Molecular Pathways of Cellular Senescence and Placental Aging in Late Fetal Growth Restriction and Stillbirth
Abstract
:1. Introduction
2. Biology of Cellular Senescence and Aging
3. Role of Physiological Placental Aging in Human Parturition
4. Role of Pathological Placental Aging in the Genesis of Obstetric Complications
5. Causes and Biomarkers of Placental Senescence and Aging
6. Pathways of Placental Aging in Late Fetal Growth Restriction
7. Pathways of Placental Aging in Stillbirth
8. Implications for Future Research of Late Placental Pathologies
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sultana, Z.; Maiti, K.; Dedman, L.; Smith, R. Is There a Role for Placental Senescence in the Genesis of Obstetric Complications and Fetal Growth Restriction? Am. J. Obstet. Gynecol. 2018, 218, S762–S773. [Google Scholar] [CrossRef]
- Maiti, K.; Sultana, Z.; Aitken, R.J.; Morris, J.; Park, F.; Andrew, B.; Riley, S.C.; Smith, R. Evidence That Fetal Death Is Associated with Placental Aging. Am. J. Obstet. Gynecol. 2017, 217, 441.e1–441.e14. [Google Scholar] [CrossRef] [Green Version]
- Paules, C.; Dantas, A.P.; Miranda, J.; Crovetto, F.; Eixarch, E.; Rodriguez-Sureda, V.; Dominguez, C.; Casu, G.; Rovira, C.; Nadal, A.; et al. Premature Placental Aging in Term Small-for-Gestational-Age and Growth-Restricted Fetuses. Ultrasound Obstet. Gynecol. 2019, 53, 615–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueras, F.; Caradeux, J.; Crispi, F.; Eixarch, E.; Peguero, A.; Gratacos, E. Diagnosis and Surveillance of Late-Onset Fetal Growth Restriction. Am. J. Obstet. Gynecol. 2018, 218, S790–S802.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Ganzevoort, W. Consensus Definition of Fetal Growth Restriction: A Delphi Procedure. Ultrasound Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef]
- Coutinho, C.M.; Melchiorre, K.; Thilaganathan, B. Stillbirth at Term: Does Size Really Matter? Int. J. Gynaecol. Obstet. Off. Organ. Int. Fed. Gynaecol. Obstet. 2020, 150, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Man, J.; Hutchinson, J.C.; Ashworth, M.; Heazell, A.E.; Levine, S.; Sebire, N.J. Effects of Intrauterine Retention and Postmortem Interval on Body Weight Following Intrauterine Death: Implications for Assessment of Fetal Growth Restriction at Autopsy. Ultrasound Obstet. Gynecol. 2016, 48, 574–578. [Google Scholar] [CrossRef]
- Gardosi, J. Counterpoint. Am. J. Obstet. Gynecol. 2019, 220, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poon, L.C.Y.; Volpe, N.; Muto, B.; Syngelaki, A.; Nicolaides, K.H. Birthweight with Gestation and Maternal Characteristics in Live Births and Stillbirths. Fetal Diagn. Ther. 2012, 32, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.C.Y.; Tan, M.Y.; Yerlikaya, G.; Syngelaki, A.; Nicolaides, K.H. Birth Weight in Live Births and Stillbirths. Ultrasound Obstet. Gynecol. 2016, 48, 602–606. [Google Scholar] [CrossRef]
- Gardosi, J.; Kady, S.M.; McGeown, P.; Francis, A.; Tonks, A. Classification of Stillbirth by Relevant Condition at Death (ReCoDe): Population Based Cohort Study. BMJ 2005, 331, 1113–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCowan, L.M.; Figueras, F.; Anderson, N.H. Evidence-Based National Guidelines for the Management of Suspected Fetal Growth Restriction: Comparison, Consensus, and Controversy. Am. J. Obstet. Gynecol. 2018, 218, S855–S868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ego, A.; Zeitlin, J.; Batailler, P.; Cornec, S.; Fondeur, A.; Baran-Marszak, M.; Jouk, P.-S.; Debillon, T.; Cans, C. Stillbirth Classification in Population-Based Data and Role of Fetal Growth Restriction: The Example of RECODE. BMC Pregnancy Childbirth 2013, 13, 182. [Google Scholar] [CrossRef] [PubMed]
