Synthesis, Characterization, Antibacterial Properties, and In Vitro Studies of Selenium and Strontium Co-Substituted Hydroxyapatite
Abstract
:1. Introduction
2. Results
2.1. Material Characterization
2.1.1. XRD Analysis
2.1.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.1.3. Raman Spectroscopy
2.1.4. XRF Spectrscopy
2.1.5. SEM
2.1.6. Ion Release Study
2.1.7. Zeta Potential
2.2. Biological Testing
2.2.1. In Vitro Bioactivity
2.2.2. Antibacterial Activity
2.2.3. Cytotoxicity Assay (Indirect Method)
3. Discussion
4. Materials and Methods
4.1. Materials
Synthesis of Se-HA and Se-Sr-HA
4.2. Physiochemical Characterization
4.2.1. XRD Analysis
4.2.2. Fourier Transform Infrared Spectroscopy (FTIR)
4.2.3. Raman Spectroscopy
4.2.4. Scanning Electron Microscopy-Energy-Dispersive X-ray Spectroscopy (SEM-EDS)
4.2.5. X-ray Fluorescence Spectroscopy (XRF)
4.2.6. Ion-Release Profile
4.2.7. Zeta Potential
4.3. Biological Studies
4.3.1. In Vitro Bioactivity in Simulated Body Fluid (SBF)
4.3.2. Antibacterial Studies
Disc Diffusion Method
Turbidity Test Using Optical Density Measurements
4.3.3. In Vitro Cytocompatibility (Indirect Method)
Extract Preparation
Cell Viability (WST-8) Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ratnayake, J.T.B.; Mucalo, M.; Dias, G.J. Substituted hydroxyapatites for bone regeneration: A review of current trends. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 1285–1299. [Google Scholar] [CrossRef] [PubMed]
- Allori, A.C.; Sailon, A.M.; Warren, S.M.; Dorozhkin, S.; Šupová, M.; Becker, J.; Lu, L.; Runge, M.B.; Zeng, H.; Yaszemski, M.J.; et al. Calcium phosphate as a key material for socially responsible tissue engineering. J. Mater. Sci. Mater. Med. 2016, 20, 259–273. [Google Scholar]
- Victor, S.P.; Sharma, C.P. Calcium Phosphates as Drug Delivery Systems. J. Biomater. Tissue Eng. 2012, 2, 269–279. [Google Scholar] [CrossRef]
- Bose, S.; Vu, A.A.; Emshadi, K.; Bandyopadhyay, A. Effects of polycaprolactone on alendronate drug release from Mg-doped hydroxyapatite coating on titanium. Mater. Sci. Eng. C 2018, 88, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Asri, R.I.M.; Harun, W.S.W.; Hassan, M.A.; Ghani, S.A.C.; Buyong, Z. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. Mater. 2016, 57, 95–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezhaveni, S.; Yuvakkumar, R.; Rajkumar, M.; Sundaram, N.M.; Rajendran, V. Preparation and characterization of nano-hydroxyapatite material for liver cancer cell treatment. J. Nanosci. Nanotechnol. 2013, 12, 1–8. [Google Scholar]
- Mao, D.; Li, Q.; Bai, N.; Dong, H.; Li, D. Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydr. Polym. 2018, 180, 104–111. [Google Scholar] [CrossRef]
- Kim, M.; Yeo, M.; Kim, M.; Kim, G. Biomimetic cellulose/calcium-deficient-hydroxyapatite composite scaffolds fabricated using an electric field for bone tissue engineering. RSC Adv. 2018, 8, 20637–20647. [Google Scholar] [CrossRef] [Green Version]
- Eliaz, N.; Metoki, N. Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials 2017, 10, 334. [Google Scholar] [CrossRef] [Green Version]
- Gopi, D.; Ramya, S.; Rajeswari, D.; Karthikeyan, P.; Kavitha, L. Strontium, cerium co-substituted hydroxyapatite nanoparticles: Synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies. Colloids Surf. A Physicochem. Eng. Asp. 2014, 451, 172–180. [Google Scholar] [CrossRef]
