Predicting Pharmacokinetic Properties of Potential Anticancer Agents via Their Chromatographic Behavior on Different Reversed Phase Materials
Abstract
:1. Introduction
2. Results
2.1. Chromatographic Data
2.2. Establishment of Quantitative Structure-Activity Relationships
2.3. Assessing the Risk of Undesired Effects
3. Discussion
4. Materials and Methods
4.1. Reagents and Materials
4.2. Instrumental
4.3. Chromatographic Conditions
4.4. In Silico Calculations
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hansch, C. Quantitative approach to biochemical structure-activity relationships. Accounts Chem. Res. 1969, 2, 232–239. [Google Scholar] [CrossRef]
- Hansch, C. Quantitative structure-activity relationships and the unnamed science. Accounts Chem. Res. 1993, 26, 147–153. [Google Scholar] [CrossRef]
- Kaliszan, R. Quantitative Structure-Chromatographic Retention Relationships; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Héberger, K. Quantitative structure–(chromatographic) retention relationships. J. Chromatogr. A 2007, 1158, 273–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valkó, K.L. Lipophilicity and biomimetic properties measured by HPLC to support drug discovery. J. Pharm. Biomed. Anal. 2016, 130, 35–54. [Google Scholar] [CrossRef]
- Andrić, F.; Bajusz, D.; Rácz, A.; Šegan, S.; Héberger, K. Multivariate assessment of lipophilicity scales-computational and re-versed phase thin-layer chromatographic indices. J. Pharm. Biomed. Anal. 2016, 127, 81–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janicka, M.; Sztanke, M.; Sztanke, K. Predicting the Blood-Brain Barrier Permeability of New Drug-Like Compounds via HPLC with Various Stationary Phases. Molecules 2020, 25, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayouni, L.; Cazorla, G.; Chaillou, D.; Herbreteau, B.; Rudaz, S.; Lantéri, P.; Carrupt, P.-A. Fast Determination of Lipophilicity by HPLC. Chromatographia 2005, 62, 251–255. [Google Scholar] [CrossRef]
- Barbato, F.V.; Cirocco, L.; Grumetto, M.; La Rotonda, I. Comparison between immobilized artificial membrane (IAM) HPLC data and lipophilicity in n-octanol for quinolone antibacterial agents. Eur. J. Pharm. Sci. 2007, 31, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Kempińska, D.; Chmiel, T.; Kot-Wasik, A.; Mróz, A.; Mazerska, Z.; Namieśnik, J. State of the art and prospects of methods for determination of lipophilicity of chemical compounds. TrAC Trends Anal. Chem. 2019, 113, 54–73. [Google Scholar] [CrossRef]
- Testa, B.; Crivori, P.; Reist, M.; Carrupt, P.-A. The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples. Persp. Drug Disc. Des. 2000, 19, 179–211. [Google Scholar] [CrossRef]