- Burton, D.G.A. Cellular Senescence, Ageing and Disease. AGE 2009, 31, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedarko, N.S. The Biology of Aging and Frailty. Clin. Geriatr. Med. 2011, 27, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holliday, R. Understanding Ageing; Cambridge University Press: Cambridge, UK, 1995; ISBN 978-0-521-47802-1. [Google Scholar]
- Lloyd, D.; Aon, M.A.; Cortassa, S. Why Homeodynamics, Not Homeostasis? Sci. World J. 2001, 1, 133–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome. Biol. 2013, 14, 3156. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, T. Oxidative Damage and Fragmentation of Mitochondrial DNA in Cellular Apoptosis. Biosci. Rep. 1997, 17, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Sultana, Z.; Maiti, K.; Aitken, J.; Morris, J.; Dedman, L.; Smith, R. Oxidative Stress, Placental Ageing-Related Pathologies and Adverse Pregnancy Outcomes. Am. J. Reprod. Immunol. 2017, 77. [Google Scholar] [CrossRef] [Green Version]
- Roos, W.P.; Kaina, B. DNA Damage-Induced Cell Death by Apoptosis. Trends Mol. Med. 2006, 12, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Biron-Shental, T.; Sadeh-Mestechkin, D.; Amiel, A. Telomere Homeostasis in IUGR Placentas—A Review. Placenta 2016, 39, 21–23. [Google Scholar] [CrossRef]
- Role of Oxidative Stress in Telomere Length Regulation and Replicative Senescence—VON ZGLINICKI—2000—Annals of the New York Academy of Sciences—Wiley Online Library. Available online: https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.2000.tb06639.x (accessed on 21 February 2021).
- Rosario, F.J.; Powell, T.L.; Gupta, M.B.; Cox, L.; Jansson, T. MTORC1 Transcriptional Regulation of Ribosome Subunits, Protein Synthesis, and Molecular Transport in Primary Human Trophoblast Cells. Front. Cell Dev. Biol. 2020, 8, 583801. [Google Scholar] [CrossRef]
- Four Faces of Cellular Senescence. Available online: https://rupress.org/jcb/article/192/4/547/36360 (accessed on 21 February 2021).
- Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The Essence of Senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [Green Version]
- Coppé, J.-P.; Desprez, P.-Y.; Krtolica, A.; Campisi, J. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annu. Rev. Pathol. Mech. Dis. 2010, 5, 99–118. [Google Scholar] [CrossRef] [Green Version]
- van Deursen, J.M. The Role of Senescent Cells in Ageing. Nature 2014, 509, 439–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campisi, J.; d’Adda di Fagagna, F. Cellular Senescence: When Bad Things Happen to Good Cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Narita, M.; Nuñez, S.; Heard, E.; Narita, M.; Lin, A.W.; Hearn, S.A.; Spector, D.L.; Hannon, G.J.; Lowe, S.W. Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence. Cell 2003, 113, 703–716. [Google Scholar] [CrossRef] [Green Version]
- Huppertz, B.; Herrler, A. Regulation of proliferation and apoptosis during development of the preimplantation embryo and the placenta. Birth Defects Res. C Embryo Today 2005, 75, 249–261. [Google Scholar] [CrossRef]
- Benirschke, K.; Kaufmann, P.; Baergen, R. Pathology of the Human Placenta, 5th ed.; Springer: New York, NY, USA, 2006; ISBN 978-0-387-26742-5. [Google Scholar]
- Huppertz, B. Placental Origins of Preeclampsia Challenging the Current Hypothesis. Hypertension 2008, 51, 970–975. [Google Scholar] [CrossRef]
