Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk
Abstract
:1. Introduction
2. Considering NAFLD/NASH as a Mitochondrial Disease
2.1. Mitochondrial Mutations at the Origins of Liver Inflammation
2.2. Disrupted Mitophagy and NAFLD Progression
2.3. Non-Invasive Biomarkers to Evaluate the Efficiency of Hepatic Mitochondria
3. The Role of OS and Inflammation in NAFLD
3.1. OS Activates the NLRP3 Inflammasome and Triggers Chronic Inflammation State
3.1.1. The NLRP3 Inflammasome: An OS Sensor and Inflammation Driver
3.1.2. Chronic Inflammation
4. Genetic Determinants of the NAFLD Pathogenesis
4.1. SNPs in Genes Related to the Lipid/Glucose Metabolism
4.2. SNPs in Genes Related to the Immune/Inflammatory Response
4.3. SNPs in Other Genes
4.4. Functional Association between NAFLD and PNPLA3 Risk Allele
5. A Bi-Directional NAFLD ↔ DM Relationship
6. Therapy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APO | apolipoprotein |
APRI | AST-to-platelet ratio index |
BMI | body mass index |
CK-18 | cytokeratin 18 |
CPS-1 | carbamoyl phosphate synthase 1 |
DM | diabetes milieus |
ELF | enhanced liver fibrosis test |
FAs | fatty acids |
FAO | fatty acids oxidation |
FGF-21 | fibroblast growth factor-21 |
FNDC5 | fibronectin type III domain-containing protein 5 |
GWAS | genome-wide association studies |
HCC | hepatocellular carcinoma |
IMM | inner mitochondrial membrane |
IGF1 | insulin-like growth factor 1 |
IL | interleukin |
IR | insulin resistance |
IRS2 | insulin receptor substrate 2 |
LC3 | microtubule-associated proteins, light chain |
LD | lipid droplet |
MetS | metabolic syndrome |
MRI | magnetic resonance imaging |
NAFLD | non-alcoholic fatty liver disease |
NASH | non-alcoholic steatohepatitis |
NFS | NAFLD fibrosis score |
NPY | Neuropeptide Y |
OMM | outer mitochondrial membrane |
OS | oxidative stress |
OTC | ornithine transcarbamoylase |
OXPHOS | oxidative phosphorylation |
PLINs | Perilipins |
PNPLA3 | Patatin-like Phospholipase Domain Containing 3 |
PON | paraoxonase |
PPARγ | peroxisome proliferator-activated receptor γ |
PUFA | polyunsaturated fatty acid |
RASFs | rheumatoid arthritis synovial fibroblasts |
ROS | reactive oxygen species |
SNP | single-nucleotide polymorphism |
SOCS1 | suppressor of cytokine signaling 1 |
TG | triglyceride |
TERT | telomerase reverse transcriptase |
TM6SF2 | transmembrane 6 superfamily member 2 |
TNF | tumor necrosis factor |
VDAC | voltage-dependent anion channel |
VEGF | vascular endothelial growth factor |
VLDL | very-low-density lipoprotein |
References
- Parthasarathy, G.; Revelo, X.; Malhi, H. Pathogenesis of Nonalcoholic Steatohepatitis: An Overview. Hepatol. Commun. 2020, 4, 478–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dooghaie Moghadam, A.; Eslami, P.; Razavi-Khorasani, N.; Moazzami, B.; Makhdoomi Sharabiani, K.; Farokhi, E.; Mansour-Ghanaei, A.; Zahedi-Tajrishi, F.; Mehrvar, A.; Aghajanpoor Pasha, M.; et al. Recurrence of Fatty Liver Disease Following Liver Transplantation for NAFLD-Related Cirrhosis: Current Status and Challenges. Casp. J. Intern. Med. 2020, 11. [Google Scholar] [CrossRef]
- Nahon, P.; Allaire, M.; Nault, J.-C.; Paradis, V. Characterizing the Mechanism behind the Progression of NAFLD to Hepatocellular Carcinoma. Hepatic Oncol. 2020, 7, HEP36. [Google Scholar] [CrossRef]
- NIH NAFLD & NASH. 2021. Available online: https://www.niddk.nih.gov/health-information/liver-disease/nafld-nash/all-content (accessed on 3 April 2021).
- Estes, C.; Anstee, Q.M.; Arias-Loste, M.T.; Bantel, H.; Bellentani, S.; Caballeria, J.; Colombo, M.; Craxi, A.; Crespo, J.; Day, C.P.; et al. Modeling NAFLD Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the Period 2016–2030. J. Hepatol. 2018, 69, 896–904. [Google Scholar] [CrossRef]
- Ramanan, S.P.; Mohamed, M.W.F.; Aung, S.S.; Sange, I.; Hamid, P. Treatment of Fatty Liver Disease: The Present and the Future. Cureus 2021, 13, e12713. [Google Scholar] [CrossRef]
- Schulz, M.; Tacke, F. Identifying High-Risk NASH Patients: What We Know so Far. HMER 2020, 12, 125–138. [Google Scholar] [CrossRef]
- Campos-Murguía, A.; Ruiz-Margáin, A.; González-Regueiro, J.A.; Macías-Rodríguez, R.U. Clinical Assessment and Management of Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. WJG 2020, 26, 5919–5943. [Google Scholar] [CrossRef]