- Ciura, K.; Dziomba, S. Application of separation methods for in vitro prediction of blood–brain barrier permeability—The state of the art. J. Pharm. Biomed. Anal. 2020, 177, 112891. [Google Scholar] [CrossRef]
- Rutkowska, E.; Pajak, K.; Jóźwiak, K. Lipophilicity--methods of determination and its role in medicinal chemistry. Acta. Pol. Pharm. Drug Res. 2013, 70, 3–18. [Google Scholar]
- Rybińska-Fryca, A.; Sosnowska, A.; Puzyn, T. Representation of the Structure—A Key Point of Building QSAR/QSPR Models for Ionic Liquids. Materials 2020, 13, 2500. [Google Scholar] [CrossRef]
- Ruiz-Ángel, M.; Carda-Broch, S.; Torres-Lapasió, J.; García-Álvarez-Coque, M. Retention mechanisms in micellar liquid chromatography. J. Chromatogr. A 2009, 1216, 1798–1814. [Google Scholar] [CrossRef]
- Escuder-Gilabert, L.; Molero-Monfort, M.; Villanueva-Camaňas, R.M.; Sagrado, S.; Medina-Hernández, M.J. Potential of biopartitioning micellar chromatography as an in vitro technique for predicting drug penetration across the blood-brain barrier. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 807, 193–201. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Pliśka, V.; Testa, B.; van de Waterbeemd, H. Lipophilicity in Drug Action and Toxicology; VCH Inc.: Weinheim, Germany, 1996. [Google Scholar]
- Sztanke, M.; Rzymowska, J.; Janicka, M.; Sztanke, K. Two novel classes of fused azaisocytosine-containing congeners as promising drug candidates: Design, synthesis as well as in vitro, ex vivo and in silico studies. Bioorg. Chem. 2020, 95, 103480. [Google Scholar] [CrossRef]
- Sztanke, K.; Rzymowska, J.; Niemczyk, M.; Dybała, I.; Kozioł, A.E. Synthesis, crystal structure and anticancer activity of novel derivatives of ethyl 1-(4-oxo-8-aryl-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl)formate. Eur. J. Med. Chem. 2006, 41, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Sztanke, M.; Tuzimski, T.; Janicka, M.; Sztanke, K. Structure–retention behaviour of biologically active fused 1,2,4-triazinones – Correlation with in silico molecular properties. Eur. J. Pharm. Sci. 2015, 68, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Sztanke, M.; Rzymowska, J.; Sztanke, K. Anticancer active trifluoromethylated fused triazinones are safe for early-life stages of zebrafish (Danio rerio) and reveal a proapoptotic action. J. Enzyme Inhib. Med. Chem. 2021, 36, 336–344. [Google Scholar] [CrossRef] [PubMed]
- García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Micellar liquid chromatography. Encycl. Anal. Sci. 2019, 133–142. [Google Scholar]
- Foley, J.P. Critical compilation of solute-micelle binding constants and related parameters from micellar liquid chromatographic measurements. Anal. Chim. Acta 1990, 231, 237–247. [Google Scholar] [CrossRef]