- Heazell, A.E.P.; Crocker, I.P. Live and Let Die—Regulation of Villous Trophoblast Apoptosis in Normal and Abnormal Pregnancies. Placenta 2008, 29, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, B.; Kadyrov, M.; Kingdom, J.C.P. Apoptosis and Its Role in the Trophoblast. Am. J. Obstet. Gynecol. 2006, 195, 29–39. [Google Scholar] [CrossRef]
- Cuffe, J.S.; Xu, Z.C.; Perkins, A.V. Biomarkers of Oxidative Stress in Pregnancy Complications. Biomark. Med. 2017, 11, 295–306. [Google Scholar] [CrossRef]
- Itahana, K.; Campisi, J.; Dimri, G.P. Methods to Detect Biomarkers of Cellular Senescence. In Biological Aging: Methods and Protocols; Methods in Molecular BiologyTM; Tollefsbol, T.O., Ed.; Humana Press: Totowa, NJ, USA, 2007; pp. 21–31. ISBN 978-1-59745-361-5. [Google Scholar]
- Cox, L.S.; Redman, C. The Role of Cellular Senescence in Ageing of the Placenta. Placenta 2017, 52, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Bonney, E.A.; Krebs, K.; Saade, G.; Kechichian, T.; Trivedi, J.; Huaizhi, Y.; Menon, R. Differential Senescence in Feto-Maternal Tissues during Mouse Pregnancy. Placenta 2016, 43, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Menon, R.; Behnia, F.; Polettini, J.; Saade, G.R.; Campisi, J.; Velarde, M. Placental Membrane Aging and HMGB1 Signaling Associated with Human Parturition. Aging 2016, 8, 216–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brosens, I.; Pijnenborg, R.; Vercruysse, L.; Romero, R. The “Great Obstetrical Syndromes” Are Associated with Disorders of Deep Placentation. Am. J. Obstet. Gynecol. 2011, 204, 193–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brosens, I.; Ćurčić, A.; Vejnović, T.; Gargett, C.E.; Brosens, J.J.; Benagiano, G. The Perinatal Origins of Major Reproductive Disorders in the Adolescent: Research Avenues. Placenta 2015, 36, 341–344. [Google Scholar] [CrossRef]
- Burton, G.J.; Yung, H.W.; Murray, A.J. Mitochondrial—Endoplasmic Reticulum Interactions in the Trophoblast: Stress and Senescence. Placenta 2017, 52, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Holland, O.; Dekker Nitert, M.; Gallo, L.A.; Vejzovic, M.; Fisher, J.J.; Perkins, A.V. Review: Placental Mitochondrial Function and Structure in Gestational Disorders. Placenta 2017, 54, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biron-Shental, T.; Sukenik-Halevy, R.; Sharon, Y.; Goldberg-Bittman, L.; Kidron, D.; Fejgin, M.D.; Amiel, A. Short Telomeres May Play a Role in Placental Dysfunction in Preeclampsia and Intrauterine Growth Restriction. Am. J. Obstet. Gynecol. 2010, 202. [Google Scholar] [CrossRef]
- Heazell, A.E.P.; Sharp, A.N.; Baker, P.N.; Crocker, I.P. Intra-Uterine Growth Restriction Is Associated with Increased Apoptosis and Altered Expression of Proteins in the P53 Pathway in Villous Trophoblast. Apoptosis Int. J. Program. Cell Death 2011, 16, 135–144. [Google Scholar] [CrossRef]
- Beard, S.; Pritchard, N.; Binder, N.; Schindler, K.; De Alwis, N.; Kaitu’u-Lino, T.J.; Tong, S.; Hannan, N.J. Aurora Kinase MRNA Expression Is Reduced with Increasing Gestational Age and in Severe Early Onset Fetal Growth Restriction. Placenta 2020, 95, 53–61. [Google Scholar] [CrossRef]
- Tasta, O.; Swiader, A.; Grazide, M.-H.; Rouahi, M.; Parant, O.; Vayssière, C.; Bujold, E.; Salvayre, R.; Guerby, P.; Negre-Salvayre, A. A Role for 4-Hydroxynonenal in Premature Placental Senescence in Preeclampsia and Intrauterine Growth Restriction. Free Radic. Biol. Med. 2021. [Google Scholar] [CrossRef]