- Davison, B.A.; Harrison, S.A.; Cotter, G.; Alkhouri, N.; Sanyal, A.; Edwards, C.; Colca, J.R.; Iwashita, J.; Koch, G.G.; Dittrich, H.C. Suboptimal Reliability of Liver Biopsy Evaluation Has Implications for Randomized Clinical Trials. J. Hepatol. 2020, 73, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Han, M.A.T. Noninvasive Tests (NITs) for Hepatic Fibrosis in Fatty Liver Syndrome. Life 2020, 10, 198. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, V.; Loomba, R. Imaging Biomarkers of NAFLD, NASH, and Fibrosis. Mol. Metab. 2021, 101167. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Adams, L.A. Advances in Non-Invasive Assessment of Hepatic Fibrosis. Gut 2020, 69, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Adolph, T.E.; Moschen, A.R. Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited After a Decade. Hepatology 2021, 73, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Parola, M.; Pinzani, M. Liver Fibrosis: Pathophysiology, Pathogenetic Targets and Clinical Issues. Mol. Asp. Med. 2019, 65, 37–55. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.; Kubes, P. Innate Immune Cells Orchestrate the Repair of Sterile Injury in the Liver and Beyond. Eur. J. Immunol. 2019, 49, 831–841. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, J.; Tacke, F. Controversies and Opportunities in the Use of Inflammatory Markers for Diagnosis or Risk Prediction in Fatty Liver Disease. Front. Immunol. 2021, 11, 634409. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, A.; Costa, R.; Andrade, N.; Silva, C.; Canabrava, N.; Pena, M.J.; Rodrigues, I.; Andrade, S.; Ramalho, A. Does Adipose Tissue Inflammation Drive the Development of Non-Alcoholic Fatty Liver Disease in Obesity? Clin. Res. Hepatol. Gastroenterol. 2020, 44, 394–402. [Google Scholar] [CrossRef]
- Lefere, S.; Tacke, F. Macrophages in Obesity and Non-Alcoholic Fatty Liver Disease: Crosstalk with Metabolism. JHEP Rep. 2019, 1, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Schuppan, D.; Surabattula, R.; Wang, X.Y. Determinants of Fibrosis Progression and Regression in NASH. J. Hepatol. 2018, 68, 238–250. [Google Scholar] [CrossRef]
- Karsdal, M.A.; Detlefsen, S.; Daniels, S.J.; Nielsen, M.J.; Krag, A.; Schuppan, D. Is the Total Amount as Important as Localization and Type of Collagen in Liver Fibrosis Attributable to Steatohepatitis? Hepatology 2020, 71, 346–351. [Google Scholar] [CrossRef]
- Mansouri, A.; Gattolliat, C.-H.; Asselah, T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology 2018, 155, 629–647. [Google Scholar] [CrossRef] [Green Version]
- Liangpunsakul, S.; Chalasani, N. Lipid Mediators of Liver Injury in Nonalcoholic Fatty Liver Disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G75–G81. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Sanchez, N.; Cruz-Ramon, V.; Ramirez-Perez, O.; Hwang, J.; Barranco-Fragoso, B.; Cordova-Gallardo, J. New Aspects of Lipotoxicity in Nonalcoholic Steatohepatitis. Int. J. Mol. Sci. 2018, 19, 2034. [Google Scholar] [CrossRef] [Green Version]
- Arroyave-Ospina, J.C.; Wu, Z.; Geng, Y.; Moshage, H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants 2021, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Sookoian, S.; Flichman, D.; Scian, R.; Rohr, C.; Dopazo, H.; Gianotti, T.F.; Martino, J.S.; Castaño, G.O.; Pirola, C.J. Mitochondrial Genome Architecture in Non-Alcoholic Fatty Liver Disease: Mitochondrial Genome Mutations and NAFLD. J. Pathol. 2016, 240, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Mandala, A.; Janssen, R.C.; Palle, S.; Short, K.R.; Friedman, J.E. Pediatric Non-Alcoholic Fatty Liver Disease: Nutritional Origins and Potential Molecular Mechanisms. Nutrients 2020, 12, 3166. [Google Scholar] [CrossRef] [PubMed]
- Hasturk, B.; Yilmaz, Y.; Eren, F. Potential Clinical Variants Detected in Mitochondrial DNA D-Loop Hypervariable Region I of Patients with Non-Alcoholic Steatohepatitis. Hormones 2019, 18, 463–475. [Google Scholar] [CrossRef]
- Pirola, C.J.; Garaycoechea, M.; Flichman, D.; Castaño, G.O.; Sookoian, S. Liver Mitochondrial DNA Damage and Genetic Variability of Cytochrome b—A Key Component of the Respirasome—Drive the Severity of Fatty Liver Disease. J. Intern. Med. 2021, 289, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Paiva Coelho, M.; Martins, E.; Vilarinho, L. Diagnosis, Management, and Follow-up of Mitochondrial Disorders in Childhood: A Personalized Medicine in the New Era of Genome Sequence. Eur. J. Pediatr. 2019, 178, 21–32. [Google Scholar] [CrossRef]
- Vazquez-Calvo, C.; Suhm, T.; Büttner, S.; Ott, M. The Basic Machineries for Mitochondrial Protein Quality Control. Mitochondrion 2020, 50, 121–131. [Google Scholar] [CrossRef]
- Suzuki, H.; Tabata, K.; Morita, E.; Kawasaki, M.; Kato, R.; Dobson, R.C.J.; Yoshimori, T.; Wakatsuki, S. Structural Basis of the Autophagy-Related LC3/Atg13 LIR Complex: Recognition and Interaction Mechanism. Structure 2014, 22, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Lou, G.; Palikaras, K.; Lautrup, S.; Scheibye-Knudsen, M.; Tavernarakis, N.; Fang, E.F. Mitophagy and Neuroprotection. Trends Mol. Med. 2020, 26, 8–20. [Google Scholar] [CrossRef]
- Gao, A.; Jiang, J.; Xie, F.; Chen, L. Bnip3 in Mitophagy: Novel Insights and Potential Therapeutic Target for Diseases of Secondary Mitochondrial Dysfunction. Clin. Chim. Acta 2020, 506, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shi, Z.; Zhu, Y.; Shen, T.; Wang, H.; Shui, G.; Loor, J.J.; Fang, Z.; Chen, M.; Wang, X.; et al. Cyanidin-3- O -glucoside Improves Non-alcoholic Fatty Liver Disease by Promoting PINK1-mediated Mitophagy in Mice. Br. J. Pharm. 2020, 177, 3591–3607. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Hao, M.; Liu, Y.; Ma, X.; Lin, W.; Xu, Q.; Zhou, H.; Shao, N.; Kuang, H. Liraglutide Ameliorates Non-Alcoholic Steatohepatitis by Inhibiting NLRP3 Inflammasome and Pyroptosis Activation via Mitophagy. Eur. J. Pharmacol. 2019, 864, 172715. [Google Scholar] [CrossRef]