- Yanhua, W.; Hao, H.; Li, Y.; Zhang, S. Selenium-substituted hydroxyapatite nanoparticles and their in vivo antitumor effect on hepatocellular carcinoma. Colloids Surf. B Biointerfaces 2016, 140, 297–306. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Zhao, R.; Mao, H.; Yan, Y.; Pang, X. Antibacterial efficacy, corrosion resistance, and cytotoxicity studies of copper-substituted carbonated hydroxyapatite coating on titanium substrate. J. Mater. Sci. 2016, 50, 1688–1700. [Google Scholar] [CrossRef]
- López, E.O.; Rossi, A.L.; Pablo, L.; Freitas, R.O.; Mello, A.; Rossi, A.M. multiscale connections between morphology and chemistry in crystalline, zinc-substituted hydroxyapatite nanofilms designed for biomedical applications. Ceram. Int. 2018, 45, 793–804. [Google Scholar] [CrossRef]
- Zilm, M.E.; Yu, L.; Hines, W.A.; Wei, M. Magnetic properties and cytocompatibility of transition-metal-incorporated hydroxyapatite. Mater. Sci. Eng. C 2018, 87, 112–119. [Google Scholar] [CrossRef]
- Hidouri, M.; Dorozhkin, S.V.; Albeladi, N. Thermal behavior, sintering and mechanical characterization of multiple ion-substituted hydroxyapatite bioceramics. J. Inorg. Organomet. Polym. Mater. 2018, 29, 87–100. [Google Scholar] [CrossRef]
- Thian, E.S.; Huang, J.; Best, S.M.; Barber, Z.H.; Bonfield, W. Novel silicon-doped hydroxyapatite (Si-HA) for biomedical coatings: An in vitro study using acellular simulated body fluid. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 76, 326–333. [Google Scholar] [CrossRef]
- Šupová, M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015, 41, 9203–9231. [Google Scholar] [CrossRef]
- Li, M.; Xiao, X.; Liu, R.; Chen, C.; Huang, L. Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J. Mater. Sci. Mater. Med. 2008, 19, 797–803. [Google Scholar] [CrossRef]
- Lim, P.N.; Teo, E.Y.; Ho, B.; Tay, B.Y.; Thian, E.S. Effect of silver content on the antibacterial and bioactive properties of silver-substituted hydroxyapatite. J. Biomed. Mater. Res. Part A 2013, 101, 2456–2464. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, X.; Chai, Y.; Wang, Y. Synthesis and characterization of Zn2+ and SeO32− co-substituted nano-hydroxyapatite. Adv. Powder Technol. 2016, 27, 1857–1861. [Google Scholar] [CrossRef]
- Ravi, N.D.; Balu, R.; Sampath Kumar, T.S. Strontium-substituted calcium deficient hydroxyapatite nanoparticles: Synthesis, characterization, and antibacterial properties. J. Am. Ceram. Soc. 2012, 95, 2700–2708. [Google Scholar] [CrossRef]
- Uskoković, V.; Iyer, M.A.; Wu, V.M. One ion to rule them all: The combined antibacterial, osteoinductive and anticancer properties of selenite-incorporated hydroxyapatite. J. Mater. Chem. B 2017, 5, 1430–1445. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, T.; Shen, Y.; Pan, H.; Peng, S.; Lu, W.W. Strontium Incorporated coralline hydroxyapatite for engineering bone. ISRN Biomater. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Yang, H.; Hong, J.; He, Z.; Deng, C. Synthesis and structure properties of Se and Sr co-doped hydroxyapatite and their biocompatibility. J. Mater. Sci. 2019, 54, 2514–2525. [Google Scholar] [CrossRef]
- Zhang, N.; Zhai, D.; Chen, L.; Zou, Z.; Lin, K.; Chang, J. Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors. Mater. Sci. Eng. C 2014, 37, 286–291. [Google Scholar] [CrossRef]
- Ozeki, K.; Goto, T.; Aoki, H.; Masuzawa, T. Characterization of Sr-substituted hydroxyapatite thin film by sputtering technique from mixture targets of hydroxyapatite and strontium apatite. Biomed. Mater. Eng. 2014, 24, 1447–1456. [Google Scholar] [CrossRef]
- Kolmas, J.; Oledzka, E.; Sobczak, M.; Nałȩcz-Jawecki, G. Nanocrystalline hydroxyapatite doped with selenium oxyanions: A new material for potential biomedical applications. Mater. Sci. Eng. C 2014, 39, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, Y.; Zhou, L.; Zhang, S. Preparation and characterization of selenite substituted hydroxyapatite. Mater. Sci. Eng. C 2013, 33, 440–445. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.H.; Kim, H.K.; Akaike, T.; Kim, S.C. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600–612. [Google Scholar]