- Miranda, J.; Romero, R.; Korzeniewski, S.J.; Schwartz, A.G.; Chaemsaithong, P.; Stampalija, T.; Yeo, L.; Dong, Z.; Hassan, S.S.; Chrousos, G.P.; et al. The Anti-Aging Factor α-Klotho during Human Pregnancy and Its Expression in Pregnancies Complicated by Small-for-Gestational-Age Neonates and/or Preeclampsia. J. Matern. Fetal Neonatal Med. 2014, 27, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Bowen, J.M.; Chamley, L.; Keelan, J.A.; Mitchell, M.D. Cytokines of the Placenta and Extra-Placental Membranes: Roles and Regulation during Human Pregnancy and Parturition. Placenta 2002, 23, 257–273. [Google Scholar] [CrossRef]
- Menon, R.; Bonney, E.A.; Condon, J.; Mesiano, S.; Taylor, R.N. Novel Concepts on Pregnancy Clocks and Alarms: Redundancy and Synergy in Human Parturition. Hum. Reprod. Update 2016, 22, 535–560. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.; Dey, S.K.; Fisher, S.J. Preterm Labor: One Syndrome, Many Causes. Science 2014, 345, 760–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, R.; Espinoza, J.; Kusanovic, J.; Gotsch, F.; Hassan, S.; Erez, O.; Chaiworapongsa, T.; Mazor, M. The Preterm Parturition Syndrome. BJOG Int. J. Obstet. Gynaecol. 2006, 113, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Davy, P.; Nagata, M.; Bullard, P.; Fogelson, N.S.; Allsopp, R. Fetal Growth Restriction Is Associated with Accelerated Telomere Shortening and Increased Expression of Cell Senescence Markers in the Placenta. Placenta 2009, 30, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, R.; Fortunato, S.J.; Yu, J.; Milne, G.L.; Sanchez, S.; Drobek, C.O.; Lappas, M.; Taylor, R.N. Cigarette Smoke Induces Oxidative Stress and Apoptosis in Normal Term Fetal Membranes. Placenta 2011, 32, 317–322. [Google Scholar] [CrossRef]
- Dimri, G.P.; Lee, X.; Basile, G.; Acosta, M.; Scott, G.; Roskelley, C.; Medrano, E.E.; Linskens, M.; Rubelj, I.; Pereira-Smith, O. A Biomarker That Identifies Senescent Human Cells in Culture and in Aging Skin in Vivo. Proc. Natl. Acad. Sci. USA 1995, 92, 9363–9367. [Google Scholar] [CrossRef] [Green Version]
- de Jesus, B.B.; Blasco, M.A. Assessing Cell and Organ Senescence Biomarkers. Circ. Res. 2012, 111, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Coppé, J.-P.; Patil, C.K.; Rodier, F.; Sun, Y.; Muñoz, D.P.; Goldstein, J.; Nelson, P.S.; Desprez, P.-Y.; Campisi, J. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the P53 Tumor Suppressor. PLoS Biol. 2008, 6, e301. [Google Scholar] [CrossRef]
- Ganzevoort, W.; Thornton, J.G.; Marlow, N.; Thilaganathan, B.; Arabin, B.; Prefumo, F.; Lees, C.; Wolf, H. Comparative Analysis of 2-Year Outcomes in GRIT and TRUFFLE Trials. Ultrasound Obstet. Gynecol. 2020, 55, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on Pre-Eclampsia: A Pragmatic Guide for First-Trimester Screening and Prevention. Int. J. Gynaecol. Obstet. Off. Organ. Int. Fed. Gynaecol. Obstet. 2019, 145 (Suppl. 1), 1–33. [Google Scholar] [CrossRef] [Green Version]
- Figueras, F.; Gratacós, E. Update on the Diagnosis and Classification of Fetal Growth Restriction and Proposal of a Stage-Based Management Protocol. Fetal Diagn. Ther. 2014, 36, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Basuki, T.R.; Caradeux, J.; Eixarch, E.; Gratacós, E.; Figueras, F. Longitudinal Assessment of Abdominal Circumference versus Estimated Fetal Weight in the Detection of Late Fetal Growth Restriction. Fetal Diagn. Ther. 2019, 45, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Caradeux, J.; Eixarch, E.; Mazarico, E.; Basuki, T.; Gratacos, E.; Figueras, F. Second to Third Trimester Longitudinal Growth Assessment for the Prediction of SGA and Late FGR: Longitudinal Growth Assessment and Late FGR. Ultrasound Obstet. Gynecol 2017. [Google Scholar] [CrossRef] [Green Version]
