, 168, 1985–1988. [Google Scholar] [CrossRef]
- American Academy of Pediatrics and American Heart Association. Textbook of Neonatal Resuscitation, 6th ed.; American Academy of Pediatrics and American Heart Association: Elk Grove Village, IL, USA, 2011. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; de Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Dweep, H.; Sticht, C.; Pandey, P.; Gretz, N. miRWalk—Database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 2011, 44, 839–847. [Google Scholar] [CrossRef] [Green Version]
NP (n = 89) | PPROM (n = 58) | PTB (n = 55) | p-Value 1 | p-Value 2 | |
---|---|---|---|---|---|
At Follow-Up | |||||
Age (years) | 38 (29–50) | 39 (26–52) | 38 (25–48) | 0.512 | 0.998 |
Time since index pregnancy (years) | 5 (3–11) | 6 (3–9) | 6 (3–10) | 0.090 | 0.092 |
Height (cm) | 167.0 (153–181) | 166.0 (146–180) | 167.0 (154.5–182) | 0.244 | 0.494 |
Weight (kg) | 62.7 (46–109) | 64.65 (43.5–110) | 62.9 (46.9–104) | 0.367 | 0.930 |
Body mass index (BMI) (kg/m2) | 22.23 (17.7–39.08) | 23.82 (17.36–39.92) | 21.97 (18.25–36.85) | 0.082 | 0.918 |
Systolic blood pressure (BP) (mmHg) | 112 (87–138) | 112.5 (96–189) | 113 (96–144) | 0.869 | 0.912 |
Diastolic BP (mmHg) | 71 (55–91) | 74.5 (62–112) | 72 (61–104) | 0.058 | 0.441 |
Hypertension on treatment | 1 (1.12%) | 0 | 1 (1.82%) | - | 0.082 |
Diabetes mellitus | 1 (1.12%) | 1 (1.72%) | 0 | 0.061 | - |
Dyslipidaemia | 0 | 0 | 1 (1.82%) | - | - |
Inborn kidney disease | 0 | 0 | 1 (1.82%) | - | - |
Birth defects of the heart Ventricular septal defect Foramen ovale apertum | 0 | 1 (1.72%) 1 (1.72%) | 1 (1.82%) 1 (1.82%) | - | - |
Heart arrhythmia | 0 | 2 | 0 | - | - |
Rheumatoid arthritis | 0 | 1 (1.72%) | 1 (1.82%) | - | - |
Systemic lupus erythematosus nephrotic syndrome | 0 | 1 (1.72%) 1 (1.72%) | 0 | - | - |
Trombophilic gene mutations | 1 (1.12%) | 6 (10.34%) | 8 (14.55%) | 0.010 | 0.001 |
Deep venous thrombosis | 1 (1.12%) | 1 (1.72%) | 1 (1.82%) | 0.061 | 0.082 |
Pulmonary embolism | 0 | 1 (1.72%) | 0 | - | - |
Cerebrovascular accidents Recurrent cerebrovascular accidents | 0 | 1 (1.72%) 1 (1.72%) | 0 | - | - |
Immune thrombocytopenia | 0 | 1 (1.72%) | 0 | - | - |
Antiphospholipid syndrome | 0 | 1 (1.72%) | 0 | - | - |
During gestation | |||||
Maternal age at delivery (years) | 32 (25–43) | 32 (22–44) | 33 (20–40) | 0.794 | 0.396 |
GA at delivery (weeks) | 39.86 (37.71–41.86) | 33.07 (24.71–35.86) | 31.43 (24–36.43) | <0.001 | <0.001 |
Mode of delivery | |||||
Vaginal | 82 (92.13%) | 27 (46.55%) | 38 (69.09%) | <0.001 | <0.001 |
Caesarean section (CS) | 7 (7.87%) | 31 (53.45%) | 17 (30.91%) | ||
Fetal birth weight (g) | 3410 (2530–4450) | 1980 (600–2710) | 1580 (542–2900) | <0.001 | <0.001 |
Fetal sex | |||||
Boy | 47 (52.81%) | 25 (43.10%) | 37 (67.27%) | 0.250 | 0.087 |
Girl | 42 (47.19%) | 33 (56.90%) | 18 (32.73%) | ||
Primiparity at index pregnancy | |||||
Yes | 43 (48.31%) | 38 (65.52%) | 33 (60.00%) | 0.040 | 0.172 |