- Gramatica, P. On the development and Validation of QSAR Models. In Computational Toxicology; Reisfeld, B., Mayeno, A.N., Eds.; Springer Humana Press: Berlin, Germany, 2013; Volume II. [Google Scholar]
- Tandon, H.; Ranjan, R.; Chakraborty, T.; Suhag, V. Polarizability: A promising descriptor to study chemical-biological interactions. Mol. Divers. 2021, 25, 249–262. [Google Scholar] [CrossRef]
- Abraham, M.H.; Chadha, H.S.; Mitchell, R.C. The Factors that Influence Skin Penetration of Solutes*. J. Pharm. Pharmacol. 2011, 47, 8–16. [Google Scholar] [CrossRef]
- Yamashita, F.; Hashida, M. Mechanistic and empirical modeling of skin permeation of drugs. Adv. Drug Deliv. Rev. 2003, 55, 1185–1199. [Google Scholar] [CrossRef]
- Li, S.F.; He, H.D.; Parthiban, L.J.; Yin, H.Q.; Serajuddin, A.T.M. IV-IVC considerations in the development of immediate-release oral dosage form. J. Pharm. Sci. 2005, 94, 1396–1417. [Google Scholar] [CrossRef]
- Strazielle, N.; Ghersi-Egea, J.F. Factors affecting delivery of antiviral drugs to the brain. Rev. Med. Virol. 2005, 15, 105–133. [Google Scholar] [CrossRef] [PubMed]
- Potts, R.O.; Guy, R.H. Predicting Skin Permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.-T.; Lee, M.-H.; Weng, C.-F.; Leong, M.K. In silico prediction of PAMPA effective permeability using a two-QSAR approach. Int. J. Mol. Sci. 2019, 20, 3170. [Google Scholar] [CrossRef] [Green Version]
- Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef]
- Prasanna, S.; Doerksen, R.J. Topological Surface Area: A Useful Descriptor in 2D-QSAR. Curr. Med. Chem. 2009, 16, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Vitha, M.; Carr, P.W. The chemical interpretation and practice of linear solvation energy relationships in chromatography. J. Chromatogr. A 2006, 1126, 143–194. [Google Scholar] [CrossRef] [PubMed]
No | R | Structure | MW [g/mol] | TPSA [A2] | α [A3] | log Kp | log Ka,HSA | log BB | Caco-2 E06 [cm/s] | fu,brain | log P |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | H | 256.30 | 48.27 | 29.30 | −6.061 | 4.80 | 0.230 | 187 | 0.52 | 2.089 | |
2 | 4-CH3 | 270.33 | 48.27 | 31.06 | −5.711 | 4.86 | 0.423 | 217 | 0.32 | 2.701 | |
3 | 2-Cl | 290.75 | 48.27 | 31.13 | −5.800 | 5.09 | 0.339 | 215 | 0.33 | 2.608 | |
4 | 3-Cl | 290.75 | 48.27 | 31.13 | −5.645 | 5.07 | 0.384 | 221 | 0.28 | 2.757 | |
5 | 4-Cl | 290.75 | 48.27 | 31.13 | −5.817 | 5.16 | 0.328 | 208 | 0.38 | 2.559 | |
6 | 3,4-Cl2 | 325.19 | 48.27 | 32.95 | −5.370 | 5.44 | 0.473 | 230 | 0.21 | 3.250 | |
7 | H | 282.22 | 48.27 | 25.85 | −6.021 | 4.96 | 0.102 | 196 | 0.44 | 1.661 | |