- Liu, Y.; Ma, J.; Zhang, S. Synthesis and thermal stability of selenium-doped hydroxyapatite with different substitutions. Front. Mater. Sci. 2015, 9, 392–396. [Google Scholar] [CrossRef]
- Boyd, A.R.; Rutledge, L.; Randolph, L.D.; Meenan, B.J. Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique. Mater. Sci. Eng. C 2015, 46, 290–300. [Google Scholar] [CrossRef]
- Bigi, A.; Boanini, E.; Capuccini, C.; Gazzano, M. Strontium-substituted hydroxyapatite nanocrystals. Inorg. Chim. Acta 2007, 360, 1009–1016. [Google Scholar] [CrossRef]
- Zhang, W.; Chai, Y.; Cao, N.; Wang, Y. Synthesis and characterization of selenium substituted hydroxyapatite via a hydrothermal procedure. Mater. Lett. 2014, 134, 123–125. [Google Scholar] [CrossRef]
- Rodríguez-Valencia, C.; Lopez-Álvarez, M.; Cochón-Cores, B.; Pereiro, I.; Serra, J.; González, P. Novel selenium-doped hydroxyapatite coatings for biomedical applications. J. Biomed. Mater. Res. Part A 2013, 101, 853–861. [Google Scholar] [CrossRef]
- Hanifi, A.; Fathi, M.H.; Mir Mohammad Sadeghi, H. Effect of strontium ions substitution on gene delivery related properties of calcium phosphate nanoparticles. J. Mater. Sci. Mater. Med. 2010, 21, 2601–2609. [Google Scholar] [CrossRef]
- Qiu, Z.Y.; Noh, I.S.; Zhang, S.M. Silicate-doped hydroxyapatite and its promotive effect on bone mineralization. Front. Mater. Sci. 2013, 7, 40–50. [Google Scholar] [CrossRef]
- Cho, J.S.; Yoo, D.S.; Chung, Y.C.; Rhee, S.H. Enhanced bioactivity and osteoconductivity of hydroxyapatite through chloride substitution. J. Biomed. Mater. Res. Part A 2014, 102, 455–469. [Google Scholar] [CrossRef]
- Ni, G.X.; Yao, Z.P.; Huang, G.T.; Liu, W.G.; Lu, W.W. The effect of strontium incorporation in hydroxyapatite on osteoblasts in vitro. J. Mater. Sci. Mater. Med. 2011, 22, 961–967. [Google Scholar] [CrossRef]
- Srivastava, G.K.; Alonso-Alonso, M.L.; Fernandez-Bueno, I.; Garcia-Gutierrez, M.T.; Rull, F.; Medina, J.; Coco, R.M.; Pastor, J.C. Comparison between direct contact and extract exposure methods for PFO cytotoxicity evaluation. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Ribeiro, M.; Monteiro, F.J.; Ferraz, M.P. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2012, 2, 176–194. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, M.D.; Fredholm, Y.; de Rouffignac, A.; Hill, R.G. Structural analysis of a series of strontium-substituted apatites. Acta Biomater. 2008, 4, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Pajor, K.; Pajchel, L.; Kolodziejska, B.; Kolmas, J. Selenium-doped hydroxyapatite nanocrystals–synthesis, physicochemical properties and biological significance. Crystals 2018, 8, 188. [Google Scholar] [CrossRef] [Green Version]
- Caverzasio, J. Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms. Bone 2008, 42, 1131–1136. [Google Scholar] [CrossRef]
- Sudarsanan, K.; Young, R.A. Significant precision in crystal structural details. Holly Springs hydroxyapatite. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969, 25, 1534–1543. [Google Scholar]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar]
- Iqbal, N.; Abdul Kadir, M.R.; Nik Malek, N.A.N.; Humaimi Mahmood, N.; Raman Murali, M.; Kamarul, T. Rapid microwave assisted synthesis and characterization of nanosized silver-doped hydroxyapatite with antibacterial properties. Mater. Lett. 2012, 89, 118–122. [Google Scholar] [CrossRef]