No | 46 (51.69%) | 20 (34.48%) | 22 (40.00%) | ||
Birth order of index pregnancy | |||||
1st | 35 (39.32%) | 27 (46.55%) | 21 (38.18%) | 0.478 | 0.329 |
2nd | 33 (37.08%) | 17 (29.31%) | 17 (30.91%) | ||
3rd | 16 (17.98%) | 8 (13.79%) | 9 (16.36%) | ||
4th+ | 5 (5.62%) | 6 (10.34%) | 8 (14.55%) | ||
Total number of pregnancies per patient | |||||
1 | 8 (8.99%) | 11 (18.97%) | 6 (10.91%) | 0.188 | 0.592 |
2 | 45 (50.56%) | 24 (41.38%) | 23 (41.82%) | ||
3+ | 36 (40.45%) | 23 (39.65%) | 26 (47.27%) | ||
Infertility treatment | |||||
Yes | 4 (4.49%) | 9 (15.52%) | 8 (14.55%) | 0.021 | 0.034 |
No | 85 (95.51%) | 49 (84.48%) | 47 (85.45%) | ||
Administration of corticosteroids | |||||
Yes | - | 45 (77.59%) | 39 (70.91%) | ||
No | - | 13 (22.41%) | 16 (29.09%) | ||
Administration of antibiotics | |||||
Yes | - | 54 (93.10%) | 36 (65.45%) | ||
No | - | 4 (6.90%) | 19 (34.55%) | ||
Tocolytic therapy | |||||
Yes | - | 30 (51.72%) | 36 (65.45%) | ||
No | - | 28 (48.28%) | 19 (34.55%) | ||
CRP levels > 20 mg/L | - | 3 (5.17%) | 9 (16.36%) | ||
WBC count > 16.9 × 109/L | - | 6 (10.34%) | 10 (18.18%) | ||
Apgar score <7, 5 min | 0 | 4 (6.90%) | 2 (3.64%) | ||
Apgar score <7, 10 min | 0 | 4 (6.90%) | 1 (1.82%) | ||
Umbilical blood pH | 7.3 (7.29–7.3) | 7.3 (6.9–7.4) | 7.3 (6.8–7.5) | 0.291 | 0.273 |
Pilot Study PPROM (n = 10) vs. NP (n = 10) PTB (n = 10) vs. NP (n = 10) | Validation Study PPROM (n = 10) vs. NP (n = 10) PTB (n = 10) vs. NP (n = 10) | |
---|---|---|
miR-1-3p | 1.124 ± 1.870 vs. 0.041 ± 0.022, p < 0.001 1.234 ± 1.170 vs. 0.041 ± 0.022, p < 0.001 | 1.690 ± 1.337 vs. 0.047 ± 0.061, p < 0.001 0.631 ± 0.594 vs. 0.047 ± 0.061, p < 0.001 |
miR-16-5p | 1.755 ± 0.542 vs. 0.904 ± 0.317, p = 0.001 1.848 ± 0.736 vs. 0.904 ± 0.317, p = 0.003 | 2.294 ± 0.933 vs. 0.792 ± 0.648, p < 0.001 1.538 ± 0.531 vs. 0.792 ± 0.648, p = 0.010 |
miR-17-5p | 2.268 ± 0.788 vs. 1.115 ± 0.491, p = 0.002 2.168 ± 0.048 vs. 1.115 ± 0.491, p = 0.003 | 2.778 ± 1.264 vs. 0.485 ± 0.337, p < 0.001 1.871 ± 0.777 vs. 0.485 ± 0.337, p < 0.001 |
miR-20a-5p | 1.998 ± 1.688 vs. 0.817 ± 0.364, p = 0.008 7.248 ± 8.752 vs. 0.817 ± 0.364, p = 0.005 | 3.737 ± 2.586 vs. 0.985 ± 1.145, p = 0.003 1.769 ± 0.979 vs. 0.985 ± 1.145, p = 0.023 |
miR-20b-5p | 2.726 ± 1.824 vs. 0.806 ± 0.525, p = 0.001 3.167 ± 2.111 vs. 0.806 ± 0.525, p< 0.001 | 3.163 ± 1.431 vs. 0.660 ± 0.548, p < 0.001 1.734 ± 0.700 vs. 0.660 ± 0.548, p = 0.004 |
miR-21-5p | 0.569 ± 0.235 vs. 0.188 ± 0.079, p < 0.001 0.489 ± 0.328 vs. 0.188 ± 0.079, p = 0.015 | 0.493 ± 0.248 vs. 0.092 ± 0.091, p < 0.001 0.468 ± 0.121 vs. 0.092 ± 0.091, p < 0.001 |
miR-23a-3p | 0.350 ± 0.241 vs. 0.119 ± 0.055, p = 0.001 0.420 ± 0.267 vs. 0.119 ± 0.055, p< 0.001 | 0.441 ± 0.285 vs. 0.236 ± 0.175, p = 0.049 0.420 ± 0.331 vs. 0.236 ± 0.175, p = 0.034 |
miR-24-3p | 0.394 ± 0.168 vs. 0.242 ± 0.129, p = 0.034 0.350 ± 0.169 vs. 0.242 ± 0.129, p = 0.058 | 0.448 ± 0.190 vs. 0.183 ± 0.205, p = 0.001 0.259 ± 0.087 vs. 0.183 ± 0.205, p = 0.082 |
