Dopamine D2 Receptor Agonist Binding Kinetics—Role of a Conserved Serine Residue
Abstract
:1. Introduction
2. Results
2.1. Phenethylamine and DPAT Potencies and Efficacies at WT and S1935.42A D2R
2.2. (R)- and (S)-5-OH-DPAT Dissociation Rates Are Similar, But Slower Than Those of DA and p-Tyramine at WT D2R
2.3. Estimated Association Rates of (R)- and (S)-5-OH-DPAT Differ at WT D2R but Are Similar at the S1935.42A Mutant
2.4. Structural Determinants of Mutation-Induced Changes in Compound Kinetics
3. Discussion
4. Materials and Methods
4.1. Molecular Biology
4.2. Oocyte Preparation
4.3. Electrophysiological Methods
4.4. Ligands
4.5. Data Analysis
4.6. Molecular Dynamics Simulations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2017, 16, 829–842. [Google Scholar] [CrossRef]
- Ring, A.M.; Manglik, A.; Kruse, A.C.; Enos, M.D.; Weis, W.I.; Garcia, K.C.; Kobilka, B.K. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 2013, 502, 575–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Chen, K.M.; Clark, M.J.; Hijazi, M.; Kumari, P.; Bai, X.C.; Sunahara, R.K.; Barth, P.; Rosenbaum, D.M. Structure of a D2 dopamine receptor-G-protein complex in a lipid membrane. Nature 2020, 584, 125–129. [Google Scholar] [CrossRef]
- Zhuang, Y.; Xu, P.; Mao, C.; Wang, L.; Krumm, B.; Zhou, X.E.; Huang, S.; Liu, H.; Cheng, X.; Huang, X.P.; et al. Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell 2021, 184, 931–942.e18. [Google Scholar] [CrossRef]
- Ballesteros, J.; Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In Methods in Neurosciences; Sealfon, S., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; Volume 25, pp. 366–428. [Google Scholar]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: From structure to function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Duenas, V.; Ferre, S.; Ciruela, F. Adenosine A2A-dopamine D2 receptor heteromers operate striatal function: Impact on Parkinson’s disease pharmacotherapeutics. Neural Regen. Res. 2018, 13, 241–243. [Google Scholar] [PubMed]
- Cox, B.A.; Henningsen, R.A.; Spanoyannis, A.; Neve, R.L.; Neve, K.A. Contributions of conserved serine residues to the interactions of ligands with dopamine D2 receptors. J. Neurochem. 1992, 59, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Wiens, B.L.; Nelson, C.S.; Neve, K.A. Contribution of serine residues to constitutive and agonist-induced signaling via the D2S dopamine receptor: Evidence for multiple, agonist-specific active conformations. Mol. Pharmacol. 1998, 54, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Fowler, J.C.; Bhattacharya, S.; Urban, J.D.; Vaidehi, N.; Mailman, R.B. Receptor conformations involved in dopamine D(2L) receptor functional selectivity induced by selected transmembrane-5 serine mutations. Mol. Pharmacol. 2012, 81, 820–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahlholm, K.; Barchad-Avitzur, O.; Marcellino, D.; Gómez-Soler, M.; Fuxe, K.; Ciruela, F.; Arhem, P. Agonist-specific voltage sensitivity at the dopamine D2S receptor—Molecular determinants and relevance to therapeutic ligands. Neuropharmacology 2011, 61, 937–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodward, R.; Coley, C.; Daniell, S.; Naylor, L.H.; Strange, P.G. Investigation of the role of conserved serine residues in the long form of the rat D2 dopamine receptor using site-directed mutagenesis. J. Neurochem. 1996, 66, 394–402. [Google Scholar] [CrossRef]
- Coley, C.; Woodward, R.; Johansson, A.M.; Strange, P.G.; Naylor, L.H. Effect of multiple serine/alanine mutations in the transmembrane spanning region V of the D2 dopamine receptor on ligand binding. J. Neurochem. 2000, 74, 358–366. [Google Scholar] [CrossRef]
- Malmberg, A.; Nordvall, G.; Johansson, A.M.; Mohell, N.; Hacksell, U. Molecular basis for the binding of 2-aminotetralins to human dopamine D2A and D3 receptors. Mol. Pharmacol. 1994, 46, 299–312. [Google Scholar] [PubMed]