- Grattagliano, I.; Montezinho, L.P.; Oliveira, P.J.; Frühbeck, G.; Gómez-Ambrosi, J.; Montecucco, F.; Carbone, F.; Wieckowski, M.R.; Wang, D.Q.-H.; Portincasa, P. Targeting Mitochondria to Oppose the Progression of Nonalcoholic Fatty Liver Disease. Biochem. Pharmacol. 2019, 160, 34–45. [Google Scholar] [CrossRef]
- Zhou, T.; Chang, L.; Luo, Y.; Zhou, Y.; Zhang, J. Mst1 Inhibition Attenuates Non-Alcoholic Fatty Liver Disease via Reversing Parkin-Related Mitophagy. Redox Biol. 2019, 21, 101120. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Shirihai, O.S.; Grinstaff, M.W. Degradable Nanoparticles Restore Lysosomal PH and Autophagic Flux in Lipotoxic Pancreatic Beta Cells. Adv. Healthc. Mater. 2019, 8, 1801511. [Google Scholar] [CrossRef] [PubMed]
- Tincopa, M.A. Diagnostic and Interventional Circulating Biomarkers in Nonalcoholic Steatohepatitis. Endocrinol. Diab. Metab. 2020, 3. [Google Scholar] [CrossRef]
- Canbay, A.; Sowa, J.-P. L-Ornithine l-Aspartate (LOLA) as a Novel Approach for Therapy of Non-Alcoholic Fatty Liver Disease. Drugs 2019, 79, 39–44. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Deng, L.; Zhang, Q.; Guo, J.; Zhou, J.; Song, W.; Yuan, F. Diagnostic Value of CK-18, FGF-21, and Related Biomarker Panel in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Yan, J.; Shen, S.; He, Y.; Li, Z. TLR5 Silencing Reduced Hyperammonaemia-Induced Liver Injury by Inhibiting Oxidative Stress and Inflammation Responses via Inactivating NF-ΚB and MAPK Signals. Chem. Biol. Interact. 2019, 299, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, K.L.; De Chiara, F.; Rombouts, K.; Vilstrup, H.; Andreola, F.; Mookerjee, R.P.; Jalan, R. Ammonia: A Novel Target for the Treatment of Non-Alcoholic Steatohepatitis. Med. Hypotheses 2018, 113, 91–97. [Google Scholar] [CrossRef] [PubMed]
- BonDurant, L.D.; Potthoff, M.J. Fibroblast Growth Factor 21: A Versatile Regulator of Metabolic Homeostasis. Annu. Rev. Nutr. 2018, 38, 173–196. [Google Scholar] [CrossRef] [PubMed]
- De Chiara, F.; Heebøll, S.; Marrone, G.; Montoliu, C.; Hamilton-Dutoit, S.; Ferrandez, A.; Andreola, F.; Rombouts, K.; Grønbæk, H.; Felipo, V.; et al. Urea Cycle Dysregulation in Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2018, 69, 905–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajaz, S.; McPhail, M.J.; Gnudi, L.; Trovato, F.M.; Mujib, S.; Napoli, S.; Carey, I.; Agarwal, K. Mitochondrial Dysfunction as a Mechanistic Biomarker in Patients with Non-Alcoholic Fatty Liver Disease (NAFLD). Mitochondrion 2021, 57, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M. Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. J. Hepatol. 2019, 70, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Prieto, I.; Monsalve, M. ROS Homeostasis, a Key Determinant in Liver Ischemic-Preconditioning. Redox Biol. 2017, 12, 1020–1025. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Park, J.-S.; Roh, Y.S. Molecular Insights into the Role of Mitochondria in Non-Alcoholic Fatty Liver Disease. Arch. Pharm. Res. 2019, 42, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Farzanegi, P.; Dana, A.; Ebrahimpoor, Z.; Asadi, M.; Azarbayjani, M.A. Mechanisms of Beneficial Effects of Exercise Training on Non-Alcoholic Fatty Liver Disease (NAFLD): Roles of Oxidative Stress and Inflammation. Eur. J. Sport Sci. 2019, 19, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Ore, A.; Akinloye, O. Oxidative Stress and Antioxidant Biomarkers in Clinical and Experimental Models of Non-Alcoholic Fatty Liver Disease. Medicina 2019, 55, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delli Bovi, A.P.; Marciano, F.; Mandato, C.; Siano, M.A.; Savoia, M.; Vajro, P. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. An Updated Mini Review. Front. Med. 2021, 8, 595371. [Google Scholar] [CrossRef]
- Hafner-Bratkovič, I.; Sušjan, P.; Lainšček, D.; Tapia-Abellán, A.; Cerović, K.; Kadunc, L.; Angosto-Bazarra, D.; Pelegrin, P.; Jerala, R. NLRP3 Lacking the Leucine-Rich Repeat Domain Can Be Fully Activated via the Canonical Inflammasome Pathway. Nat. Commun. 2018, 9, 5182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechtenberg, B.C.; Mace, P.D.; Riedl, S.J. Structural Mechanisms in NLR Inflammasome Signaling. Curr. Opin. Struct. Biol. 2014, 29, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangan, M.S.J.; Olhava, E.J.; Roush, W.R.; Seidel, H.M.; Glick, G.D.; Latz, E. Targeting the NLRP3 Inflammasome in Inflammatory Diseases. Nat. Rev. Drug Discov. 2018, 17, 588–606. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [Green Version]
- Deets, K.A.; Vance, R.E. Inflammasomes and Adaptive Immune Responses. Nat. Immunol. 2021, 22, 412–422. [Google Scholar] [CrossRef]
- Seok, J.K.; Kang, H.C.; Cho, Y.-Y.; Lee, H.S.; Lee, J.Y. Therapeutic Regulation of the NLRP3 Inflammasome in Chronic Inflammatory Diseases. Arch. Pharm. Res. 2021, 44, 16–35. [Google Scholar] [CrossRef]