miR-26a-5p | 0.893 ± 0.448 vs. 0.303 ± 0.146, p < 0.001 0.706 ± 0.297 vs. 0.303 ± 0.146, p = 0.003 | 1.250 ± 0.492 vs. 0.200 ± 0.141, p < 0.001 0.815 ± 0.368 vs. 0.200 ± 0.141, p < 0.001 |
miR-29a-3p | 0.571 ± 0.270 vs. 0.111 ± 0.047, p < 0.001 0.468 ± 0.190 vs. 0.111 ± 0.047, p < 0.001 | 0.701 ± 0.519 vs. 0.173 ± 0.161, p = 0.001 0.541 ± 0.128 vs. 0.173 ± 0.161, p < 0.001 |
miR-92a-3p | 3.189 ± 1.214 vs. 2.169 ± 1.276, p = 0.003 2.718 ± 1.012 vs. 2.169 ± 1.276, p = 0.041 | 2.806 ± 2.086 vs. 1.981 ± 1.960, p = 0.112 1.923 ± 0.774 vs. 1.981 ± 1.960, p = 0.257 |
miR-100-5p | 0.005 ± 0.004 vs. 0.001 ± 0.001, p = 0.001 0.003 ± 0.002 vs. 0.001 ± 0.001, p < 0.001 | 0.005 ± 0.003 vs. 0.002 ± 0.002, p = 0.015 0.004 ± 0.003 vs. 0.002 ± 0.002, p = 0.023 |
miR-103a-3p | 2.523 ± 1.593 vs. 0.951 ± 0.439, p < 0.001 2.381 ± 0.973 vs. 0.951 ± 0.439, p < 0.001 | 3.175 ± 1.802 vs. 0.637 ± 0.636, p < 0.001 2.144 ± 0.942 vs. 0.637 ± 0.636, p = 0.002 |
miR-125b-5p | 0.008 ± 0.007 vs. 0.003 ± 0.002, p = 0.049 0.006 ± 0.004 vs. 0.003 ± 0.002, p = 0.015 | 0.008 ± 0.005 vs. 0.001 ± 0.002, p = 0.005 0.006 ± 0.002 vs. 0.001 ± 0.002, p = 0.005 |
miR-126-3p | 0.531 ± 0.346 vs. 0.158 ± 0.072, p < 0.001 0.350 ± 0.181 vs. 0.158 ± 0.072, p = 0.005 | 0.685 ± 0.387 vs. 0.130 ± 0.139, p < 0.001 0.446 ± 0.204 vs. 0.130 ± 0.139, p = 0.001 |
miR-130b-3p | 1.024 ± 0.472 vs. 0.302 ± 0.171, p < 0.001 1.794 ± 1.331 vs. 0.302 ± 0.171, p < 0.001 | 1.339 ± 0.803 vs. 0.321 ± 0.332, p = 0.002 0.903 ± 0.210 vs. 0.321 ± 0.332, p = 0.002 |
miR-133a-3p | 0.400 ± 0.616 vs. 0.125 ± 0.078, p = 0.049 0.328 ± 0.257 vs. 0.125 ± 0.078, p = 0.069 | 0.536 ± 0.513 vs. 0.035 ± 0.040, p < 0.001 0.399 ± 0.479 vs. 0.035 ± 0.040, p < 0.001 |
miR-143-3p | 0.078 ± 0.056 vs. 0.010 ± 0.005, p < 0.001 0.057 ± 0.032 vs. 0.010 ± 0.005, p < 0.001 | 0.085 ± 0.055 vs. 0.015 ± 0.023, p = 0.001 0.073 ± 0.035 vs. 0.015 ± 0.023, p < 0.001 |
miR-145-5p | 0.208 ± 0.180 vs. 0.120 ± 0.054, p = 0.008 0.160 ± 0.033 vs. 0.120 ± 0.054, p = 0.019 | 0.223 ± 0.136 vs. 0.055 ± 0.056, p < 0.001 0.164 ± 0.087 vs. 0.055 ± 0.056, p = 0.001 |
miR-146a-5p | 1.844 ± 0.921 vs. 0.607 ± 0.281, p < 0.001 2.277 ± 1.526 vs. 0.607 ± 0.281, p = 0.001 | 2.761 ± 1.712 vs. 2.463 ± 3.856, p = 0.034 2.672 ± 1.040 vs. 2.463 ± 3.856, p = 0.023 |
miR-155-5p | 0.839 ± 0.386 vs. 0.579 ± 0.162, p = 0.879 1.211 ± 1.000 vs. 0.579 ± 0.162, p = 0.879 | 2.234 ± 3.722 vs. 1.107 ± 0.414, p = 0.289 1.016 ± 0.582 vs. 1.107 ± 0.414, p = 0.821 |
miR-181a-5p | 0.465 ± 0.325 vs. 0.159 ± 0.083, p < 0.001 0.525 ± 0.270 vs. 0.159 ± 0.083, p < 0.001 | 0.499 ± 0.225 vs. 0.141 ± 0.195, p = 0.001 0.379 ± 0.167 vs. 0.141 ± 0.195, p = 0.002 |
miR-195-5p | 0.277 ± 0.318 vs. 0.022 ± 0.019, p < 0.001 0.397 ± 0.369 vs. 0.022 ± 0.019, p < 0.001 | 0.596 ± 0.600 vs. 0.026 ± 0.040, p < 0.001 0.164 ± 0.160 vs. 0.026 ± 0.040, p = 0.003 |