- Lackman, F.; Capewell, V.; Gagnon, R.; Richardson, B. Fetal Umbilical Cord Oxygen Values and Birth to Placental Weight Ratio in Relation to Size at Birth. Am. J. Obstet. Gynecol. 2001, 185, 674–682. [Google Scholar] [CrossRef]
- Franklin, A.D.; Saqibuddin, J.; Stephens, K.; Birkett, R.; Marsden, L.; Ernst, L.M.; Mestan, K.K. Cord Blood Alpha Klotho Is Decreased in Small for Gestational Age Preterm Infants with Placental Lesions of Accelerated Aging. Placenta 2019, 87, 1–7. [Google Scholar] [CrossRef]
- Biron-Shental, T.; Kidron, D.; Sukenik-Halevy, R.; Goldberg-Bittman, L.; Sharony, R.; Fejgin, M.D.; Amiel, A. TERC Telomerase Subunit Gene Copy Number in Placentas from Pregnancies Complicated with Intrauterine Growth Restriction. Early Hum. Dev. 2011, 87, 73–75. [Google Scholar] [CrossRef]
- Levy, R.; Smith, S.D.; Yusuf, K.; Huettner, P.C.; Kraus, F.T.; Sadovsky, Y.; Nelson, D.M. Trophoblast Apoptosis from Pregnancies Complicated by Fetal Growth Restriction Is Associated with Enhanced P53 Expression. Am. J. Obstet. Gynecol. 2002, 186, 1056–1061. [Google Scholar] [CrossRef]
- Erel, C.T.; Dane, B.; Calay, Z.; Kaleli, S.; Aydinli, K. Apoptosis in the Placenta of Pregnancies Complicated with IUGR. Int. J. Gynecol. Obstet. 2001, 73, 229–235. [Google Scholar] [CrossRef]
- Biron-Shental, T.; Sukenik-Halevy, R.; Sharon, Y.; Laish, I.; Fejgin, M.D.; Amiel, A. Telomere Shortening in Intra Uterine Growth Restriction Placentas. Early Hum. Dev. 2014, 90, 465–469. [Google Scholar] [CrossRef]
- Larsen, B.D.; Sørensen, C.S. The Caspase-Activated DNase: Apoptosis and Beyond. FEBS J. 2017, 284, 1160–1170. [Google Scholar] [CrossRef]
- Figueras, F.; Oros, D.; Cruz-Martinez, R.; Padilla, N.; Hernandez-Andrade, E.; Botet, F.; Costas-Moragas, C.; Gratacos, E. Neurobehavior in Term, Small-for-Gestational Age Infants with Normal Placental Function. Pediatrics 2009, 124, e934–e941. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.T.; Dasinger, J.H.; Intapad, S. Fetal Programming and Cardiovascular Pathology. In Comprehensive Physiology; Terjung, R., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 997–1025. ISBN 978-0-470-65071-4. [Google Scholar]
- Van Wyk, L.; Boers, K.E.; van der Post, J.A.M.; van Pampus, M.G.; van Wassenaer, A.G.; van Baar, A.L.; Spaanderdam, M.E.A.; Becker, J.H.; Kwee, A.; Duvekot, J.J.; et al. Effects on (Neuro)Developmental and Behavioral Outcome at 2 Years of Age of Induced Labor Compared with Expectant Management in Intrauterine Growth-Restricted Infants: Long-Term Outcomes of the DIGITAT Trial. Am. J. Obstet. Gynecol. 2012, 206, 406.e1–406.e7. [Google Scholar] [CrossRef] [PubMed]
- Braun, T. Intrauterine programming—The role and importance of the placenta. Gynakologe 2020, 53, 416–426. [Google Scholar] [CrossRef]
- Crispi, F.; Miranda, J.; Gratacós, E. Long-Term Cardiovascular Consequences of Fetal Growth Restriction: Biology, Clinical Implications, and Opportunities for Prevention of Adult Disease. Am. J. Obstet. Gynecol. 2018, 218, S869–S879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.; Maiti, K.; Aitken, R.J. Unexplained Antepartum Stillbirth: A Consequence of Placental Aging? Placenta 2013, 34, 310–313. [Google Scholar] [CrossRef]
- ACOG Practice Bulletin No. 102: Management of Stillbirth. Obstet. Gynecol. 2009, 113, 748–761. [CrossRef] [Green Version]
