Integrated Analysis of the Transcriptome and Metabolome Revealed Candidate Genes Involved in GA3-Induced Dormancy Release in Leymus chinensis Seeds
Abstract
:1. Introduction
2. Results
2.1. Effect of GA3 on the Germination Rate, Germination Index and Germination Potential of Leymus Chinensis Seeds
2.2. Transcriptomic Analysis of L. chinensis Seeds Treated with GA3
2.3. Validation of RNA-Seq Data by qRT-PCR
2.4. Metabolic Analysis of Seeds Treated with GA3
2.5. Integrative Analysis of DEGs and Metabolites Involved Starch and Sucrose Metabolism in Seeds Treated with GA3
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Seed Treatments
4.2. Seed Germination Assays
4.3. Samples for Transcriptomic and Metabolomic Analyses
4.4. RNA Extraction, Quality Control and RNA-Seq
4.5. De novo Assembly and Functional Annotation
4.6. Validation of Transcriptomic Data for Real-Time Quantitative Reverse Transcription PCR (qRT-PCR)
4.7. Metabolite Extraction and Metabolic Spectrum Analysis
4.8. Metabolic Pathway Construction
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oracz, K.; Karpinski, S. Phytohormones Signaling Pathways and ROS Involvement in Seed Germination. Front. Plant Sci. 2016, 7, 864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.K.; Ariizumi, T.; Steber, C.M. Biology in the Dry Seed: Transcriptome Changes Associated with Dry Seed Dormancy and Dormancy Loss in the Arabidopsis GA-Insensitive sleepy1-2 Mutant. Front. Plant Sci. 2017, 8, 2158. [Google Scholar] [CrossRef]
- Tognacca, R.S.; Servi, L.; Hernando, C.E.; Saura-Sanchez, M.; Yanovsky, M.J.; Petrillo, E.; Botto, J.F. Alternative Splicing Regulation During Light-Induced Germination of Arabidopsis thaliana Seeds. Front. Plant Sci. 2019, 10, 1076. [Google Scholar] [CrossRef] [PubMed]
- Shu, K.; Liu, X.D.; Xie, Q.; He, Z.H. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Mol. Plant 2016, 9, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Han, J.G.; Mao, P.S. Forage Seed Science; China Agricultural University Press: Beijing, China, 2011. [Google Scholar]
- Skordilis, A.; Thanos, C.A. Comparative Ecophysiology of Seed Germination Strategies in the Seven Pine Species Naturally Growing in Greece. In Basic and Applied Aspects of Seed Biology: Proceedings of the Fifth International Workshop on Seeds, Reading, 1995; Ellis, R.H., Black, M., Murdoch, A.J., Hong, T.D., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 623–632. [Google Scholar] [CrossRef]
- Leymarie, J.; Vitkauskaité, G.; Hoang, H.H.; Gendreau, E.; Chazoule, V.; Meimoun, P.; Corbineau, F.; El-Maarouf-Bouteau, H.; Bailly, C. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol. 2012, 53, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Stawska, M.; Oracz, K. phyB and HY5 are Involved in the Blue Light-Mediated Alleviation of Dormancy of Arabidopsis Seeds Possibly via the Modulation of Expression of Genes Related to Light, GA, and ABA. Int. J. Mol. Sci. 2019, 20, 5882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Liu, S.; Lin, R. The role of light in regulating seed dormancy and germination. J. Integr. Plant Biol. 2020, 62, 1310–1326. [Google Scholar] [CrossRef]
- Oh, E.; Kim, J.; Park, E.; Kim, J.I.; Kang, C.; Choi, G. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 2004, 16, 3045–3058. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.G.; Lee, K.; Seo, P.J. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy. Plant Mol. Biol. 2015, 87, 371–381. [Google Scholar] [CrossRef]
- Bewley, J.D.; Black, M. Seeds: Physiology of Development and Germination; Plenum Press: New York, NY, USA, 1994. [Google Scholar]