miR-199a-5p | 0.132 ± 0.145 vs. 0.018 ± 0.008, p < 0.001 0.096 ± 0.071 vs. 0.018 ± 0.008, p < 0.001 | 0.306 ± 0.347 vs. 0.022 ± 0.040, p < 0.001 0.182 ± 0.347 vs. 0.022 ± 0.040, p < 0.001 |
miR-210-3p | 0.136 ± 0.077 vs. 0.193 ± 0.129, p = 0.406 0.116 ± 0.077 vs. 0.193 ± 0.129, p = 0.326 | 0.118 ± 0.079 vs. 0.165 ± 0.241, p = 0.364 0.109 ± 0.046 vs. 0.165 ± 0.241, p = 0.198 |
miR-221-3p | 0.932 ± 0.666 vs. 0.285 ± 0.185, p = 0.002 0.694 ± 0.374 vs. 0.285 ± 0.185, p = 0.006 | 1.096 ± 0.601 vs. 0.280 ± 0.221, p < 0.001 0.641 ± 0.250 vs. 0.280 ± 0.221, p = 0.003 |
miR-342-3p | 3.563 ± 1.393 vs. 2.899 ± 1.415, p = 0.173 3.191 ± 2.279 vs. 2.899 ± 1.415, p = 0.151 | 3.507 ± 1.378 vs. 1.866 ± 1.591, p = 0.019 2.551 ± 1.103 vs. 1.866 ± 1.591, p = 0.041 |
miR-499a-5p | 0.983 ± 0.624 vs. 0.039 ± 0.028, p < 0.001 0.554 ± 0.352 vs. 0.039 ± 0.028, p < 0.001 | 0.847 ± 0.679 vs. 0.071 ± 0.145, p < 0.001 0.794 ± 0.373 vs. 0.071 ± 0.145, p < 0.001 |
miR-574-3p | 0.256 ± 0.118 vs. 0.099 ± 0.054, p = 0.002 0.257 ± 0.128 vs. 0.099 ± 0.054, p < 0.001 | 0.323 ± 0.168 vs. 0.099 ± 0.085, p = 0.004 0.175 ± 0.064 vs. 0.099 ± 0.085, p = 0.019 |
(a) | ||||
K | i | Alpha = 0.05 | Alpha = 0.01 | Alpha = 0.001 |
3 | 0.05 | 0.01 | 0.001 | |
1 | 0.017 | 0.003 | 0.000 | |
2 | 0.033 | 0.007 | 0.001 | |
3 | 0.050 | 0.010 | 0.001 | |
(b) | ||||
K | i | Alpha = 0.05 | Alpha = 0.01 | Alpha = 0.001 |
6 | 0.05 | 0.01 | 0.001 | |
1 | 0.008 | 0.002 | 0.000 | |
2 | 0.017 | 0.003 | 0.000 | |
3 | 0.025 | 0.005 | 0.001 | |
4 | 0.033 | 0.007 | 0.001 | |
5 | 0.042 | 0.008 | 0.001 | |
6 | 0.050 | 0.010 | 0.001 |
microRNA | ρ | p-Value |
---|---|---|
miR-1-3p | –0.622 | p < 0.001 |
miR-16-5p | –0.441 | p < 0.001 |
miR-17-5p | –0.453 | p < 0.001 |
miR-20a-5p | –0.409 | p < 0.001 |
miR-20b-5p | –0.482 | p < 0.001 |
miR-21-5p | –0.447 | p < 0.001 |
miR-23a-3p | –0.383 | p < 0.001 |
miR-24-3p | –0.249 | p < 0.001 |
miR-26a-5p | –0.479 | p < 0.001 |
miR-29a-3p | –0.489 | p < 0.001 |
miR-92a-3p | –0.162 | p = 0.021 |
miR-100-5p | –0.457 | p < 0.001 |
miR-103a-3p | –0.526 | p < 0.001 |
miR-125b-5p | –0.375 | p < 0.001 |
miR-126-3p | –0.502 | p < 0.001 |
miR-130b-3p | –0.472 | p < 0.001 |
miR-133a-3p | –0.439 | p < 0.001 |
miR-143-3p | –0.507 | p < 0.001 |
miR-145-5p | –0.392 | p < 0.001 |
miR-146a-5p | –0.428 | p < 0.001 |
miR-181a-5p | –0.557 | p < 0.001 |
miR-195-5p | –0.487 | p < 0.001 |
miR-199a-5p | –0.490 | p <0.001 |
miR-221-3p | –0.427 | p < 0.001 |
miR-342-3p | –0.149 | p = 0.035 |
miR-499a-5p | –0.535 | p < 0.001 |
miR-574-3p | –0.371 | p < 0.001 |
microRNA | ρ | p-Value |
---|---|---|
miR-1-3p | –0.643 | p < 0.001 |
miR-16-5p | –0.472 | p < 0.001 |
miR-17-5p | –0.501 | p < 0.001 |
miR-20a-5p | –0.434 | p < 0.001 |
miR-20b-5p | –0.526 | p < 0.001 |
miR-21-5p | –0.495 | p < 0.001 |
miR-23a-3p | –0.455 | p < 0.001 |
miR-24-3p | –0.266 | p < 0.001 |
miR-26a-5p | –0.512 | p < 0.001 |
miR-29a-3p | –0.507 | p < 0.001 |
miR-92a-3p | –0.195 | p = 0.005 |