- Strasser, A.; Wittmann, H.J.; Seifert, R. Binding Kinetics and Pathways of Ligands to GPCRs. Trends Pharmacol. Sci. 2017, 38, 717–732. [Google Scholar] [CrossRef] [PubMed]
- Klein Herenbrink, C.; Sykes, D.A.; Donthamsetti, P.; Canals, M.; Coudrat, T.; Shonberg, J.; Scammells, P.J.; Capuano, B.; Sexton, P.M.; Charlton, S.J.; et al. The role of kinetic context in apparent biased agonism at GPCRs. Nat. Commun. 2016, 7, 10842. [Google Scholar] [CrossRef] [PubMed]
- Wacker, D.; Wang, S.; McCorvy, J.D.; Betz, R.M.; Venkatakrishnan, A.J.; Levit, A.; Lansu, K.; Schools, Z.L.; Che, T.; Nichols, D.E.; et al. Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell 2017, 168, 377–389.e12. [Google Scholar] [CrossRef] [Green Version]
- Copeland, R.A. The drug-target residence time model: A 10-year retrospective. Nat. Rev. Drug Discov. 2016, 15, 87–95. [Google Scholar] [CrossRef]
- IJzerman, A.P.; Guo, D. Drug-Target Association Kinetics in Drug Discovery. Trends Biochem. Sci. 2019, 44, 861–871. [Google Scholar] [CrossRef]
- van Wieringen, J.P.; Booij, J.; Shalgunov, V.; Elsinga, P.; Michel, M.C. Agonist high- and low-affinity states of dopamine D(2) receptors: Methods of detection and clinical implications. Naunyn Schmiedebergs Arch. Pharmacol. 2013, 386, 135–154. [Google Scholar] [CrossRef]
- Strange, P.G. Agonist binding, agonist affinity and agonist efficacy at G protein-coupled receptors. Br. J. Pharmacol. 2008, 153, 1353–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kara, E.; Lin, H.; Strange, P.G. Co-operativity in agonist binding at the D2 dopamine receptor: Evidence from agonist dissociation kinetics. J. Neurochem. 2010, 112, 1442–1453. [Google Scholar] [CrossRef]
- Roberts, D.J.; Lin, H.; Strange, P.G. Investigation of the mechanism of agonist and inverse agonist action at D2 dopamine receptors. Biochem. Pharmacol. 2004, 67, 1657–1665. [Google Scholar] [CrossRef]
- Ilyaskina, O.S.; Lemoine, H.; Bünemann, M. Lifetime of muscarinic receptor-G-protein complexes determines coupling efficiency and G-protein subtype selectivity. Proc. Natl. Acad. Sci. USA 2018, 115, 5016–5021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sungkaworn, T.; Jobin, M.L.; Burnecki, K.; Weron, A.; Lohse, M.J.; Calebiro, D. Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 2017, 550, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Dascal, N.; Kahanovitch, U. The Roles of Gbetagamma and Galpha in Gating and Regulation of GIRK Channels. Int. Rev. Neurobiol. 2015, 123, 27–85. [Google Scholar] [PubMed]
- Sahlholm, K.; Zeberg, H.; Nilsson, J.; Ögren, S.O.; Fuxe, K.; Århem, P. The fast-off hypothesis revisited: A functional kinetic study of antipsychotic antagonism of the dopamine D2 receptor. Eur. Neuropsychopharmacol. 2016, 26, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Vorobiov, D.; Levin, G.; Lotan, I.; Dascal, N. Agonist-independent inactivation and agonist-induced desensitization of the G protein-activated K+ channel (GIRK) in Xenopus oocytes. Pflug. Arch. 1998, 436, 56–68. [Google Scholar] [CrossRef]
- Payne, S.L.; Johansson, A.M.; Strange, P.G. Mechanisms of ligand binding and efficacy at the human D2(short) dopamine receptor. J. Neurochem. 2002, 82, 1106–1117. [Google Scholar] [CrossRef] [Green Version]
- Agren, R.; Arhem, P.; Nilsson, J.; Sahlholm, K. The Beta-Arrestin-Biased Dopamine D2 Receptor Ligand, UNC9994, Is a Partial Agonist at G-Protein-Mediated Potassium Channel Activation. Int. J. Neuropsychopharmacol. 2018, 21, 1102–1108. [Google Scholar] [CrossRef] [Green Version]