- Dave, A.; Vaistij, F.E.; Gilday, A.D.; Penfield, S.D.; Graham, I.A. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid. J. Exp. Bot. 2016, 67, 2277–2284. [Google Scholar] [CrossRef] [Green Version]
- Ueguchi-Tanaka, M.; Nakajima, M.; Motoyuki, A.; Matsuoka, M. Gibberellin receptor and its role in gibberellin signaling in plants. Annu. Rev. Plant Biol. 2007, 58, 183–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, J.; Murase, K.; Rieu, I.; Zentella, R.; Zhang, Z.L.; Powers, S.J.; Gong, F.; Phillips, A.L.; Hedden, P.; Sun, T.P.; et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 2006, 18, 3399–3414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalil-Ur-Rehman, M.; Sun, L.; Li, C.X.; Faheem, M.; Wang, W.; Tao, J.M. Comparative RNA-seq based transcriptomic analysis of bud dormancy in grape. BMC Plant Biol. 2017, 17, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchum, M.G.; Yamaguchi, S.; Hanada, A.; Kuwahara, A.; Yoshioka, Y.; Kato, T.; Tabata, S.; Kamiya, Y.; Sun, T.P. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J. 2006, 45, 804–818. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K.; Ueguchi-Tanaka, M.; Matsuoka, M. GID1-mediated gibberellin signaling in plants. Trends Plant Science 2008, 13, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jiang, Z.; Liu, S.; Lin, R. Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis. New Phytol. 2020, 225, 1593–1605. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, G.; Jing, Y.; Tang, W.; Lin, R. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis. Nat. Commun. 2016, 7, 12377. [Google Scholar] [CrossRef]
- Wang, W.; Su, X.; Tian, Z.; Liu, Y.; Zhou, Y.; He, M. Transcriptome profiling provides insights into dormancy release during cold storage of Lilium pumilum. BMC Genom. 2018, 19, 196. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, W.; Gao, Z.; Wen, L.; Huo, X.; Cai, B.; Zhang, Z. Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA4. Hortic. Res. 2015, 2, 15046. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Hu, X.; Wang, Y. Study on Seed Dormancy Mechanism and Breaking Technique of Leymus chinensis. Acta Bot. Boreali-Occident. Sin. 2010, 30, 120–125. [Google Scholar]
- Yi, J. Studies on dormancy physiology and germination rate of Leymus chinensis seeds. Grassl. China 1994, 6, 1–6. [Google Scholar]
- Ma, H.Y.; Liang, Z.W.; Wang, Z.C.; Chen, Y.; Huang, L.H.; Yang, F. Lemmas and endosperms significantly inhibited germination of Leymus chinensis (Trin.) Tzvel. (Poaceae). J. Arid Environ. 2008, 72, 573–578. [Google Scholar] [CrossRef]
- Liu, S.; Liu, P.; Yang, W.; Qi, D.; Li, X.; Liu, G. The identification and expression analysis of genes related to seed germination in Leymus chinensis. Acta Prataculturae Sin. 2018, 27, 58–66. [Google Scholar]
- Liu, G. Leymus chinensis Germplasm Resources Research; Science Press: Beijing, China, 2011. [Google Scholar]
- Lin, J.; Sheng, H.; Shuai, S.; Ying, W.; Chunsheng, M.; Zhuolin, L.; Lixin, Q. Ecological Responses of Different Maturity Leymus chinensis Seeds to Soil Burial Depths in Songnen Grassland. Acta Agrestia Sin. 2014, 22, 52–56. [Google Scholar]
- Cui, S. Effects of Exogenous Gibberellic Acid (GA3) on Growth and Biomass of Leymus chinensis. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2004. [Google Scholar]
- Ma, H.; Liang, Z. (Eds.) Mechanical and physical stress of the outer mites significantly inhibited the germination of Leymus chinensis seeds. In National Symposium on Plant Physiology and Molecular Biology; Chinese Society of Plant Biology: Zhanjiang, China, 2005. [Google Scholar]
