Nanohydroxyapatite as a Biomaterial for Peripheral Nerve Regeneration after Mechanical Damage—In Vitro Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of the Studied Materials
2.1.1. Structure Analysis
2.1.2. Particle Size, Morphology and Surface Studies
2.2. Biological Evaluation
2.2.1. Cell Viability
2.2.2. Mitochondrial Activity and Neuronal Features of Cells
2.2.3. Reactive Oxygen Species and Nitric Oxide
3. Materials and Methods
3.1. Physicochemical Analysis
3.1.1. Preparation of nHAp: Li+ and nHAp: Li+/Eu3+
3.1.2. Apparatus and Analysis Methods
3.2. Cell Culture Studies
3.2.1. Cell Lines
3.2.2. Cell Culture Media
3.2.3. Tested Compounds
3.2.4. Modification of Cell Culture Plates Surface
3.2.5. Experimental Design
3.2.6. MTT Assay
3.2.7. Length of Neurites
3.2.8. DCF-DA Assay
3.2.9. Griess Assay
3.2.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kostrzewa, B.; Rybak, Z. History, Present and Future of Biomaterials Used for Artificial Heart Valves. Polym. Med. 2013, 43, 183–189. [Google Scholar]
- Filova, E.; Suchy, T.; Sucharda, Z.; Supova, M.; Zaloudkova, M.; Balik, K.; Lisa, V.; Slouf, M.; Bacakova, L. Support for the initial attachment, growth and differentiation of MG-63 cells: A comparison between nano-size hydroxyapatite and micro-size hydroxyapatite in composites. Int. J. Nanomed. 2014, 9, 3687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iaquinta, M.R.; Mazzoni, E.; Manfrini, M.; D’Agostino, A.; Trevisiol, L.; Nocini, R.; Trombelli, L.; Barbanti-Brodano, G.; Martini, F.; Tognon, M. Innovative biomaterials for bone regrowth. Int. J. Mol. Sci. 2019, 20, 618. [Google Scholar] [CrossRef] [Green Version]
- Feng, X. Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and Disease. Curr. Chem. Biol. 2009, 3, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Huang, S.; Matinlinna, J.P.; Chen, Z.; Pan, H. Insight into Biological Apatite: Physiochemical Properties and Preparation Approaches. BioMed Res. Int. 2013, 2013, 929748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashok, M.; Meenakshi Sundaram, N.; Narayana Kalkura, S. Crystallization of hydroxyapatite at physiological temperature. Mater. Lett. 2003, 57, 2066–2070. [Google Scholar] [CrossRef]
- Esfahani, H.; Salahi, E.; Tayebifard, A.; Rahimipour, M.R.; Keyanpour-Rad, M. Structural and morphological analysis of zinc incorporated non-stoichiometric hydroxyapatite nano powders. Rev. Mater. 2016, 21, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Elliot, J.C. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates; Elsevier: Amsterdam, The Netherlands, 1994; ISBN 0-444-81582-1. [Google Scholar]
- Poralan, G.M.; Gambe, J.E.; Alcantara, E.M.; Vequizo, R.M. X-ray diffraction and infrared spectroscopy analyses on the crystallinity of engineered biological hydroxyapatite for medical application. IOP Conf. Ser. Mater. Sci. Eng. 2015, 79. [Google Scholar] [CrossRef] [Green Version]
- Nandi, S.K.; Kundu, B.; Ghosh, S.K.; De, D.K.; Basu, D. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat. J. Vet. Sci. 2008, 9, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Tang, S.; Tan, H.; Lin, W.; Wang, Y.; Wei, J.; Zhao, L.; Tang, T. Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material. Int. J. Nanomed. 2014, 9, 3949–3961. [Google Scholar] [CrossRef] [Green Version]
- Chocholata, P.; Kulda, V.; Babuska, V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials 2019, 12, 568. [Google Scholar] [CrossRef] [Green Version]