miR-100-5p | –0.509 | p < 0.001 |
miR-103a-3p | –0.557 | p < 0.001 |
miR-125b-5p | –0.420 | p < 0.001 |
miR-126-3p | –0.530 | p < 0.001 |
miR-130b-3p | –0.516 | p < 0.001 |
miR-133a-3p | –0.432 | p < 0.001 |
miR-143-3p | –0.544 | p < 0.001 |
miR-145-5p | –0.425 | p < 0.001 |
miR-146a-5p | –0.446 | p < 0.001 |
miR-181a-5p | –0.583 | p < 0.001 |
miR-195-5p | –0.497 | p < 0.001 |
miR-199a-5p | –0.552 | p < 0.001 |
miR-221-3p | –0.459 | p < 0.001 |
miR-342-3p | –0.179 | p = 0.011 |
miR-499a-5p | –0.587 | p < 0.001 |
miR-574-3p | –0.411 | p < 0.001 |
Predicted Targets | |||
---|---|---|---|
microRNA | KEGG Pathways | Wiki Pathways | Panther Pathways |
miR-1 | IKBKB, IL3, PIK3R5 | CASP2, IKBKB, LTA | ATF2, BAG4, BCL2L10, IKBKB, MAP4K2, MAP4K3, PRKCE, PRKCG |
miR-16-5p | BCL2, IKBKB, IRAK2, PRKAR1A, PRKAR2A | BCL2, IKBKB | BCL2, CRADD, IKBKB |
miR-17-5p | ATM, CASP6, CASP7, CASP8, CASP10, CFLAR, CYCS, DFFA, EXOG, FASLG, IL1R1, IRAK1, IRAK4, MAP3K14, PIK3R2, PPP3CA, PRKAR2A, PRKX, TNFRSF10A, TNFRSF10D, XIAP | BNIP3L, CASP6, CASP7, CASP8, CASP10, CFLAR, CYCS, DFFA, FASLG, IRF1, TNFRSF1B, TNFRSF21, XIAP | ATF6, BAG1, CASP7, CASP8, CASP10, CFLAR, CREB1, CREM, CYCS, EIF2S1, FASLG, HSPA5, MAP3K14, MAPK9, PRKCQ, REL, TNFRSF10D, TNFRSF1B, XIAP |
miR-20a-5p | CHP2, PPP3R1 | BCL2L11, CASP2, MCL1, TNFRSF21, TP73 | BCL2L11, HSPA6, HSPA8, MAP3K5, MCL1, PRKCA, TMBIM6 |
miR-20b-5p | ATM, CASP6, CASP7, CASP8, CASP10, CFLAR, CYCS, DFFA, EXOG, FASLG, IL1R1, IRAK1, IRAK4, MAP3K14, PIK3R2, PPP3CA, PRKAR2A, PRKX, TNFRSF10A, TNFRSF10D, XIAP | BNIP3L, CASP6, CASP7, CASP8, CASP10, CFLAR, CYCS, DFFA, FASLG, IRF1, TNFRSF1B, TNFRSF21 | ATF6, BAG1, CASP7, CASP8, CASP10, CFLAR, CREB1, CREM, CYCS, EIF2S1, FASLG, HSPA5, MAP3K14, MAPK9, PRKCQ, REL, TNFRSF10D, TNFRSF1B, XIAP |
miR-21-5p | APAF1, CFLAR, FASLG | APAF1, CFLAR, FASLG, MAP3K1 | APAF1, CFLAR, DAXX, EIF2S1, FASLG, MAP2K3 |
miR-23a-3p | CFLAR, EXOG, IKBKB, PIK3CB, TNFRSF10, TNFSF10B | CFLAR, IGF1, IKBKB, MAP3K1, TNFRSF10, TNFSF10B | BIK, CFLAR, CREM, EIF2AK2, IKBKB, MAP3K5, PIK3CB, TNFRSF10, TNFSF10B |
miR-24-3p | BCL2L1, EXOG, FASLG, IKBKB, IL1B, IRAK4, MYD88, PIK3CB, RIPK1 | BBC3, BCL2L2, BCL2L11, BNIP3L, FASLG, IKBKB, MYC, NFKBIE, RIPK1, TRAF1, TRAF3 | BCL2L1, BCL2L2, BCL2L11, EIF2AK2, FASLG, FOS, IKBKB, PIK3CB, PRKCA, PRKCH, RIPK1 |
miR-26a-5p | APAF1, BID, BIRC2, CASP6, DFFB, PPP3CB, PPP3CC | APAF1, BAK1, BID, BIRC2, CASP6, CRADD, DFFB, MDM2, PMAIP1 | APAF1, ATF2, BAG4, BAK1, BID, BIRC2, CRADD, CREB1, EIF2AK2, FOS, HSPA8, PRKCD, PRKCQ, RELB |
miR-29a-3p | CASP8, CYCS, IL1RAP, TNFRSF1A | BAK1, CASP8, CYCS, HRK, IGF1, MCL1, TNFRSF1A | BAK1, CASP8, CYCS, HSPA5, MCL1, TNFRSF1A |
miR-100-5p | IRAK3, PPP3CA | - | RELB |
miR-103a-3p | IL1RAP, IL3, PRKAR1A | BCL2L2, CASP2, CRADD, IRF1, IRF5, TNFRSF25 | ATF6, BCL2L10, BCL2L2, BIK, CRADD, HSPA1B, LTB, MADD, MAP2K3, MAPK3, PRKCD |
miR-125b-5p | AIFM1, CAPN1, CASP9, CSF2RB, EXOG, IKBKG | BAK1, CASP2, CASP9, IKBKG, IRF4, MCL1, PRF1 | AIFM1, BAG4, BAK1, CASP9, MADD, MCL1, PRKRA, REL, TMBIM6 |