8 | 2-CH3 | 296.25 | 48.27 | 27.61 | −5.672 | 5.01 | 0.290 | 220 | 0.27 | 2.273 | |
9 | 4-CH3 | 296.25 | 48.27 | 27.61 | −5.672 | 5.01 | 0.290 | 220 | 0.27 | 2.273 | |
10 | 2-OCH3 | 312.25 | 57.50 | 28.16 | −6.245 | 5.03 | 0.063 | 195 | 0.43 | 1.647 | |
11 | 2-Cl | 316.67 | 48.27 | 27.68 | −5.762 | 5.29 | 0.211 | 220 | 0.27 | 2.151 | |
12 | 3-Cl | 316.67 | 48.27 | 27.68 | −5.603 | 5.31 | 0.264 | 221 | 0.26 | 2.345 | |
13 | 4-Cl | 316.67 | 48.27 | 27.68 | −5.778 | 5.33 | 0.194 | 218 | 0.29 | 2.131 | |
14 | 3,4-Cl2 | 351.11 | 48.27 | 29.50 | −5.332 | 5.64 | 0.345 | 235 | 0.14 | 2.828 | |
15 | H | 286.29 | 74.57 | 30.27 | −6.989 | 5.04 | −0.243 | 134 | 0.73 | 0.931 | |
16 | 4-CH3 | 300.31 | 74,57 | 32.02 | −6.640 | 5.07 | −0.051 | 169 | 0.59 | 1.548 | |
17 | 3-Cl | 320.73 | 74,57 | 32.09 | −6.575 | 5.25 | −0.090 | 179 | 0.55 | 1.605 | |
18 | 4-Cl | 320.73 | 74.57 | 32.09 | −6.746 | 5.35 | −0.151 | 170 | 0.59 | 1.401 | |
19 | 3,4-Cl2 | 355.18 | 74,57 | 33.91 | −6.300 | 5.60 | 0.000 | 202 | 0.42 | 2.132 |
No | k 0.075 M Brij 35 | k 0.1 M Brij 35 | k 0.125 M Brij 35 | k 0.15 M Brij 35 | log km | R2 | log kw,IAM | log kw,ODS |
---|---|---|---|---|---|---|---|---|
1 | 13.73 | 12.03 | 10.47 | 10.53 | 1.29 | 0.8851 | 0.76 [19] | 1.59 [19] |
2 | 25.51 | 21.45 | 18.25 | 17.34 | 1.68 | 0.9662 | 1.05 [19] | 2.01 [19] |
3 | 8.98 | 8.18 | 7.46 | 7.20 | 1.07 | 0.9725 | 0.65 [19] | 1.42 [19] |
4 | 39.84 | 31.65 | 24.39 | 22.52 | 2.28 | 0.9732 | 1.49 [19] | 2.38 [19] |
5 | 41.53 | 33.76 | 26.18 | 24.10 | 2.22 | 0.9754 | 1.39 [19] | 2.32 [19] |
6 | 60.81 | 46.76 | 34.01 | 29.82 | 2.82 | 0.9854 | 1.67 [19] | 2.68 [19] |
7 | 14.11 | 12.22 | 10.72 | 10.02 | 1.37 | 0.9862 | 0.94 [19] | 1.92 [19] |
8 | 6.50 | 5.97 | 5.52 | 5.28 | 0.92 | 0.9889 | 0.76 [19] | 1.81 [19] |
9 | 25.67 | 21.44 | 17.64 | 16.14 | 1.81 | 0.9870 | 1.25 [19] | 2.16 [19] |
10 | 5.89 | 5.40 | 5.04 | 4.79 | 0.88 | 0.9929 | 0.67 [19] | 1.65 [19] |
11 | 10.61 | 9.36 | 8.27 | 7.66 | 1.24 | 0.9947 | 0.88 [19] | 1.86 [19] |
12 | 36.90 | 29.09 | 22.17 | 19.83 | 2.52 | 0.9855 | 1.66 [19] | 2.43 [19] |
13 | 41.71 | 32.28 | 25.32 | 22.45 | 2.49 | 0.9911 | 1.58 [19] | 2.40 [19] |
14 | 59.61 | 44.28 | 32.68 | 28.56 | 2.70 | 0.9887 | 2.29 [19] | 2.96 [19] |
15 | 2.09 | 1.90 | 1.81 | 1.84 | 0.38 | 0.8467 | 0.48 | 1.21 |
16 | 4.49 | 4.04 | 3.81 | 3.75 | 0.74 | 0.9084 | 1.93 | 2.80 |
17 | 10.12 | 8.72 | 8.00 | 8.00 | 1.12 | 0.8604 | 1.73 | 2.62 |
18 | 9.94 | 8.48 | 7.53 | 7.75 | 1.12 | 0.8467 | 1.12 | 1.92 |
19 | 24.39 | 18.98 | 14.97 | 14.81 | 1.83 | 0.9117 | 3.36 | 3.24 |
No of Equation | QSAR Equations | n | R2 | sd | F | p | VIF |
---|---|---|---|---|---|---|---|