- Fanovich, M.A.; Castro, M.S.; Lopez, J.M.P. Improvement of the microstructure and microhardness hydroxyapatite ceramics by addition of lithium. Mater. Lett. 1998, 33, 269–272. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Gu, Z.; Qin, H.; Li, L.; Liu, J.; Yu, X. In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold. Mater. Sci. Eng. C 2016, 66, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Marycz, K.; Sobierajska, P.; Smieszek, A.; Maredziak, M.; Wiglusz, K.; Wiglusz, R.J. Li+ activated nanohydroxyapatite doped with Eu3+ ions enhances proliferative activity and viability of human stem progenitor cells of adipose tissue and olfactory ensheathing cells. Further perspective of nHAP:Li+, Eu3+ application in theranostics. Mater. Sci. Eng. C 2017, 78, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huang, C.; Zhao, Z.; Wang, A.; Li, P.; Fan, Y.; Zhou, G. Nano-hydroxyapatite(n-HA) involved in the regeneration of rat nerve injury triggered by overloading stretch. Med. Novel Technol. Devices 2019, 4, 100022. [Google Scholar] [CrossRef]
- Reshamwala, R.; Shah, M.; St John, J.; Ekberg, J. Survival and Integration of Transplanted Olfactory Ensheathing Cells are Crucial for Spinal Cord Injury Repair: Insights from the Last 10 Years of Animal Model Studies. Cell Transplant. 2019, 28, 132S–159S. [Google Scholar] [CrossRef]
- Dahlin, L.B.; Wiberg, M. Nerve injuries of the upper extremity and hand. EFORT Open Rev. 2017, 2, 158–170. [Google Scholar] [CrossRef]
- Hussain, G.; Wang, J.; Rasul, A.; Anwar, H.; Qasim, M.; Zafar, S.; Aziz, N.; Razzaq, A.; Hussain, R.; de Aguilar, J.L.G.; et al. Current status of therapeutic approaches against peripheral nerve injuries: A detailed story from injury to recovery. Int. J. Biol. Sci. 2020, 16, 116–134. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Xiao, Y.; Xu, K.; Xu, Z. Design of Sr-doped hydroxyapatite nanoparticles loaded on chitosan scaffold for promoting the spinal cord injury repair. Mater. Lett. 2020, 267, 127471. [Google Scholar] [CrossRef]
- Ardhani, R.; Ana, I.D.; Tabata, Y. Gelatin hydrogel membrane containing carbonate hydroxyapatite for nerve regeneration scaffold. J. Biomed. Mater. Res. Part A 2020, 108, 2491–2503. [Google Scholar] [CrossRef]
- Salehi, M.; Naseri-Nosar, M.; Ebrahimi-Barough, S.; Nourani, M.; Vaez, A.; Farzamfar, S.; Ai, J. Regeneration of sciatic nerve crush injury by a hydroxyapatite nanoparticle-containing collagen type I hydrogel. J. Physiol. Sci. 2018, 68, 579–587. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, G.; Song, W.; Li, P.; Liu, H.; Niu, X.; Fan, Y. Effect of nano-hydroxyapatite on the axonal guidance growth of rat cortical neurons. Nanoscale 2012, 4, 3201–3207. [Google Scholar] [CrossRef]
- Liu, F.; Wei, B.; Xu, X.; Ma, B.; Zhang, S.; Duan, J.; Kong, Y.; Yang, H.; Sang, Y.; Wang, S.; et al. Nanocellulose-Reinforced Hydroxyapatite Nanobelt Membrane as a Stem Cell Multi-Lineage Differentiation Platform for Biomimetic Construction of Bioactive 3D Osteoid Tissue In Vitro. Adv. Healthc. Mater. 2020, 2001851. [Google Scholar] [CrossRef]
- Nawrotek, K.; Mąkiewicz, M.; Zawadzki, D. Fabrication and Characterization of Polycaprolactone/Chitosan—Hydroxyapatite Hybrid Implants for Peripheral Nerve Regeneration. Polymers 2021, 13, 775. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Chu, T.H.; Wu, W. Lithium enhances proliferation and neuronal differentiation of neural progenitor cells in vitro and after transplantation into the adult rat spinal cord. Exp. Neurol. 2007, 206, 296–307. [Google Scholar] [CrossRef]