miR-126-3p | TNFRSF10B | TNFRSF10B | - |
miR-130b-3p | CHUK, PIK3CA | CHUK, TNFRSF1B, TP73 | CREB1, CHUK, PIK3CA, TNFRSF1B |
miR-133a-3p | ENDOD1, IRAK3, MAP3K14, TNFRSF10B | BCL2L2, BNIP3L, TNFRSF10B | BCL2L2, MAP3K14, TNFRSF10B |
miR-143-3p | APAF1, BIRC2, BIRC3, TNFRSF10B, TNFRSF10D | APAF1, BIRC2, BIRC3, TNFRSF10B | APAF1, BAG1, BIRC2, BIRC3, MAPK3, MAPK9, PRKCE, TNFRSF10D |
miR-145-5p | AIFM1, PIK3R5, TNFRSF10B | TNFRSF10B, TNFRSF25 | AIFM1, MAP4K2, TMBIM6, TNFRSF10B |
miR-146a-5p | CASP7, CASP9, DFFA, IL3, IRAK1, IRAK4, PPP3R2, PRKACA | CASP2, CASP7, CASP9, DFFA, PMAIP1, PRF1 | BAG1, CASP7, CASP9, HSPA1A, JDP2, PRKCE |
miR-181a-5p | AKT3, ATM, CASP8, CSF2RB, ENDOD1, EXOG, IL1A, IL1R1, IL1RAP, PPP3R1, PRKAR2A, TRADD | CASP8, CRADD, IRF5, MDM2, PMAIP1, TP63, TRADD | AKT3, ATF2, CASP8, CRADD, DAXX, FOS, MAPK1, TRADD |
miR-195-5p | BCL2, IKBKB, IRAK2, PRKAR1A, PRKAR2A | BCL2, CRADD, IKBKB | BCL2, CRADD, IKBKB |
miR-199a-5p | IKBKG, PRKAR1A, PRKX, RELA, TNF, TRADD | BBC3, GZMB, IKBKG, RELA, TNF, TRADD, TRAF1 | CREM, EIF2AK2, GZMB, MAPK9, PRKCA, RELA, RELB, TNF, TRADD |
miR-221-3p | AKT3, APAF1, CASP10, IKBKG, IL1RAP, PIK3CD, PPP3R1, TNFSF10 | APAF1, BNIP3L, CASP10, IKBKG, IRF4, MAPK10, MDM2, TNFSF10 | AKT3, APAF1, ATF2, ATF4, CASP10, CREB1, MAPK10, PIK3CD, PRKCB, TNFSF10 |
miR-499a-5p | AKT2, IL1RAP, PIK3CD, PPP3CA, PRKAR1A | MDM2 | AKT2, ATF2, HSPA8, PIK3CD, PRKCE, TMBIM6 |
miR-574-3p | - | TP63 | LTB, MADD |
Predicted Targets | |
---|---|
microRNA | Wiki Pathways |
miR-1 | CD28, FN1, IL2RB |
miR-16-5p | IL2RA |
miR-17-5p | CD28, IL5, LAMC1, LAMC2, TNFRSF1B |
miR-20a-5p | - |
miR-20b-5p | CD28, IL5, LAMC1, LAMC2, TNFRSF1B |
miR-21-5p | THBS3 |
miR-23a-3p | IFNG |
miR-24-3p | CD28, CD86, FN1, IFNG, IL2RB, LAMC1 |
miR-26a-5p | COL1A2, IFNG |
miR-29a-3p | COL1A2, IL2RA, LAMC1, TNFRSF1A |
miR-100-5p | - |
miR-103a-3p | CD40 |
miR-125b-5p | IL2RB |
miR-126-3p | - |
miR-130b-3p | LAMB2, TNFRSF1B |
miR-133a-3p | CD28, FN1 |
miR-143-3p | CD28, CD40, IFNG, IL2RA |
miR-145-5p | IL2RA |
miR-146a-5p | CD80, CD86 |
miR-181a-5p | COL1A2, IL2, IL2RB, LAMC1 |
miR-195-5p | IL2RA |
miR-199a-5p | IL4R |
miR-221-3p | THBS1, VTN |
miR-499a-5p | IL2RB, IL5RA |
miR-574-3p | IL2RB |
Predicted Targets | |
---|---|
microRNA | Wiki Pathways |
miR-1 | ATG13, FN1, IL, LAMP2 |
miR-16-5p | BCL2, CREG1, HMGA1, LAMP2, MAP2K1, RAF1, SMAD4 |
miR-17-5p | ATG10, ATG12, CD44, CDKN1A, E2F1, IL6R, IRF1, LAMP2, RNASEL, RSL1D1, SERPINE1, SH3GLB1 |
miR-20a-5p | ATG14,ATG16L1, ATG5, ATG7, BECN1, BRAF, IGFBP7, IL8, RNASEL, RSL1D1, SH3GLB1, SQSTM1, ULK1 |
miR-20b-5p | ATG10, ATG12, CD44, CDKN1A, E2F1, IL6R, IRF1, LAMP2, RNASEL, RSL1D1, SERPINE1, SH3GLB1 |
miR-21-5p | MAP2K3 |
miR-23a-3p | AMBRA1, ATG13, BECN1, IFNG, IGF1, IL6R, IL8, MAPK14, PLAU |
miR-24-3p | ATG13, CDKN1B, FN1, IFNG, IGFBP5, IL1B, IL6R, MAP1LC3A, MAP1LC3C, MMP14 |
miR-26a-5p | ATG13, COL10A1, HMGA1, IFNG, IL6, MDM2, PCNA, PTEN, RB1, ULK1 |