(3) | log Kp = −7.137(0.935) + 0.272(0.079)log km − 0.025(0.006)TPSA + 0.041(0.030)α + 0.003(0.003)MW | 19 | 0.9593 | 0.108 | 83 | 0.000000 | <4.4 |
(4) | log Kp = −6.109(0.540) + 0.110(0.053)log kw,IAM − 0.044(0.002)TPSA + 0.035(0.013)α + 0.005(0.001)MW | 19 | 0.9677 | 0.096 | 106 | 0.000000 | <2.7 |
(5) | log Kp = −6.250(0.428) + 0.157(0.058)log kw,ODS − 0.043(0.002)TPSA + 0.034(0.012)α + 0.004(0.001)MW | 19 | 0.9723 | 0.089 | 123 | 0.000000 | <2.3 |
(6) | log Ka,HSA = 2.383(0.244) + 0.063(0.022)log km + 0.010(0.007)α + 0.008(0.001)MW | 19 | 0.9368 | 0.064 | 75 | 0.000000 | <1.3 |
(7) | log Ka,HSA = 2.412(0.4220) + 0.018(0.043)log kw,IAM + 0.008(0.010)α + 0.008(0.001)MW | 19 | 0.9031 | 0.079 | 47 | 0.000000 | <2.6 |
(8) | log Ka,HSA = 2.356(0.3500) + 0.019(0.049)log kw,ODS + 0.008(0.009)α + 0.008(0.001)MW | 19 | 0.9028 | 0.079 | 46 | 0.000000 | <2.1 |
(9) | log BB = −0.041(0.155) + 0.017(0.020)log km − 0.019(0.002)TPSA + 0.043(0.007)α | 19 | 0.9554 | 0.048 | 108 | 0.000000 | <2.6 |
(10) | log BB = 0.051(0.150) + 0.033(0.017)log kw,IAM − 0.020(0.001)TPSA + 0.041(0.006)α | 19 | 0.9630 | 0.043 | 130 | 0.000000 | <1.8 |
(11) | log BB = −0.005(0.133) + 0.049(0.020)log kw, ODS − 0.020(0.001)TPSA + 0.040(0.06)α | 19 | 0.9673 | 0.041 | 148 | 0.000000 | <1.8 |
(12) | Caco-2 E06 = 159.92(28.86) + 3.76(4.77)log km − 1.90(0.29)TPSA + 0.47(0.13)MW | 19 | 0.8799 | 9.723 | 37 | 0.000000 | <2.5 |
(13) | Caco-2 E06 = 203.38(31.52) + 10.08(4.16)log kw,IAM − 2.11(0.18)TPSA + 0.34(0.12)MW | 19 | 0.9101 | 8.413 | 51 | 0.000000 | <2.2 |
(14) | Caco-2 E06 = 183.81(26.42) + 12.63(4.90)log kw,ODS − 2.04(0.17)TPSA + 0.35(0.11)MW | 19 | 0.9133 | 8.260 | 53 | 0.000000 | <2 |
(15) | fu,brain = 0.739(0.147) − 0.014(0.024)log km + 0.012(0.001)TPSA − 0.003(0.001)MW | 19 | 0.9139 | 0.050 | 53 | 0.000000 | <2.5 |
(16) | fu,brain = 0.585(0.174) − 0.036(0.023)log kw,IAM + 0.013(0.001)TPSA − 0.003(0.001)MW | 19 | 0.9243 | 0.046 | 61 | 0.000000 | <2.2 |
(17) | fu,brain = 0.643(0.144) − 0.050(0.027)log kw,ODS + 0.012(0.001)TPSA − 0.003(0.001)MW | 19 | 0.9286 | 0.045 | 65 | 0.000000 | <2 |
(18) | log Kp = −6.780(0.470) + 0.079(0.122)log k0.1 − 0.043(0.005)TPSA + 0.042(0.017)α + 0.006(0.001)MW | 19 | 0.9590 | 0.109 | 82 | 0.000000 | <4.6 |
(19) | log Ka,HSA = 2.292(0.255) + 0.106(0.043)log k0.1 + 0.010(0.007)α + 0.008(0.001)MW | 19 | 0.9300 | 0.067 | 67 | 0.000000 | <1.2 |
(20) | log BB = −0.052(0.155) + 0.033(0.043)log k0.1 − 0.019(0.002)TPSA + 0.042(0.007)α | 19 | 0.9551 | 0.048 | 107 | 0.000000 | <3 |
(21) | Caco-2 E06 = 153.28(26.64) + 13.46(8.48)log k0.1 − 1.75(0.28)TPSA + 0.43(0.11)MW | 19 | 0.8929 | 9.182 | 42 | 0.000000 | <2.3 |
(22) | fu,brain = 0.762(0.142) − 0.038(0.045)log k0.1 + 0.012(0.001)TPSA − 0.001(0.001)MW | 19 | 0.9158 | 0.049 | 55 | 0.000000 | <2.3 |