- Yabal, M.; Calleja, D.J.; Simpson, D.S.; Lawlor, K.E. Stressing out the Mitochondria: Mechanistic Insights into NLRP3 Inflammasome Activation. J. Leukoc. Biol. 2019, 105, 377–399. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, S.; Zhang, C.; Zhao, Y. Coordinated Modulation of Energy Metabolism and Inflammation by Branched-Chain Amino Acids and Fatty Acids. Front. Endocrinol. 2020, 11, 617. [Google Scholar] [CrossRef]
- Meyers, A.K.; Zhu, X. The NLRP3 Inflammasome: Metabolic Regulation and Contribution to Inflammaging. Cells 2020, 9, 1808. [Google Scholar] [CrossRef] [PubMed]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Capó, X.; Bouzas, C.; Mateos, D.; Pons, A.; Tur, J.A.; Sureda, A. Metabolic Syndrome Is Associated with Oxidative Stress and Proinflammatory State. Antioxidants 2020, 9, 236. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.K.; Chin, K.-Y.; Ima-Nirwana, S. Toll-like Receptor as a Molecular Link between Metabolic Syndrome and Inflammation: A Review. Curr. Drug Targets 2019, 20, 1264–1280. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cao, T.; Luo, C.; Cai, J.; Zhou, X.; Xiao, X.; Liu, S. Crosstalk between ER Stress, NLRP3 Inflammasome, and Inflammation. Appl. Microbiol. Biotechnol. 2020, 104, 6129–6140. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, R.; Wang, H.; Liang, F. Mechanisms Linking Inflammation to Insulin Resistance. Int. J. Endocrinol. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bronner, D.N.; Abuaita, B.H.; Chen, X.; Fitzgerald, K.A.; Nuñez, G.; He, Y.; Yin, X.-M.; O’Riordan, M.X.D. Endoplasmic Reticulum Stress Activates the Inflammasome via NLRP3- and Caspase-2-Driven Mitochondrial Damage. Immunity 2015, 43, 451–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puig, N.; Estruch, M.; Jin, L.; Sanchez-Quesada, J.L.; Benitez, S. The Role of Distinctive Sphingolipids in the Inflammatory and Apoptotic Effects of Electronegative LDL on Monocytes. Biomolecules 2019, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, M.; Huang, W.; Chen, W.; Zhao, Y.; Schulte, M.L.; Volberding, P.; Gerbec, Z.; Zimmermann, M.T.; Zeighami, A.; et al. Mitochondrial Metabolic Reprogramming by CD36 Signaling Drives Macrophage Inflammatory Responses. Circ. Res. 2019, 125, 1087–1102. [Google Scholar] [CrossRef]
- Jonas, W.; Schürmann, A. Genetic and Epigenetic Factors Determining NAFLD Risk. Mol. Metab. 2020, in press, 101111. [Google Scholar] [CrossRef]
- Struben, V.M.D.; Hespenheide, E.E.; Caldwell, S.H. Nonalcoholic Steatohepatitis and Cryptogenic Cirrhosis within Kindreds. Am. J. Med. 2000, 108, 9–13. [Google Scholar] [CrossRef]
- Di Costanzo, A.; Belardinilli, F.; Bailetti, D.; Sponziello, M.; D’Erasmo, L.; Polimeni, L.; Baratta, F.; Pastori, D.; Ceci, F.; Montali, A.; et al. Evaluation of Polygenic Determinants of Non-Alcoholic Fatty Liver Disease (NAFLD) By a Candidate Genes Resequencing Strategy. Sci. Rep. 2018, 8, 3702. [Google Scholar] [CrossRef] [PubMed]
- Han, M.A.T.; Yu, Q.; Tafesh, Z.; Pyrsopoulos, N. Diversity in NAFLD: A Review of Manifestations of Nonalcoholic Fatty Liver Disease in Different Ethnicities Globally. J. Clin. Transl. Hepatol. 2020, 1–10. [Google Scholar] [CrossRef]
- Choudhary, N.S.; Duseja, A. Genetic and Epigenetic Disease Modifiers: Non-Alcoholic Fatty Liver Disease (NAFLD) and Alcoholic Liver Disease (ALD). Transl. Gastroenterol. Hepatol. 2021, 6, 2. [Google Scholar] [CrossRef]
- Milaciu, M.V.; Vesa, Ș.C.; Bocșan, I.C.; Ciumărnean, L.; Sâmpelean, D.; Negrean, V.; Pop, R.M.; Matei, D.M.; Pașca, S.; Răchișan, A.L.; et al. Paraoxonase-1 Serum Concentration and PON1 Gene Polymorphisms: Relationship with Non-Alcoholic Fatty Liver Disease. J. Clin. Med. 2019, 8, 2200. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, C.S.; White, C.M.; Shah, V.H.; Jophlin, L.L. A Single Nucleotide Polymorphism of PLIN2 Is Associated with Nonalcoholic Steatohepatitis and Causes Phenotypic Changes in Hepatocyte Lipid Droplets: A Pilot Study. Biochim. Et Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2020, 1865, 158637. [Google Scholar] [CrossRef]
- Delik, A.; Akkız, H.; Dinçer, S. The Effect of PNPLA3 Polymorphism as Gain in Function Mutation in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Indian J. Gastroenterol. 2020, 39, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Li, Y.; Zhang, S.; Wang, X.; Shen, J.; Zhang, S. Interaction of TM6SF2 E167K and PNPLA3 I148M Variants in NAFLD in Northeast China. Ann. Hepatol. 2019, 18, 456–460. [Google Scholar] [CrossRef]