- Ciobanu, C.S.; Iconaru, S.L.; Chifiriuc, M.C.; Costescu, A.; Le Coustumer, P.; Predoi, D. Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles. Biomed. Res. Int. 2013. [Google Scholar] [CrossRef] [Green Version]
- Miyata, S.; Miyaji, H.; Kawasaki, H.; Yamamoto, M.; Nishida, E.; Takita, H.; Akasaka, T.; Ushijima, N.; Iwanaga, T.; Sugaya, T. Antimicrobial photodynamic activity and cytocompatibility of Au25(Capt)18 clusters photoexcited by blue LED light irradiation. Int. J. Nanomed. 2017, 12, 2703. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhou, J.; Detsch, R.; Taccardi, N.; Heise, S.; Virtanen, S.; Boccaccini, A.R. Biodegradable nanostructures: Degradation process and biocompatibility of iron oxide nanostructured arrays. Mater. Sci. Eng. C 2018, 85, 203–213. [Google Scholar] [CrossRef]
Sample | a-Axis (Å) | c-Axis (Å) | Unit Cell Volume (Å)3 |
---|---|---|---|
HA | 9.4420 | 6.8612 | 528.0 |
Se-Sr-HA 0.01 | 9.4347 | 6.8893 | 530.4 |
Se-Sr-HA 0.03 | 9.452 | 6.9041 | 532.2 |
Se-Sr-HA 0.05 | 9.4706 | 6.9232 | 533.8 |
Se-Sr-HA 0.1 | 9.4869 | 6.942 | 535.1 |
Se-Sr-HA 0.2 | 9.5062 | 6.9609 | 536.9 |
Samples | Calcium | Phosphorus | Selenium | Strontium | (Ca + Sr)/(P + Se) Ratio | |
---|---|---|---|---|---|---|
(moles) | (moles) | (moles) | (moles) | Calculated | XRF | |
HA | 1.09 | 0.65 | 0 | 0 | 1.67 | 1.67 |
Se-Sr-HA 0.01 | 1.03 | 0.63 | 0.0015 | 0.0067 | 1.70 | 1.64 |
Se-Sr-HA 0.03 | 0.99 | 0.62 | 0.0036 | 0.0261 | 1.67 | 1.64 |
Se-Sr-HA 0.05 | 0.96 | 0.60 | 0.0045 | 0.0338 | 1.67 | 1.63 |
Se-Sr-HA 0.1 | 0.94 | 0.59 | 0.0117 | 0.0386 | 1.67 | 1.63 |
Se-Sr-HA 0.2 | 0.82 | 0.55 | 0.0441 | 0.0897 | 1.67 | 1.53 |
Se-HA Samples | Ca/(P + Se) | |||||
Se-HA 0.01 | 1.09 | 0.65 | 0.003 | — | 1.67 | 1.67 |
Se-HA 0.03 | 1.07 | 0.63 | 0.004 | — | 1.67 | 1.67 |
Se-HA 0.05 | 1.03 | 0.60 | 0.004 | — | 1.67 | 1.69 |
Se-HA 0.1 | 1.02 | 0.56 | 0.018 | — | 1.67 | 1.75 |
Se-HA 0.2 | 1.03 | 0.53 | 0.051 | — | 1.67 | 1.76 |
Particles | Zeta Potential ± SD [mV] |
---|---|
HA | |
Se-HA 0.1 | |
Sr-HA 0.1 | |
Se-Sr-HA 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maqbool, M.; Nawaz, Q.; Atiq Ur Rehman, M.; Cresswell, M.; Jackson, P.; Hurle, K.; Detsch, R.; Goldmann, W.H.; Shah, A.T.; Boccaccini, A.R. Synthesis, Characterization, Antibacterial Properties, and In Vitro Studies of Selenium and Strontium Co-Substituted Hydroxyapatite. Int. J. Mol. Sci. 2021, 22, 4246. https://doi.org/10.3390/ijms22084246
Maqbool M, Nawaz Q, Atiq Ur Rehman M, Cresswell M, Jackson P, Hurle K, Detsch R, Goldmann WH, Shah AT, Boccaccini AR. Synthesis, Characterization, Antibacterial Properties, and In Vitro Studies of Selenium and Strontium Co-Substituted Hydroxyapatite. International Journal of Molecular Sciences. 2021; 22(8):4246. https://doi.org/10.3390/ijms22084246
Chicago/Turabian StyleMaqbool, Muhammad, Qaisar Nawaz, Muhammad Atiq Ur Rehman, Mark Cresswell, Phil Jackson, Katrin Hurle, Rainer Detsch, Wolfgang H. Goldmann, Asma Tufail Shah, and Aldo R. Boccaccini. 2021. "Synthesis, Characterization, Antibacterial Properties, and In Vitro Studies of Selenium and Strontium Co-Substituted Hydroxyapatite" International Journal of Molecular Sciences 22, no. 8: 4246. https://doi.org/10.3390/ijms22084246
APA StyleMaqbool, M., Nawaz, Q., Atiq Ur Rehman, M., Cresswell, M., Jackson, P., Hurle, K., Detsch, R., Goldmann, W. H., Shah, A. T., & Boccaccini, A. R. (2021). Synthesis, Characterization, Antibacterial Properties, and In Vitro Studies of Selenium and Strontium Co-Substituted Hydroxyapatite. International Journal of Molecular Sciences, 22(8), 4246. https://doi.org/10.3390/ijms22084246