- Vazey, E.M.; Connor, B. Differential fate and functional outcome of lithium chloride primed adult neural progenitor cell transplants in a rat model of Huntington disease. Stem Cell Res. Ther. 2010, 1, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makoukji, J.; Belle, M.; Meffre, D.; Stassart, R.; Grenier, J.; Shackleford, G.; Fledrich, R.; Fonte, C.; Branchu, J.; Goulard, M.; et al. Lithium enhances remyelination of peripheral nerves. Proc. Natl. Acad. Sci. USA 2012, 109, 3973–3978. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Kremer, P.; Tadmori, I.; Ren, Y.; Sun, D.; He, X.; Young, W. Lithium suppresses astrogliogenesis by neural stem and progenitor cells by inhibiting stat3 pathway independently of glycogen synthase kinase 3 beta. PLoS ONE 2011, 6, e23341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almansoori, A.A.; Ju, K.W.; Kim, B.; Kim, S.M.; Lee, S.-M.; Lee, J.-H. Hydroxyapatite coated magnesium alloy for peripheral nerve regeneration. Oral Biol. Res. 2018, 42, 105–113. [Google Scholar] [CrossRef]
- Marycz, K.; Smieszek, A.; Targonska, S.; Walsh, S.A.; Szustakiewicz, K.; Wiglusz, R.J. Three dimensional (3D) printed polylactic acid with nano-hydroxyapatite doped with europium(III) ions (nHAp/PLLA@Eu3+) composite for osteochondral defect regeneration and theranostics. Mater. Sci. Eng. C 2020, 110, 110634. [Google Scholar] [CrossRef] [PubMed]
- Alicka, M.; Sobierajska, P.; Kornicka, K.; Wiglusz, R.J.; Marycz, K. Lithium ions (Li + ) and nanohydroxyapatite (nHAp) doped with Li + enhance expression of late osteogenic markers in adipose-derived stem cells. Potential theranostic application of nHAp doped with Li + and co-doped with europium (III) and samarium (III) i. Mater. Sci. Eng. C 2019, 99, 1257–1273. [Google Scholar] [CrossRef]
- Doat, A.; Pellé, F.; Gardant, N.; Lebugle, A. Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe. J. Solid State Chem. 2004, 177, 1179–1187. [Google Scholar] [CrossRef]
- Sobierajska, P.; Wiglusz, R.J. Influence of Li+ ions on the physicochemical properties of nanocrystalline calcium-strontium hydroxyapatite doped with Eu3+ ions. New J. Chem. 2019, 43, 14908–14916. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Sobierajska, P.; Pazik, R.; Zawisza, K.; Renaudin, G.; Nedelec, J.; Wiglusz, R.J. Effect of lithium substitution on the charge compensation, structural and luminescence properties of nanocrystalline Ca10(PO4)6F2 activated with Eu3+ ions. CrystEngComm 2016, 18, 3447–3455. [Google Scholar] [CrossRef]
- Prakashbabu, D.; Ramalingam, H.B.; Hari Krishna, R.; Nagabhushana, B.M.; Chandramohan, R.; Shivakumara, C.; Thirumalai, J.; Thomas, T. Charge compensation assisted enhancement of photoluminescence in combustion derived Li+ co-doped cubic ZrO2:Eu3+ nanophosphors. Phys. Chem. Chem. Phys. 2016, 18, 29447–29457. [Google Scholar] [CrossRef] [PubMed]
- Sudarsanan, K.; Young, R.A. Significant precision in crystal structural details. Holly Springs hydroxyapatite. Acta Cryst. 1969, 25, 1534–1543. [Google Scholar] [CrossRef]
- Uota, M.; Arakawa, H.; Kitamura, N.; Yoshimura, T.; Tanaka, J.; Kijima, T. Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactant-mediated approach. Langmuir 2005, 21, 4724–4728. [Google Scholar] [CrossRef]
- Holban, A.M.; Grumezescu, A.M.; Andronescu, E. Inorganic nanoarchitectonics designed for drug delivery and anti-infective surfaces. In Surface Chemistry of Nanobiomaterials: Applications of Nanobiomaterials; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2016; pp. 301–327. ISBN 9780323428613. [Google Scholar]