Equation | Adjusted R2 | PRESS | MSE | R2cv | PRESScv | MSEcv |
---|---|---|---|---|---|---|
Equation (3) | 0.9476 | 0.279 | 0.012 | 0.9593 | 0.279 | 0.012 |
Equation (4) | 0.9585 | 0.220 | 0.009 | 0.9677 | 0.220 | 0.009 |
Equation (5) | 0.9644 | 0.170 | 0.008 | 0.9368 | 0.093 | 0.004 |
Equation (6) | 0.9241 | 0.093 | 0.004 | 0.9368 | 0.093 | 0.004 |
Equation (7) | 0.8837 | 0.153 | 0.006 | 0.9031 | 0.153 | 0.006 |
Equation (8) | 0.8834 | 0.147 | 0.006 | 0.9028 | 0.147 | 0.006 |
Equation (9) | 0.9465 | 0.052 | 0.002 | 0.9554 | 0.052 | 0.002 |
Equation (10) | 0.9556 | 0.043 | 0.002 | 0.9630 | 0.043 | 0.002 |
Equation (11) | 0.9608 | 0.036 | 0.002 | 0.9673 | 0.036 | 0.002 |
Equation (12) | 0.8559 | 2468 | 94.54 | 0.8799 | 2468 | 94.54 |
Equation (13) | 0.8921 | 1827 | 70.8 | 0.9101 | 1827 | 66.54 |
Equation (14) | 0.8960 | 1824 | 68.23 | 0.9133 | 1824 | 68.23 |
Equation (15) | 0.8967 | 0.058 | 0.002 | 0.9139 | 0.058 | 0.002 |
Equation (16) | 0.9091 | 0.049 | 0.002 | 0.9243 | 0.049 | 0.002 |
Equation (17) | 0.9143 | 0.044 | 0.002 | 0.9286 | 0.044 | 0.002 |
Equation (18) | 0.9473 | 0.284 | 0.012 | 0.9590 | 0.248 | 0.012 |
Equation (19) | 0.9160 | 0.111 | 0.005 | 0.9300 | 0.111 | 0.005 |
Equation (20) | 0.9462 | 0.054 | 0.002 | 0.9551 | 0.054 | 0.002 |
Equation (21) | 0.8715 | 2311 | 84.32 | 0.8929 | 2311 | 84.32 |
Equation (22) | 0.8989 | 0.058 | 0.002 | 0.9158 | 0.058 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janicka, M.; Mycka, A.; Sztanke, M.; Sztanke, K. Predicting Pharmacokinetic Properties of Potential Anticancer Agents via Their Chromatographic Behavior on Different Reversed Phase Materials. Int. J. Mol. Sci. 2021, 22, 4257. https://doi.org/10.3390/ijms22084257
Janicka M, Mycka A, Sztanke M, Sztanke K. Predicting Pharmacokinetic Properties of Potential Anticancer Agents via Their Chromatographic Behavior on Different Reversed Phase Materials. International Journal of Molecular Sciences. 2021; 22(8):4257. https://doi.org/10.3390/ijms22084257
Chicago/Turabian StyleJanicka, Małgorzata, Anna Mycka, Małgorzata Sztanke, and Krzysztof Sztanke. 2021. "Predicting Pharmacokinetic Properties of Potential Anticancer Agents via Their Chromatographic Behavior on Different Reversed Phase Materials" International Journal of Molecular Sciences 22, no. 8: 4257. https://doi.org/10.3390/ijms22084257
APA StyleJanicka, M., Mycka, A., Sztanke, M., & Sztanke, K. (2021). Predicting Pharmacokinetic Properties of Potential Anticancer Agents via Their Chromatographic Behavior on Different Reversed Phase Materials. International Journal of Molecular Sciences, 22(8), 4257. https://doi.org/10.3390/ijms22084257