- Silver, R.M.; Varner, M.W.; Reddy, U.; Goldenberg, R.; Pinar, H.; Conway, D.; Bukowski, R.; Carpenter, M.; Hogue, C.; Willinger, M.; et al. Work-up of Stillbirth: A Review of the Evidence. Am. J. Obstet. Gynecol. 2007, 196, 433–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flenady, V.; Frøen, J.F.; Pinar, H.; Torabi, R.; Saastad, E.; Guyon, G.; Russell, L.; Charles, A.; Harrison, C.; Chauke, L.; et al. An Evaluation of Classification Systems for Stillbirth. BMC Pregnancy Childbirth 2009, 9, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flenady, V.; Koopmans, L.; Middleton, P.; Frøen, J.F.; Smith, G.C.; Gibbons, K.; Coory, M.; Gordon, A.; Ellwood, D.; McIntyre, H.D.; et al. Major Risk Factors for Stillbirth in High-Income Countries: A Systematic Review and Meta-Analysis. Lancet Lond. Engl. 2011, 377, 1331–1340. [Google Scholar] [CrossRef]
- Ferrari, F.; Facchinetti, F.; Saade, G.; Menon, R. Placental Telomere Shortening in Stillbirth: A Sign of Premature Senescence? J. Matern. Fetal Neonatal Med. 2016, 29, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Engel, P.J.; Smith, R.; Brinsmead, M.W.; Bowe, S.J.; Clifton, V.L. Male Sex and Pre-Existing Diabetes Are Independent Risk Factors for Stillbirth. Aust. N. Z. J. Obstet. Gynaecol. 2008, 48, 375–383. [Google Scholar] [CrossRef]
- Korolchuk, V.I.; Saiki, S.; Lichtenberg, M.; Siddiqi, F.H.; Roberts, E.A.; Imarisio, S.; Jahreiss, L.; Sarkar, S.; Futter, M.; Menzies, F.M.; et al. Lysosomal Positioning Coordinates Cellular Nutrient Responses. Nat. Cell Biol. 2011, 13, 453–460. [Google Scholar] [CrossRef]
- Bouhours-Nouet, N.; May-Panloup, P.; Coutant, R.; de Casson, F.B.; Descamps, P.; Douay, O.; Reynier, P.; Ritz, P.; Malthièry, Y.; Simard, G. Maternal Smoking Is Associated with Mitochondrial DNA Depletion and Respiratory Chain Complex III Deficiency in Placenta. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E171–E177. [Google Scholar] [CrossRef] [Green Version]
- Garrabou, G.; Hernàndez, A.-S.; Catalán García, M.; Morén, C.; Tobías, E.; Córdoba, S.; López, M.; Figueras, F.; Grau, J.M.; Cardellach, F. Molecular Basis of Reduced Birth Weight in Smoking Pregnant Women: Mitochondrial Dysfunction and Apoptosis. Addict. Biol. 2016, 21, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, D.W.; Chiu, R.W.K. Sequencing of Circulating Cell-free DNA during Pregnancy. N. Engl. J. Med. 2018, 379, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Phillippe, M. Cell-Free Fetal DNA, Telomeres, and the Spontaneous Onset of Parturition. Reprod. Sci. 2015, 22, 1186–1201. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, M.; Nakayama, M.; Ida, S.; Kitajima, H.; Mitsuda, N.; Ozono, K.; Miyoshi, Y. Pathological Examination of the Placenta in Small for Gestational Age (SGA) Children with or without Postnatal Catch-up Growth. J. Matern. Fetal Neonatal Med. 2016, 29, 982–986. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, E.J.; Hiscock, R.J.; Robinson, A.J.; Hui, L.; Tong, S.; Dane, K.M.; Middleton, A.L.; Walker, S.P.; MacDonald, T.M. Appropriate-for-Gestational-Age Infants Who Exhibit Reduced Antenatal Growth Velocity Display Postnatal Catch-up Growth. PLoS ONE 2020, 15. [Google Scholar] [CrossRef] [PubMed]
Obstetric Complication | Markers |
---|---|
Preeclampsia | Short telomeres; telomere aggregation; dysfunction; reduced telomerase activity; senescence-associated secretory phenotype; increased expression p53, CDK, p16, and p21; increased aggregation of SAHF, and increased DNA oxidation of 8-OHdG |