- Wolny, E.; Betekhtin, A.; Rojek, M.; Braszewska-Zalewska, A.; Lusinska, J.; Hasterok, R. Germination and the Early Stages of Seedling Development in Brachypodium distachyon. Int. J. Mol. Sci. 2018, 19, 2916. [Google Scholar] [CrossRef] [Green Version]
- Nietzel, T.; Mostertz, J.; Ruberti, C.; Nee, G.; Fuchs, P.; Wagner, S.; Moseler, A.; Muller-Schussele, S.J.; Benamar, A.; Poschet, G.; et al. Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proc. Natl. Acad. Sci. USA 2020, 117, 741–751. [Google Scholar] [CrossRef]
- Debeaujon, I.; Léon-Kloosterziel, K.M.; Koornneef, M. Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiol. 2001, 122, 403–414. [Google Scholar] [CrossRef] [Green Version]
- He, X.Q.; Wang, Y.R.; Hu, X.W.; Baskin, C.C.; Baskin, J.M.; Lv, Y.Y. Seed dormancy and dormancy-breaking methods in Leymus chinensis (Trin.) Tzvel. (Poaceae). Grass Forage Sci. 2016, 71, 641–648. [Google Scholar] [CrossRef]
- Yu, H. The Seed Dormancy Mechanisms and Germinating Conditions of Taxus chinensis var. mairei. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2009. [Google Scholar]
- Sun, N.; Chen, L.; Liu, X.; Lu, X.; Xing, L. The Effects of Germination Inhibitors Contained in Torreya grandis Seeds on Seed Germination. J. Huangshan Univ. 2018, 18, 44–47. [Google Scholar]
- Polacco, J.C.; Mazzafera, P.; Tezotto, T. Opinion: Nickel and urease in plants: Still many knowledge gaps. Plant Sci. 2013, 199–200, 79–90. [Google Scholar] [CrossRef]
- Van Etten, C.H.; Kwolek, W.F.; Peters, J.E.; Barclay, A.S. Plant seeds as protein sources of food or feed. Evaluation based on amino acid composition of 379 species. J. Agric. Food Chem. 1967, 15, 1077–1089. [Google Scholar] [CrossRef]
- King, J.E.; Gifford, D.J. Amino Acid Utilization in Seeds of Loblolly Pine during Germination and Early Seedling Growth (I. Arginine and Arginase Activity). Plant Physiol. 1997, 113, 1125–1135. [Google Scholar] [CrossRef] [Green Version]
- Macovei, A.; Pagano, A.; Cappuccio, M.; Gallotti, L.; Dondi, D.; De Sousa Araujo, S.; Fevereiro, P.; Balestrazzi, A. A Snapshot of the Trehalose Pathway During Seed Imbibition in Medicago truncatula Reveals Temporal- and Stress-Dependent Shifts in Gene Expression Patterns Associated with Metabolite Changes. Front. Plant Sci. 2019, 10, 1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakabayashi, T.; Joseph, B.; Yasumoto, S.; Akashi, T.; Aoki, T.; Harada, K.; Muranaka, S.; Bamba, T.; Fukusaki, E.; Takeuchi, Y.; et al. Planteose as a storage carbohydrate required for early stage of germination of Orobanche minor and its metabolism as a possible target for selective control. J. Exp. Bot. 2015, 66, 3085–3097. [Google Scholar] [CrossRef] [Green Version]
- Lunn, G.D.; Major, B.J.; Kettlewell, P.S.; Scott, R.K. Mechanisms Leading to Excess Alpha-Amylase Activity in Wheat (Triticum aestivum, L.) Grain in the UK. J. Cereal Sci. 2001, 33, 313–329. [Google Scholar] [CrossRef]
- Li, Q.; Yu, H.; Zhou, F.; Guo, H.; Xia, X.; Li, F. Physiological and Biochemical Characteristics of Taxus chinensis var. mairei Seeds in Dormancy Releasing Process. Guizhou Agric. Sci. 2012, 40, 26–29. [Google Scholar]
- Sun, H.; Zhang, P.; Shen, H. Seed Dormancy Cause of Oplopanax elatus Revealed by in vitro Culture of Excised Embryos. Seed 2006, 25, 17–23. [Google Scholar]
- Liu, J.; Zhang, P.; Shen, H.; Zhang, Y.; Fan, S. Factors Influencing Seed Germination of Oplopanax elatus Nakai. Chin. Bull. Bot. 2005, 22, 183–189. [Google Scholar]
- Li, H.S. Modern Plant Physiology, 3rd ed.; Higher Education Press: Beijing, China, 2012. [Google Scholar]