- Lisboa, Q.C.; Nardelli, M.J.; Pereira, P.D.A.; Miranda, D.M.; Ribeiro, S.N.; Costa, R.S.N.; Versiani, C.A.; Vidigal, P.V.T.; Ferrari, T.C.D.A.; Couto, C.A. PNPLA3 and TM6SF2 Polymorphisms in Brazilian Patients with Nonalcoholic Fatty Liver Disease. World J. Hepatol. 2020, 12, 792–806. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Basu, A.; Das, K.; Chowdhury, A.; Basu, P. Exome-Wide Scan Identifies Significant Association of Rs4788084 in IL27 Promoter with Increase in Hepatic Fat Content among Indians. Gene 2021, 775, 145431. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, D.; Yang, R.; Liu, M.; Liu, Y. The Triglyceride Glucose Index (TyG) and CDKAL1 Gene Rs10946398 SNP Are Associated with NAFLD in Chinese Adults. Minerva Endocrinol. 2020. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Gao, Y.; Ma, H.; Zhan, S.; Yang, Y.; Xin, Y.; Xuan, S. Association of TM6SF2 Rs58542926 Gene Polymorphism with the Risk of Non-Alcoholic Fatty Liver Disease and Colorectal Adenoma in Chinese Han Population. BMC Biochem. 2019, 20, 3. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-Z.; Ding, H.-Y.; Liu, S.-S.; Liu, Q.; Jiang, X.-J.; Xin, Y.-N.; Xuan, S.-Y. Combining I148M and E167K Variants to Improve Risk Prediction for Nonalcoholic Fatty Liver Disease in Qingdao Han Population, China. Lipids Health Dis. 2019, 18, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Belyaeva, O.V.; Brown, P.M.; Fujita, K.; Valles, K.; Karki, S.; de Boer, Y.S.; Koh, C.; Chen, Y.; Du, X.; et al. 17-Beta Hydroxysteroid Dehydrogenase 13 Is a Hepatic Retinol Dehydrogenase Associated With Histological Features of Nonalcoholic Fatty Liver Disease. Hepatology 2019, 69, 1504–1519. [Google Scholar] [CrossRef]
- Adant, I.; Declercq, M.; Bird, M.; Bauters, M.; Boeckx, N.; Devriendt, K.; Cassiman, D.; Witters, P. Two Cases of Non-Alcoholic Fatty Liver Disease Caused by Biallelic ABHD5 Mutations. J. Hepatol. 2020, 72, 1030–1032. [Google Scholar] [CrossRef] [PubMed]
- Youssefian, L.; Vahidnezhad, H.; Saeidian, A.H.; Pajouhanfar, S.; Sotoudeh, S.; Mansouri, P.; Amirkashani, D.; Zeinali, S.; Levine, M.A.; Peris, K.; et al. Inherited Non-Alcoholic Fatty Liver Disease and Dyslipidemia Due to Monoallelic ABHD5 Mutations. J. Hepatol. 2019, 71, 366–370. [Google Scholar] [CrossRef]
- Aller, R.; Izaola, O.; Primo, D.; de Luis, D. Cholesteryl Ester Transfer Protein Variant (RS1800777) with Liver Histology in Non-Alcoholic Fatty Liver Disease Patients. Ann. Nutr. Metab. 2018, 73, 265–270. [Google Scholar] [CrossRef]
- Liu, J.; Xing, J.; Wang, B.; Wei, C.; Yang, R.; Zhu, Y.; Qiu, H. Correlation Between Adiponectin Gene Rs1501299 Polymorphism and Nonalcoholic Fatty Liver Disease Susceptibility: A Systematic Review and Meta-Analysis. Med. Sci. Monit. 2019, 25, 1078–1086. [Google Scholar] [CrossRef]
- Liu, M.; Liu, S.; Shang, M.; Liu, X.; Wang, Y.; Li, Q.; Mambiya, M.; Yang, L.; Zhang, Q.; Zhang, K.; et al. Association between ADIPOQ G276T and C11377G Polymorphisms and the Risk of Non-alcoholic Fatty Liver Disease: An Updated Meta-analysis. Mol. Genet. Genom. Med. 2019, 7, e624. [Google Scholar] [CrossRef]
- Pan, X.; Zheng, M.; Zou, T.; Liu, W.; Gu, X.; Zhang, X.; Cheng, X. The LEPR K109R and Q223R Might Contribute to the Risk of NAFLD: A Meta-Analysis. Curr. Mol. Med. 2018, 18. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lu, L.-L.; Liu, S.-S.; Du, S.-X.; Zhu, H.-L.; Dong, Q.-J.; Xin, Y.-N. Apolipoprotein A5 Gene Polymorphisms Are Associated with Non-Alcoholic Fatty Liver Disease. Hepatobiliary Pancreat. Dis. Int. 2018, 17, 214–219. [Google Scholar] [CrossRef]
- Xu, Q.-Y.; Li, H.; Cao, H.-X.; Pan, Q.; Fan, J.-G. APOC3 Rs2070667 Associates with Serum Triglyceride Profile and Hepatic Inflammation in Nonalcoholic Fatty Liver Disease. Biomed. Res. Int. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Jain, V.; Kumar, A.; Ahmad, N.; Jana, M.; Kalaivani, M.; Kumar, B.; Shastri, S.; Jain, O.; Kabra, M. Genetic Polymorphisms Associated with Obesity and Non-Alcoholic Fatty Liver Disease in Asian Indian Adolescents. J. Pediatric Endocrinol. Metab. 2019, 32, 749–758. [Google Scholar] [CrossRef]
- Jamialahmadi, O.; Mancina, R.M.; Ciociola, E.; Tavaglione, F.; Luukkonen, P.K.; Baselli, G.; Malvestiti, F.; Thuillier, D.; Raverdy, V.; Männistö, V.; et al. Exome-Wide Association Study on Alanine Aminotransferase Identifies Sequence Variants in the GPAM and APOE Associated With Fatty Liver Disease. Gastroenterology 2021, S0016508520355621. [Google Scholar] [CrossRef]
- Gravito-Soares, M.; Gravito-Soares, E.; Gomes, D.; Tome, L. Lysosomal Acid Lipase: Can It Be a New Non-Invasive Serum Biomarker of Cryptogenic Liver Fibrosis and Cirrhosis? Ann. Hepatol. 2019, 18, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Metwally, M.; Bayoumi, A.; Romero-Gomez, M.; Thabet, K.; John, M.; Adams, L.A.; Huo, X.; Aller, R.; García-Monzón, C.; Teresa Arias-Loste, M.; et al. A Polymorphism in the Irisin-Encoding Gene (FNDC5) Associates with Hepatic Steatosis by Differential MiRNA Binding to the 3′UTR. J. Hepatol. 2019, 70, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zheng, K.I.; Zhu, P.-W.; Li, Y.-Y.; Ma, H.-L.; Li, G.; Tang, L.-J.; Rios, R.S.; Liu, W.-Y.; Pan, X.-Y.; et al. FNDC5 Polymorphism Influences the Association between Sarcopenia and Liver Fibrosis in Adults with Biopsy-Proven Non-Alcoholic Fatty Liver Disease. Br. J. Nutr. 2020, 1–12. [Google Scholar] [CrossRef]
- Cai, W.; Weng, D.; Yan, P.; Lin, Y.; Dong, Z.; Mailamuguli Yao, H. Genetic Polymorphisms Associated with Nonalcoholic Fatty Liver Disease in Uyghur Population: A Case-Control Study and Meta-Analysis. Lipids Health Dis. 2019, 18, 14. [Google Scholar] [CrossRef] [Green Version]