- Benians, A.; Leaney, J.L.; Tinker, A. Agonist unbinding from receptor dictates the nature of deactivation kinetics of G protein-gated K+ channels. Proc. Natl. Acad. Sci. USA 2003, 100, 6239–6244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bünemann, M.; Bücheler, M.M.; Philipp, M.; Lohse, M.J.; Hein, L. Activation and deactivation kinetics of alpha 2A- and alpha 2C-adrenergic receptor-activated G protein-activated inwardly rectifying K+ channel currents. J. Biol. Chem. 2001, 276, 47512–47517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T.; Ikeda, K.; Kumanishi, T. Inhibition by various antipsychotic drugs of the G-protein-activated inwardly rectifying K(+) (GIRK) channels expressed in xenopus oocytes. Br. J. Pharmacol. 2000, 129, 1716–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heusler, P.; Newman-Tancredi, A.; Castro-Fernandez, A.; Cussac, D. Differential agonist and inverse agonist profile of antipsychotics at D2L receptors coupled to GIRK potassium channels. Neuropharmacology 2007, 52, 1106–1113. [Google Scholar] [CrossRef]
- Vilardaga, J.P.; Steinmeyer, R.; Harms, G.S.; Lohse, M.J. Molecular basis of inverse agonism in a G protein-coupled receptor. Nat. Chem. Biol. 2005, 1, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Benians, A.; Leaney, J.L.; Milligan, G.; Tinker, A. The dynamics of formation and action of the ternary complex revealed in living cells using a G-protein-gated K+ channel as a biosensor. J. Biol. Chem. 2003, 278, 10851–10858. [Google Scholar] [CrossRef] [Green Version]
- Tummino, P.J.; Copeland, R.A. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 2008, 47, 5481–5492. [Google Scholar] [CrossRef] [PubMed]
- Bünemann, M.; Frank, M.; Lohse, M.J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl. Acad. Sci. USA 2003, 100, 16077–16082. [Google Scholar] [CrossRef] [Green Version]
- Sykes, D.A.; Lane, J.R.; Szabo, M.; Capuano, B.; Javitch, J.A.; Charlton, S.J. Reply to ‘Antipsychotics with similar association kinetics at dopamine D2 receptors differ in extrapyramidal side-effects’. Nat. Commun. 2018, 9, 3568. [Google Scholar] [CrossRef] [Green Version]
- Torrice, M.M.; Bower, K.S.; Lester, H.A.; Dougherty, D.A. Probing the role of the cation-pi interaction in the binding sites of GPCRs using unnatural amino acids. Proc. Natl. Acad. Sci. USA 2009, 106, 11919–11924. [Google Scholar] [CrossRef] [Green Version]
- Daeffler, K.N.; Lester, H.A.; Dougherty, D.A. Functionally important aromatic-aromatic and sulfur-pi interactions in the D2 dopamine receptor. J. Am. Chem. Soc. 2012, 134, 14890–14896. [Google Scholar] [CrossRef] [Green Version]
- Sahlholm, K.; Marcellino, D.; Nilsson, J.; Fuxe, K.; Arhem, P. Voltage-sensitivity at the human dopamine D2S receptor is agonist-specific. Biochem. Biophys. Res. Commun. 2008, 377, 1216–1221. [Google Scholar] [CrossRef]
- De Lean, A.; Kilpatrick, B.F.; Caron, M.G. Dopamine receptor of the porcine anterior pituitary gland. Evidence for two affinity states discriminated by both agonists and antagonists. Mol. Pharmacol. 1982, 22, 290–297. [Google Scholar]
- Marcellino, D.; Kehr, J.; Agnati, L.F.; Fuxe, K. Increased affinity of dopamine for D(2) -like versus D(1) -like receptors. Relevance for volume transmission in interpreting PET findings. Synapse 2012, 66, 196–203. [Google Scholar] [CrossRef]
- Richfield, E.K.; Penney, J.B.; Young, A.B. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 1989, 30, 767–777. [Google Scholar] [CrossRef]
- Skinbjerg, M.; Namkung, Y.; Halldin, C.; Innis, R.B.; Sibley, D.R. Pharmacological characterization of 2-methoxy-N-propylnorapomorphine’s interactions with D2 and D3 dopamine receptors. Synapse 2009, 63, 462–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolaev, V.O.; Hoffmann, C.; Bünemann, M.; Lohse, M.J.; Vilardaga, J.P. Molecular basis of partial agonism at the neurotransmitter alpha2A-adrenergic receptor and Gi-protein heterotrimer. J. Biol. Chem. 2006, 281, 24506–24511. [Google Scholar] [CrossRef] [Green Version]