Preterm birth | Short telomeres; increased expression of p53, p21, IL-6, and IL-8; and SA-ß-gal. The latter is mediated by activating the p38 mitogen-activated protein kinase (p 38 MAPK) pathway. |
Premature rupture of membranes | Oxidative DNA damage, senescence-associated secretory phenotype, and p38 MAPK |
Chorioamnionitis | Increased levels of gene encoding p21 (CDKN1A) and SA-ß-gal and downregulation of CDK and cyclins |
Fetal growth restriction | Short and decreased telomerase activity, length, downregulation of SIRT1, overexpression of p53, and increased activity of Caspase 3 and 9 |
Stillbirth | Short telomeres and decreased telomere activity and increased oxidative damage to DNA and lipids |
Fetal Growth Restriction | |
Inclusion | Inclusion should be based on ultrasound criteria SGA: EFW between 3–10 centile and normal Doppler indices (UtA, UA, and MCA) Early FGR: symptomatic < 32 weeks; EFW/AC< 3rd centile or AEDV; EFW/AC 3–10 centile with UtA PI > 95th centile, UA > 90th centile Late FGR: symptomatic > 32 weeks; EFW/AC< 3rd centile; EFW/AC 3–10 centile or reduced growth velocity (>2 quartiles) with CPR< 5 centile or UA > 95 centile Differentiate between early/late FGR/SGA with and without preeclampsia |
Exclusion | Congenital abnormalities, chromosomal abnormalities, TORCH infection, spontaneous preterm birth, premature rupture of membranes, other maternal infections, early neonatal sepsis, placental abruption, and diabetes |
Stillbirth | |
Inclusion | Unexplained stillbirth Differentiate between below/above 32 weeks and if with known ultrasound criteria of FGR (as above) Classify by birthweight: SGA weight < 10th centile, AGA weight 10th -90th centile, LGA > 90th centile |
Exclusion | Congenital abnormalities, chromosomal abnormalities, TORCH infection, spontaneous preterm birth, premature rupture of membranes, other maternal infections, fetal sepsis, intrapartum death, early neonatal death, any other known causes of fetal death, preeclampsia, diabetes, and placental abruption |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kajdy, A.; Modzelewski, J.; Cymbaluk-Płoska, A.; Kwiatkowska, E.; Bednarek-Jędrzejek, M.; Borowski, D.; Stefańska, K.; Rabijewski, M.; Torbé, A.; Kwiatkowski, S. Molecular Pathways of Cellular Senescence and Placental Aging in Late Fetal Growth Restriction and Stillbirth. Int. J. Mol. Sci. 2021, 22, 4186. https://doi.org/10.3390/ijms22084186
Kajdy A, Modzelewski J, Cymbaluk-Płoska A, Kwiatkowska E, Bednarek-Jędrzejek M, Borowski D, Stefańska K, Rabijewski M, Torbé A, Kwiatkowski S. Molecular Pathways of Cellular Senescence and Placental Aging in Late Fetal Growth Restriction and Stillbirth. International Journal of Molecular Sciences. 2021; 22(8):4186. https://doi.org/10.3390/ijms22084186
Chicago/Turabian StyleKajdy, Anna, Jan Modzelewski, Aneta Cymbaluk-Płoska, Ewa Kwiatkowska, Magdalena Bednarek-Jędrzejek, Dariusz Borowski, Katarzyna Stefańska, Michał Rabijewski, Andrzej Torbé, and Sebastian Kwiatkowski. 2021. "Molecular Pathways of Cellular Senescence and Placental Aging in Late Fetal Growth Restriction and Stillbirth" International Journal of Molecular Sciences 22, no. 8: 4186. https://doi.org/10.3390/ijms22084186
APA StyleKajdy, A., Modzelewski, J., Cymbaluk-Płoska, A., Kwiatkowska, E., Bednarek-Jędrzejek, M., Borowski, D., Stefańska, K., Rabijewski, M., Torbé, A., & Kwiatkowski, S. (2021). Molecular Pathways of Cellular Senescence and Placental Aging in Late Fetal Growth Restriction and Stillbirth. International Journal of Molecular Sciences, 22(8), 4186. https://doi.org/10.3390/ijms22084186