miR-29a-3p | IGF1, PTEN, RNASEL, SH3GLB1 |
miR-100-5p | MTOR |
miR-103a-3p | ATG14, GABARAPL1, HMGA1, IL3, IRF1, IRF5, MAP2K3, SERPINB2, SMAD4 |
miR-125b-5p | AKT1S1, IGFBP3, RAF1 |
miR-126-3p | - |
miR-130b-3p | AMBRA1, ATG14, CD44, IGFBP5, KMT2A, MAP2K1, MLST8, PTEN, RNASEL, SERPINE1 |
miR-133a-3p | ATG14, FN1, GABARAPL1, MAPK14, MMP14, RB1CC1, SLC39A1 |
miR-143-3p | ATG10, CD44, HMGA1, IFNG, IGFBP5, SERPINE1, SLC39A3 |
miR-145-5p | AMBRA1, CD44, HMGA1, IFNB1, MAP1LC3B, SLC39A2 |
miR-146a-5p | ATG12, IL3, KMT2A, RNASEL, SERPINB2, TNFSF15 |
miR-181a-5p | ATG10, ATG5, CDKN1B, CXCL1, IL1A, IRF5, MAPK1, MDM2, PTEN, ULK1 |
miR-195-5p | BCL2, CREG1, HMGA1, LAMP2, MAP2K1, RAF1, SMAD4 |
miR-199a-5p | CEBPB, IGFBP3, IL6, SLC39A3, UVRAG |
miR-221-3p | - |
miR-499a-5p | ATG3, MDM2, RB1 |
miR-574-3p | - |
Predicted Targets | |
---|---|
microRNA | Disease Ontologies (DO) |
miR-1 | CPB2 |
miR-16-5p | - |
miR-17-5p | MTHFR, SERPINE1 |
miR-20a-5p | - |
miR-20b-5p | MTHFR, SERPINE1 |
miR-21-5p | - |
miR-23a-3p | F8, F11 |
miR-24-3p | NOS3 |
miR-26a-5p | - |
miR-29a-3p | - |
miR-100-5p | - |
miR-103a-3p | - |
miR-125b-5p | - |
miR-126-3p | - |
miR-130b-3p | SERPINE1 |
miR-133a-3p | CPB2 |
miR-143-3p | CPB2, SERPINE1 |
miR-145-5p | - |
miR-146a-5p | - |
miR-181a-5p | F11, NOS3 |
miR-195-5p | - |
miR-199a-5p | - |
miR-221-3p | F11 |
miR-499a-5p | - |
miR-574-3p | - |
Predicted Targets | ||
---|---|---|
microRNA | Disease Ontologies (DO) | Human Phenotype Ontologies (HPO) |
miR-1 | BDNF, BOLL, CCL2, MUC1, PRSS21 | - |
miR-16-5p | CDC25A, KIF2C, PACRG, SGK1, TGIF2LY, VEGFA | DNAAF3, GBA2, RNF216 |
miR-17-5p | AHRR, ALOX15, BRCA1, CCL5, CD44, CD9, CGA, CREM, CX3CL1, HFE, HRH2, IL10, IL11, IL5, IL6R, LEP, MMP2, MTHFR, PCSK5, PRSS21, SERPINE1, SPACA1, UBE2B, VEGFA, XPC | CCDC40, CTNS, DNAI2, NANOS1, RNF216 |
miR-20a-5p | AHRR, BUB1, C5, ESR1, ITGA4, LIF, UBE2B | HSD17B3 |
miR-20b-5p | AHRR, ALOX15, BRCA1, CCL5, CD44, CD9, CGA, CREM, CX3CL1, HFE, HRH2, IL5, IL10, IL11, IL6R, LEP, MMP2, MTHFR, PCSK5, PRSS21, SERPINE1, SPACA1, UBE2B, VEGFA, XPC | CCDC40, CTNS, DNAI2, NANOS1, RNF216 |
miR-21-5p | CDC25A, OXTR, TLR4 | - |
miR-23a-3p | ARNT, CREM, FSHR, IL6R, MAS1, MBL2, MEFV, OAZ3, PUM2, SLC19A1, TLR4, TRO, XPA | HEATR2 |
miR-24-3p | ADM, CDC25A, IL1B, IL6R, NOS3, PAEP, PSG1, SCARB1, TFPI | CTNS, GBA2, HEATR2 |
miR-26a-5p | ADM, CCL2, ESR1, IL6, ITGA5, PACRG, SEMG2, SPATA16, SYCP3 | CTNS, DYX1C1, PRLR, SPATA16 |
miR-29a-3p | DAZL, HRH1, LEP, OXTR, SGK1, VEGFA | - |
miR-100-5p | CDC25A | - |
miR-103a-3p | BDNF, CDC25A, LIPE, MLH3, TGIF2LY, TSSK6, WNT7A, XPC | - |
miR-125b-5p | AURKC, LEP, LIF, MMP2, REC8, SCARB1 | AURKC |
miR-126-3p | - | - |
miR-130b-3p | CATSPER1, CD44, EPPIN, FATE1, FMR1, LMNA, MBL2, MLH1, SERPINE1 | CATSPER1 |
miR-133a-3p | FMR1, FOXL2, HRH1, SPO11, USP26, YBX2 | GBA2 |
miR-143-3p | CD44, GALT, HRH2, ITGA6, MAS1, PACRG, PRDM9, PSG1, SERPINE1, TNP1 | CCDC40, SNRPN |