- Jones, H.D.; Smith, S.J.; Desikan, R.; Plakidou-Dymock, S.; Lovegrove, A.; Hooley, R. Heterotrimeric G proteins are implicated in gibberellin induction of a-amylase gene expression in wild oat aleurone. Plant Cell 1998, 10, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Gubler, F.; Jacobsen, J.V. Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene. Plant Cell 1992, 4, 1435–1441. [Google Scholar] [CrossRef] [Green Version]
- Kubicek, C.P.; Seidl, V.; Seiboth, B. Plant cell wall and chitin degradation. In Cellulose and Molecular Biology of Filamentous Fungi; Borkovish, K.A., Ebbole, D.J., Eds.; ASM Press: Washington, DC, USA, 2010. [Google Scholar]
- Li, Z.G.; Luo, L.J.; Zhu, L.P. Involvement of trehalose in hydrogen sulfide donor sodium hydrosulfide-induced the acquisition of heat tolerance in maize (Zea mays L.) seedlings. Bot. Stud. 2014, 55, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thevelein, J.M.; den Hollander, J.A.; Shulman, R.G. Changes in the activity and properties of trehalase during early germination of yeast ascospores: Correlation with trehalose breakdown as studied by in vivo 13C NMR. Proc. Natl. Acad. Sci. USA 1982, 79, 3503–3507. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, P.E.; Douds, D.D., Jr.; Becard, G.; Shachar-Hill, Y. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 1999, 120, 587–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Li, J.; Niu, J.; Wang, R.; Song, J.; Lv, J.; Zong, X.; Wang, S. Comparative Study on Gibberellin and Chemical Reagent on Effect of Germination Rate and Vigor of Leymus chinensis. Southwest China J. Agric. Sci. 2014, 27, 2687–2691. [Google Scholar]
- Shengyong, H.; Yong, G.; Fei, W.; Zhiying, M.; Yu, Z. Effect of salt stress on germination of Bromus stamineus and Bromus inermis cv. Xilinguole. J. Plant Ecol. 2007, 31, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Cai, Y.; Zhang, L.; Yan, X.; Cheng, L.; Qi, D.; Zhou, Q.; Li, X.; Liu, G. Transcriptome analysis reveals common and distinct mechanisms for sheepgrass (Leymus chinensis) responses to defoliation compared to mechanical wounding. PLoS ONE 2014, 9, e89495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, B.; Mei, Z.; Zeng, C.; Liu, S. metaX: A flexible and comprehensive software for processing metabolomics data. BMC Bioinform. 2017, 18, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Zhang, P.; Wang, F.; Li, R.; Liu, J.; Wang, Q.; Liu, W.; Wang, B.; Hu, G. Integrated Analysis of the Transcriptome and Metabolome Revealed Candidate Genes Involved in GA3-Induced Dormancy Release in Leymus chinensis Seeds. Int. J. Mol. Sci. 2021, 22, 4161. https://doi.org/10.3390/ijms22084161
Li B, Zhang P, Wang F, Li R, Liu J, Wang Q, Liu W, Wang B, Hu G. Integrated Analysis of the Transcriptome and Metabolome Revealed Candidate Genes Involved in GA3-Induced Dormancy Release in Leymus chinensis Seeds. International Journal of Molecular Sciences. 2021; 22(8):4161. https://doi.org/10.3390/ijms22084161
Chicago/Turabian StyleLi, Bing, Pan Zhang, Fengdan Wang, Ran Li, Jian Liu, Qiannan Wang, Wei Liu, Bo Wang, and Guofu Hu. 2021. "Integrated Analysis of the Transcriptome and Metabolome Revealed Candidate Genes Involved in GA3-Induced Dormancy Release in Leymus chinensis Seeds" International Journal of Molecular Sciences 22, no. 8: 4161. https://doi.org/10.3390/ijms22084161
APA StyleLi, B., Zhang, P., Wang, F., Li, R., Liu, J., Wang, Q., Liu, W., Wang, B., & Hu, G. (2021). Integrated Analysis of the Transcriptome and Metabolome Revealed Candidate Genes Involved in GA3-Induced Dormancy Release in Leymus chinensis Seeds. International Journal of Molecular Sciences, 22(8), 4161. https://doi.org/10.3390/ijms22084161