- Yan-Zhong, Z.; Yan-Yan, H.; Jun, Z.; Shai-Hong, Z.; Zhi-You, L.; Ke-Chao, Z. Characteristics of functionalized nano-hydroxyapatite and internalization by human epithelial cell. Nanoscale Res. Lett. 2011, 6, 600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakulik, K.; Wiatrak, B.; Szczukowski, Ł.; Bodetko, D.; Szandruk-Bender, M.; Dobosz, A.; Świątek, P.; Gąsiorowski, K. Effect of Novel Pyrrolo [3,4-d]pyridazinone Derivatives on Lipopolysaccharide-Induced Neuroinflammation. Int. J. Mol. Sci. 2020, 21, 2575. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Tian, X.; Cai, J.; Huang, L.; Wang, S.; Yang, F.; Ma, Y.; Xie, F.; Li, L. In vivo immunotoxicity of Gd 2 O 3:Eu 3+ nanoparticles and the associated molecular mechanism. J. Biochem. Mol. Toxicol. 2020, 34. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Jiang, M.; Zhu, S.-H. In vitro and in vivo studies on hydroxyapatite nanoparticles as a novel vector for inner ear gene therapy. Chin. J. Otorhinolaryngol. Head Neck Surg. 2008, 43, 51–57. [Google Scholar]
- Landi, E.; Tampieri, A.; Celotti, G.; Sprio, S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram. Soc. 2000, 20, 2377–2387. [Google Scholar] [CrossRef]
- Fahami, A.; Nasiri-Tabrizi, B.; Beall, G.W.; Tehrani, P.M.; Basirun, W.J. A top-down approach for the synthesis of nano-sized Ba-doped hydroxyapatite. J. Aust. Ceram. Soc. 2017, 53, 491–498. [Google Scholar] [CrossRef]
- Grajzer, M.; Wiatrak, B.; Gębarowski, T.; Matkowski, A.; Grajeta, H.; Rój, E.; Kulma, A.; Prescha, A. Chemistry, oxidative stability and bioactivity of oil extracted from Rosa rugosa (Thunb.) seeds by supercritical carbon dioxide. Food Chem. 2020, 335. [Google Scholar] [CrossRef]
Sample | a (Å) | c (Å) | V (Å3) | D (nm) | Χc (%) | |εa| (%) | |εc| (%) |
---|---|---|---|---|---|---|---|
Ca10(PO4)6(OH)2, single crystal [38] | 9.424(4) | 6.879(4) | 529.09(4) | - | - | - | - |
nHAp: Li+ | 9.427(7) | 6.892(7) | 530.55(2) | 46.63 | 73.9 | 0.035 | 0.193 |
nHAp: Li+/Eu3+ | 9.392(0) | 6.852(8) | 523.49(8) | 38.99 | 61.0 | 0.344 | 0.387 |
Cells | Compounds | Length of Neurites vs. Mitochondrial Activity |
---|---|---|
PC12 | nHAp: Li+ | 0.59 |
nHAp: Li+/Eu3+ | 0.28 | |
SH-SY5Y | nHAp: Li+ | 0.15 |
nHAp: Li+/Eu3+ | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiatrak, B.; Sobierajska, P.; Szandruk-Bender, M.; Jawien, P.; Janeczek, M.; Dobrzynski, M.; Pistor, P.; Szelag, A.; Wiglusz, R.J. Nanohydroxyapatite as a Biomaterial for Peripheral Nerve Regeneration after Mechanical Damage—In Vitro Study. Int. J. Mol. Sci. 2021, 22, 4454. https://doi.org/10.3390/ijms22094454
Wiatrak B, Sobierajska P, Szandruk-Bender M, Jawien P, Janeczek M, Dobrzynski M, Pistor P, Szelag A, Wiglusz RJ. Nanohydroxyapatite as a Biomaterial for Peripheral Nerve Regeneration after Mechanical Damage—In Vitro Study. International Journal of Molecular Sciences. 2021; 22(9):4454. https://doi.org/10.3390/ijms22094454
Chicago/Turabian StyleWiatrak, Benita, Paulina Sobierajska, Marta Szandruk-Bender, Paulina Jawien, Maciej Janeczek, Maciej Dobrzynski, Patrycja Pistor, Adam Szelag, and Rafal J. Wiglusz. 2021. "Nanohydroxyapatite as a Biomaterial for Peripheral Nerve Regeneration after Mechanical Damage—In Vitro Study" International Journal of Molecular Sciences 22, no. 9: 4454. https://doi.org/10.3390/ijms22094454
APA StyleWiatrak, B., Sobierajska, P., Szandruk-Bender, M., Jawien, P., Janeczek, M., Dobrzynski, M., Pistor, P., Szelag, A., & Wiglusz, R. J. (2021). Nanohydroxyapatite as a Biomaterial for Peripheral Nerve Regeneration after Mechanical Damage—In Vitro Study. International Journal of Molecular Sciences, 22(9), 4454. https://doi.org/10.3390/ijms22094454