miR-145-5p | CD44, ESR2, GDNF, MUC1, WNT7A | C21orf59, NDN |
miR-146a-5p | BRCA1, CCL5, FMR1, KIF2C, LHCGR, SPACA1 | - |
miR-181a-5p | AHR, AR, HLA-E, IL1A, KIF2C, LMNA, NOS3, PACRG, PRM1, TFPI | AR, CCDC40 |
miR-195-5p | CDC25A, KIF2C, PACRG, SGK1, TGIF2LY, VEGFA | DNAAF3, GBA2, RNF216 |
miR-199a-5p | CATSPER1, CREM, GANAB, GSTK1, IL6, LIF, LMNA, MMP9, REC8, SPACA1, TNF, TSSK6 | CATSPER1, CCDC40, RNF216 |
miR-221-3p | NLRP3 | - |
miR-499a-5p | MLH1, REC8, SPACA1 | H6PD |
miR-574-3p | GAMT, LEP, MUC1 | - |
Predicted Targets | |
---|---|
microRNA | OMIM disorders |
miR-1 | - |
miR-16-5p | - |
miR-17-5p | ECE1, PTGIS |
miR-20a-5p | CYP3A5 |
miR-20b-5p | ECE1, PTGIS |
miR-21-5p | - |
miR-23a-3p | - |
miR-24-3p | NOS3 |
miR-26a-5p | - |
miR-29a-3p | NOS2 |
miR-100-5p | - |
miR-103a-3p | - |
miR-125b-5p | GNB3 |
miR-126-3p | - |
miR-130b-3p | - |
miR-133a-3p | - |
miR-143-3p | GNB3 |
miR-145-5p | - |
miR-146a-5p | - |
miR-181a-5p | ATP1B1, NOS3 |
miR-195-5p | - |
miR-199a-5p | PTGIS |
miR-221-3p | - |
miR-499a-5p | - |
miR-574-3p | - |
Predicted Targets | |
---|---|
microRNA | OMIM disorders |
miR-1 | - |
miR-16-5p | - |
miR-17-5p | - |
miR-20a-5p | UCP3 |
miR-20b-5p | PPARGC1B |
miR-21-5p | - |
miR-23a-3p | - |
miR-24-3p | PPARG |
miR-26a-5p | PPARGC1B |
miR-29a-3p | - |
miR-100-5p | PPARGC1B |
miR-103a-3p | ADRB2 |
miR-125b-5p | ENPP1, FFAR4 |
miR-126-3p | - |
miR-130b-3p | PPARGC1B, SIM1, UCP3 |
miR-133a-3p | - |
miR-143-3p | ADRB2, ENPP1 |
miR-145-5p | - |
miR-146a-5p | - |
miR-181a-5p | - |
miR-195-5p | - |
miR-199a-5p | - |
miR-221-3p | - |
miR-499a-5p | - |
miR-574-3p | PPARGC1B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hromadnikova, I.; Kotlabova, K.; Krofta, L. A History of Preterm Delivery Is Associated with Aberrant Postpartal MicroRNA Expression Profiles in Mothers with an Absence of Other Pregnancy-Related Complications. Int. J. Mol. Sci. 2021, 22, 4033. https://doi.org/10.3390/ijms22084033
Hromadnikova I, Kotlabova K, Krofta L. A History of Preterm Delivery Is Associated with Aberrant Postpartal MicroRNA Expression Profiles in Mothers with an Absence of Other Pregnancy-Related Complications. International Journal of Molecular Sciences. 2021; 22(8):4033. https://doi.org/10.3390/ijms22084033
Chicago/Turabian StyleHromadnikova, Ilona, Katerina Kotlabova, and Ladislav Krofta. 2021. "A History of Preterm Delivery Is Associated with Aberrant Postpartal MicroRNA Expression Profiles in Mothers with an Absence of Other Pregnancy-Related Complications" International Journal of Molecular Sciences 22, no. 8: 4033. https://doi.org/10.3390/ijms22084033
APA StyleHromadnikova, I., Kotlabova, K., & Krofta, L. (2021). A History of Preterm Delivery Is Associated with Aberrant Postpartal MicroRNA Expression Profiles in Mothers with an Absence of Other Pregnancy-Related Complications. International Journal of Molecular Sciences, 22(8), 4033. https://doi.org/10.3390/ijms22084033