- Hasan, E.M.; Abd Al Aziz, R.A.; Sabry, D.; Darweesh, S.K.; Badary, H.A.; Elsharkawy, A.; Abouelkhair, M.M.; Yosry, A. Genetic Variants in Nicotinamide-N-Methyltransferase (NNMT) Gene Are Related to the Stage of Non-Alcoholic Fatty Liver Disease Diagnosed by Controlled Attenuation Parameter (CAP)-FibroScan. J. Gastrointest. Liver Dis. 2018, 27, 265–272. [Google Scholar] [CrossRef]
- Zhu, P.; Lu, H.; Jing, Y.; Zhou, H.; Ding, Y.; Wang, J.; Guo, D.; Guo, Z.; Dong, C. Interaction Between AGTR1 and PPARγ Gene Polymorphisms on the Risk of Nonalcoholic Fatty Liver Disease. Genet. Test. Mol. Biomark. 2019, 23, 166–175. [Google Scholar] [CrossRef]
- Musso, G.; Saba, F.; Cassader, M.; Paschetta, E.; De Michieli, F.; Pinach, S.; Framarin, L.; Berrutti, M.; Leone, N.; Parente, R.; et al. Angiotensin II Type 1 Receptor Rs5186 Gene Variant Predicts Incident NAFLD and Associated Hypertension: Role of Dietary Fat-Induced Pro-Inflammatory Cell Activation. Am. J. Gastroenterol. 2019, 114, 607–619. [Google Scholar] [CrossRef]
- Rausch, J.C.; Lavine, J.E.; Chalasani, N.; Guo, X.; Kwon, S.; Schwimmer, J.B.; Molleston, J.P.; Loomba, R.; Brunt, E.M.; Chen, Y.-D.I.; et al. Genetic Variants Associated With Obesity and Insulin Resistance in Hispanic Boys With Nonalcoholic Fatty Liver Disease. J. Pediatric Gastroenterol. Nutr. 2018, 66, 789–796. [Google Scholar] [CrossRef]
- Bale, G.; Vishnubhotla, R.V.; Mitnala, S.; Sharma, M.; Padaki, R.N.; Pawar, S.C.; Duvvur, R.N. Whole-Exome Sequencing Identifies a Variant in Phosphatidylethanolamine N-Methyltransferase Gene to Be Associated With Lean-Nonalcoholic Fatty Liver Disease. J. Clin. Exp. Hepatol. 2019, 9, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Liu, Y.; Hao, J.-G.; Wang, L.-P.; Dai, M.-J.; Shen, G.-F.; Yan, X.-B. KLB Gene Polymorphism Is Associated with Obesity and Non-Alcoholic Fatty Liver Disease in the Han Chinese. Aging 2019, 11, 7847–7858. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Crudele, A.; Panera, N.; Romito, I.; Meroni, M.; De Stefanis, C.; Palma, A.; Comparcola, D.; Fracanzani, A.L.; Miele, L.; et al. β-Klotho Gene Variation Is Associated with Liver Damage in Children with NAFLD. J. Hepatol. 2020, 72, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Jin, W.; Zhang, J.; Wang, M.; Liu, S.; Xin, Y. Association of TCF7L2 Rs7903146 Gene Polymorphism with the Risk of NAFLD and CAD in the Chinese Han Population. J. Clin. Transl. Hepatol. 2020, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.P.; Misra, A.; Pandey, R.M. Rs7903146 (C/T) Polymorphism of Transcription Factor 7 like 2 (TCF7L-2) Gene Is Independently Associated with Non-Alcoholic Fatty Liver Disease in Asian Indians. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 175–180. [Google Scholar] [CrossRef]
- Perez-Diaz-del-Campo, N.; Abete, I.; Cantero, I.; Marin-Alejandre, B.A.; Monreal, J.I.; Elorz, M.; Herrero, J.I.; Benito-Boillos, A.; Riezu-Boj, J.I.; Milagro, F.I.; et al. Association of the SH2B1 Rs7359397 Gene Polymorphism with Steatosis Severity in Subjects with Obesity and Non-Alcoholic Fatty Liver Disease. Nutrients 2020, 12, 1260. [Google Scholar] [CrossRef] [PubMed]
- Sabzikarian, M.; Mahmoudi, T.; Tabaeian, S.P.; Rezamand, G.; Asadi, A.; Farahani, H.; Nobakht, H.; Dabiri, R.; Mansour-Ghanaei, F.; Derakhshan, F.; et al. The Common Variant of Rs6214 in Insulin like Growth Factor 1 (IGF1) Gene: A Potential Protective Factor for Non-Alcoholic Fatty Liver Disease. Arch. Physiol. Biochem. 2020, 1–6. [Google Scholar] [CrossRef]
- Dabiri, R.; Mahmoudi, T.; Sabzikarian, M.; Asadi, A.; Farahani, H.; Nobakht, H.; Maleki, I.; Mansour-Ghanaei, F.; Derakshshan, F.; Zali, M.R. A 3′-Untranslated Region Variant (Rs2289046) of Insulin Receptor Substrate 2 Gene Is Associated with Susceptibility to Nonalcoholic Fatty Liver Disease. Acta Gastroenterol. Belg. 2020, 83, 271–276. [Google Scholar]
- Teo, K.; Abeysekera, K.W.M.; Adams, L.; Aigner, E.; Anstee, Q.M.; Banales, J.M.; Banerjee, R.; Basu, P.; Berg, T.; Bhatnagar, P.; et al. Rs641738C>T near MBOAT7 Is Associated with Liver Fat, ALT and Fibrosis in NAFLD: A Meta-Analysis. J. Hepatol. 2021, 74, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Thangapandi, V.R.; Knittelfelder, O.; Brosch, M.; Patsenker, E.; Vvedenskaya, O.; Buch, S.; Hinz, S.; Hendricks, A.; Nati, M.; Herrmann, A.; et al. Loss of Hepatic Mboat7 Leads to Liver Fibrosis. Gut 2021, 70, 940–950. [Google Scholar] [CrossRef]
- Topchieva, L.V.; Kurbatova, I.V.; Dudanova, O.P.; Sokolovskaya, A.A.; Shipovskaya, A.A. IL6R Gene Polymorphic Variant Rs2228145(C >A) as a Marker of Genetic Liability to Nonalcoholic Steatohepatitis in the Russian Population of Karelia. Bull. Exp. Biol. Med. 2018, 165, 64–68. [Google Scholar] [CrossRef]