- Vauquelin, G. Effects of target binding kinetics on in vivo drug efficacy: Koff, kon and rebinding. Br. J. Pharmacol. 2016, 173, 2319–2334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papke, R.L.; Stokes, C. Working with OpusXpress: Methods for high volume oocyte experiments. Methods 2010, 51, 121–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Harvey, M.J.; Giupponi, G.; Fabritiis, G.D. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. J. Chem. Theory Comput. 2009, 5, 1632–1639. [Google Scholar] [CrossRef] [Green Version]
- Vanommeslaeghe, K.; MacKerell, A.D., Jr. Automation of the CHARMM General Force Field (CGenFF) I: Bond perception and atom typing. J. Chem. Inf. Model. 2012, 52, 3144–3154. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Raman, E.P.; MacKerell, A.D., Jr. Automation of the CHARMM General Force Field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 2012, 52, 3155–3168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmuller, H.; MacKerell, A.D., Jr. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. [Google Scholar] [CrossRef] [Green Version]
- Klauda, J.B.; Venable, R.M.; Freites, J.A.; O’Connor, J.W.; Tobias, D.J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A.D., Jr.; Pastor, R.W. Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. J. Phys. Chem. B 2010, 114, 7830–7843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Espigares, I.; Torrens-Fontanals, M.; Tiemann, J.K.S.; Aranda-Garcia, D.; Ramirez-Anguita, J.M.; Stepniewski, T.M.; Worp, N.; Varela-Rial, A.; Morales-Pastor, A.; Medel-Lacruz, B.; et al. GPCRmd uncovers the dynamics of the 3D-GPCRome. Nat. Methods 2020, 17, 777–787. [Google Scholar] [CrossRef]
- Grest, G.S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A Gen. Phys. 1986, 33, 3628–3631. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
pEC50 ± SEM (EC50, nM) | N | koff ± SEM (s−1) | N | kon ± SEM (s−1 × M−1) | N | pKd ± SEM | |
---|---|---|---|---|---|---|---|
WT | |||||||
DA | 7.70 ± 0.07 (20) | 5 | 0.197 ± 0.012 | 6 | 9.70 ± 1.23 × 107 | 3–8 | 8.69 ± 0.14 |
p-tyramine | 4.00 ± 0.21 (100,000) | 6 | 0.123 ± 0.008 | 7 | 4.94 ± 1.15 × 103 | 5–7 | 4.61 ± 0.24 |
(S)-5-OH-DPAT | 8.28 ± 0.08 (5) | 11 | 0.028 ± 0.010 | 4 | 2.86 ± 0.31 × 107 | 5–9 | 9.01 ± 0.35 |
(R)-5-OH-DPAT | 6.85 ± 0.16 (141) | 11 | 0.030 ± 0.008 | 5 | 8.65 ± 1.21 × 105 | 3–8 | 7.46 ± 0.30 |
S1935.42A | |||||||
DA | 5.03 ± 0.04 (9333) | 8 | 0.207 ± 0.012 | 8 | 3.69 ± 0.48 × 104 | 4–7 | 5.25 ± 0.14 |
p-tyramine | 4.32 ± 0.12 (47,863) | 6–12 | 0.112 ± 0.008 | 5 | 9.41 ± 2.34 × 103 | 4–6 | 4.93 ± 0.26 |
(S)-5-OH-DPAT | 6.56 ± 0.05 (275) | 12 | 0.096 ± 0.009 | 6 | 2.82 ± 0.34 × 106 | 5–8 | 7.47 ± 0.15 |
(R)-5-OH-DPAT | 7.07 ± 0.08 (85) | 14 | 0.069 ± 0.008 | 6 | 1.95 ± 0.15 × 106 | 4–7 | 7.45 ± 0.14 |
Agonist | Potency | Relative Efficacy | koff | kon |
---|---|---|---|---|
DA | ↓↓↓ | − | − | ↓↓↓ |
p-tyramine | ↑ | ↑ | − | ↑ |
(S)-5-OH-DPAT | ↓↓ | − | ↑ | ↓↓ |
(R)-5-OH-DPAT | ↑ | ↑↑ | ↑ | ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ågren, R.; Stepniewski, T.M.; Zeberg, H.; Selent, J.; Sahlholm, K. Dopamine D2 Receptor Agonist Binding Kinetics—Role of a Conserved Serine Residue. Int. J. Mol. Sci. 2021, 22, 4078. https://doi.org/10.3390/ijms22084078
Ågren R, Stepniewski TM, Zeberg H, Selent J, Sahlholm K. Dopamine D2 Receptor Agonist Binding Kinetics—Role of a Conserved Serine Residue. International Journal of Molecular Sciences. 2021; 22(8):4078. https://doi.org/10.3390/ijms22084078
Chicago/Turabian StyleÅgren, Richard, Tomasz Maciej Stepniewski, Hugo Zeberg, Jana Selent, and Kristoffer Sahlholm. 2021. "Dopamine D2 Receptor Agonist Binding Kinetics—Role of a Conserved Serine Residue" International Journal of Molecular Sciences 22, no. 8: 4078. https://doi.org/10.3390/ijms22084078
APA StyleÅgren, R., Stepniewski, T. M., Zeberg, H., Selent, J., & Sahlholm, K. (2021). Dopamine D2 Receptor Agonist Binding Kinetics—Role of a Conserved Serine Residue. International Journal of Molecular Sciences, 22(8), 4078. https://doi.org/10.3390/ijms22084078