- Damavandi, N.; Zeinali, S. Association of Xenobiotic-Metabolizing Enzymes (GSTM1 and GSTT 1), and pro-Inflammatory Cytokines (TNF-α and IL-6) Genetic Polymorphisms with Non-Alcoholic Fatty Liver Disease. Mol. Biol. Rep. 2021, 48, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Crudele, A.; Dato, S.; Re, O.L.; Maugeri, A.; Sanna, P.; Giallongo, S.; Oben, J.; Panera, N.; De Rango, F.; Mosca, A.; et al. Pediatric Non-Alcoholic Fatty Liver Disease Is Affected by Genetic Variants Involved in Lifespan/Healthspan. J. Pediatric Gastroenterol. Nutr. 2021. Publish Ahead of Print. [Google Scholar] [CrossRef] [PubMed]
- Kempinska-Podhorodecka, A.; Wunsch, E.; Milkiewicz, P.; Stachowska, E.; Milkiewicz, M. The Association between SOCS1−1656G>A Polymorphism, Insulin Resistance and Obesity in Nonalcoholic Fatty Liver Disease (NAFLD) Patients. J. Clin. Med. 2019, 8, 1912. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-Z.; Zhang, Y.-H.; Bai, J.; Liu, Y.-W.; Du, W.-T. PIN1, a Perspective on Genetic Biomarker for Nonalcoholic Fatty Liver Disease (NAFLD). Metab. Open 2019, 3, 100014. [Google Scholar] [CrossRef] [PubMed]
- Akbulut, U.E.; Emeksiz, H.C.; Citli, S.; Cebi, A.H.; Korkmaz, H.A.A.; Baki, G. IL-17A, MCP-1, CCR-2, and ABCA1 Polymorphisms in Children with Non-Alcoholic Fatty Liver Disease. J. De Pediatr. 2019, 95, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Namjou, B.; Lingren, T.; Huang, T.; Parameswaran, S.; Cobb, B.L.; Stanaway, I.B.; Connolly, J.J.; Mentch, F.D.; Benoit, B.; Niu, X.; et al. GWAS and Enrichment Analyses of Non-Alcoholic Fatty Liver Disease Identify New Trait-Associated Genes and Pathways across EMERGE Network. BMC Med. 2019, 17, 135. [Google Scholar] [CrossRef]
- Akuta, N.; Kawamura, Y.; Kobayashi, M.; Arase, Y.; Saitoh, S.; Fujiyama, S.; Sezaki, H.; Hosaka, T.; Kobayashi, M.; Suzuki, Y.; et al. TERT Promoter Mutation in Serum Cell-Free DNA Is a Diagnostic Marker of Primary Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease. Oncology 2021, 99, 114–123. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S.-S.; Zhao, Z.-Z.; Zhao, B.-T.; Du, S.-X.; Jin, W.-W.; Xin, Y.-N. TRIB1 Rs17321515 Gene Polymorphism Increases the Risk of Coronary Heart Disease in General Population and Non-Alcoholic Fatty Liver Disease Patients in Chinese Han Population. Lipids Health Dis. 2019, 18, 165. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Xue, F.; Meng, J.; Liu, S.-S.; Chen, L.-Z.; Gao, H.; Geng, N.; Jin, W.-W.; Xin, Y.-N.; Xuan, S.-Y. TRIB1 Rs17321515 and Rs2954029 Gene Polymorphisms Increase the Risk of Non-Alcoholic Fatty Liver Disease in Chinese Han Population. Lipids Health Dis. 2019, 18, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimer, N.; Choucair, I.; Wang, Z.; Nemet, I.; Li, L.; Gukasyan, J.; Weeks, T.L.; Alkhouri, N.; Zein, N.; Tang, W.H.W.; et al. Bile Acids Profile, Histopathological Indices and Genetic Variants for Non-Alcoholic Fatty Liver Disease Progression. Metabolism 2021, 116, 154457. [Google Scholar] [CrossRef]
- Habibzadeh, P.; Honarvar, B.; Silawi, M.; Bahramjahan, S.; Kazemi, A.; Faghihi, M.A.; Lankarani, K. Association between Rs2303861 Polymorphism in CD82 Gene and Non-Alcoholic Fatty Liver Disease: A Preliminary Case-Control Study. Croat. Med. J. 2019, 60, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, G.E.; Lee, Y.; Yim, J.Y.; Choe, E.K.; Kwak, M.-S.; Yang, J.I.; Park, B.; Lee, J.-E.; Kim, J.A.; Kim, J.S. Genetic Polymorphisms of PNPLA3 and SAMM50 Are Associated with Nonalcoholic Fatty Liver Disease in a Korean Population. Gut Liver 2018, 12, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shen, W.; Wu, G.; Qin, C.; Zhang, Y.; Wang, Y.; Song, G.; Xiao, C.; Zhang, X.; Deng, G.; et al. The Role of SAMM50 in Non-alcoholic Fatty Liver Disease: From Genetics to Mechanisms. FEBS Open Bio 2021. [Google Scholar] [CrossRef]
- Nakajima, S.; Tanaka, H.; Sawada, K.; Hayashi, H.; Hasebe, T.; Abe, M.; Hasebe, C.; Fujiya, M.; Okumura, T. Polymorphism of Receptor-Type Tyrosine-Protein Phosphatase Delta Gene in the Development of Non-Alcoholic Fatty Liver Disease: PTPRD Genes in the Development of NAFLD. J. Gastroenterol. Hepatol. 2018, 33, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, G.F.; Kwan, R.; Ulintz, P.J.; Nguyen, P.; Bassirian, S.; Basrur, V.; Nesvizhskii, A.I.; Loomba, R.; Omary, M.B. Nuclear Lamina Genetic Variants, Including a Truncated LAP2, in Twins and Siblings with Nonalcoholic Fatty Liver Disease. Hepatology 2018, 67, 1710–1725. [Google Scholar] [CrossRef] [Green Version]
- Seko, Y.; Yamaguchi, K.; Mizuno, N.; Okuda, K.; Takemura, M.; Taketani, H.; Hara, T.; Umemura, A.; Nishikawa, T.; Moriguchi, M.; et al. Combination of PNPLA3 and TLL1 Polymorphism Can Predict Advanced Fibrosis in Japanese Patients with Nonalcoholic Fatty Liver Disease. J. Gastroenterol. 2018, 53, 438–448. [Google Scholar] [CrossRef]
- Chung, G.E.; Shin, E.; Kwak, M.-S.; In Yang, J.; Lee, J.-E.; Choe, E.K.; Yim, J.Y. The Association of Genetic Polymorphisms with Nonalcoholic Fatty Liver Disease in a Longitudinal Study. BMC Gastroenterol. 2020, 20, 344. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Atsukawa, M.; Tsubota, A.; Koeda, M.; Yoshida, Y.; Okubo, T.; Nakagawa, A.; Itokawa, N.; Kondo, C.; Nakatsuka, K.; et al. Association of Vitamin D Levels and Vitamin D-Related Gene Polymorphisms with Liver Fibrosis in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease. Dig. Liver Dis. 2019, 51, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Ma, C.; Xiang, T.; Ou, L.; Zeng, Q. Associations Among Methylene Tetrahydrofolate Reductase Rs1801133 C677T Gene Variant, Food Groups, and Non-Alcoholic Fatty Liver Disease Risk in the Chinese Population. Front. Genet. 2021, 12, 568398. [Google Scholar] [CrossRef]
- Aller, R.; López-Gomez, J.J.; Izaola, O.; Primo, D.; de Luis, D. Role of Neuropeptide Y Gene Variant (Rs161477) in Liver Histology in Obese Patients with Non-Alcoholic Fatty Liver Disease. Endocrinol. Diabetes Y Nutr. 2019, 66, 217–222. [Google Scholar] [CrossRef]
- Hao, X.; Zeng, Q. The Association and Interaction of Aldehyde Dehydrogenase 2 Polymorphisms with Food Group Intake and Probability of Having Non-Alcoholic Fatty Liver Disease. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 5049–5057. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Meroni, M.; Baselli, G.; Mancina, R.M.; Ruscica, M.; Longo, M.; Rametta, R.; Cespiati, A.; Pelusi, S.; Ferri, N.; et al. PCSK7 Gene Variation Bridges Atherogenic Dyslipidemia with Hepatic Inflammation in NAFLD Patients. J. Lipid Res. 2019, 60, 1144–1153. [Google Scholar] [CrossRef]
- Romeo, S.; Kozlitina, J.; Xing, C.; Pertsemlidis, A.; Cox, D.; Pennacchio, L.A.; Boerwinkle, E.; Cohen, J.C.; Hobbs, H.H. Genetic Variation in PNPLA3 Confers Susceptibility to Nonalcoholic Fatty Liver Disease. Nat. Genet. 2008, 40, 1461–1465. [Google Scholar] [CrossRef] [Green Version]
- Mazo, D.F.; Malta, F.M.; Stefano, J.T.; Salles, A.P.M.; Gomes-Gouvea, M.S.; Nastri, A.C.S.; Almeida, J.R.; Pinho, J.R.R.; Carrilho, F.J.; Oliveira, C.P. Validation of PNPLA3 Polymorphisms as Risk Factor for NAFLD and Liver Fibrosis in an Admixed Population. Ann. Hepatol. 2019, 18, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.; Jeiran, K.; Koenig, A.B.; Otgonsuren, M.; Goodman, Z.; Baranova, A.; Younossi, Z. The Role of Mitochondrial Genomics in Patients with Non-Alcoholic Steatohepatitis (NASH). BMC Med. Genet. 2016, 17, 63. [Google Scholar] [CrossRef] [Green Version]
- Negoita, F.; Blomdahl, J.; Wasserstrom, S.; Winberg, M.E.; Osmark, P.; Larsson, S.; Stenkula, K.G.; Ekstedt, M.; Kechagias, S.; Holm, C.; et al. PNPLA3 Variant M148 Causes Resistance to Starvation-mediated Lipid Droplet Autophagy in Human Hepatocytes. J. Cell Biochem. 2019, 120, 343–356. [Google Scholar] [CrossRef] [Green Version]
- Carpino, G.; Pastori, D.; Baratta, F.; Overi, D.; Labbadia, G.; Polimeni, L.; Di Costanzo, A.; Pannitteri, G.; Carnevale, R.; Del Ben, M.; et al. PNPLA3 Variant and Portal/Periportal Histological Pattern in Patients with Biopsy-Proven Non-Alcoholic Fatty Liver Disease: A Possible Role for Oxidative Stress. Sci. Rep. 2017, 7, 15756. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Liu, H.; Yuan, D.; Xu, J.; Chen, Y.; Xu, X.; Xu, F.; Liang, H. PNPLA3 I148M Mediates the Regulatory Effect of NF-kB on Inflammation in PA-treated HepG2 Cells. J. Cell Mol. Med. 2020, 24, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Aviram, M.; Rosenblat, M.; Bisgaier, C.L.; Newton, R.S.; Primo-Parmo, S.L.; La Du, B.N. Paraoxonase Inhibits High-Density Lipoprotein Oxidation and Preserves Its Functions. A Possible Peroxidative Role for Paraoxonase. J. Clin. Investig. 1998, 101, 1581–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, D.; Reichert, C.O.; Bydlowski, S.P. Paraoxonases Activities and Polymorphisms in Elderly and Old-Age Diseases: An Overview. Antioxidants 2019, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Meneses, M.J.; Silvestre, R.; Sousa-Lima, I.; Macedo, M.P. Paraoxonase-1 as a Regulator of Glucose and Lipid Homeostasis: Impact on the Onset and Progression of Metabolic Disorders. Int. J. Mol. Sci. 2019, 20, 4049. [Google Scholar] [CrossRef] [Green Version]
- Wysocka, A.; Cybulski, M.; Wysokiński, A.P.; Berbeć, H.; Stążka, J.; Zapolski, T. Paraoxonase 1 Activity, Polymorphism and Atherosclerosis Risk Factors in Patients Undergoing Coronary Artery Surgery. J. Clin. Med. 2019, 8, 441. [Google Scholar] [CrossRef] [Green Version]
- Tsai, T.-H.; Chen, E.; Li, L.; Saha, P.; Lee, H.-J.; Huang, L.-S.; Shelness, G.S.; Chan, L.; Chang, B.H.-J. The Constitutive Lipid Droplet Protein PLIN2 Regulates Autophagy in Liver. Autophagy 2017, 13, 1130–1144. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; He, H.; Zeng, Y.-P.; Yang, L.-D.; Jia, D.; An, Z.-M.; Jia, W.-G. Lipoprotein A, Combined with Alanine Aminotransferase and Aspartate Aminotransferase, Contributes to Predicting the Occurrence of NASH: A Cross-Sectional Study. Lipids Health Dis. 2020, 19, 134. [Google Scholar] [CrossRef]
- Nemes, K.; Åberg, F. Interpreting Lipoproteins in Nonalcoholic Fatty Liver Disease. Curr. Opin. Lipidol. 2017, 28, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, S.; Dong, Q.; Xin, Y.; Xuan, S. The Genetics of Clinical Liver Diseases: Insight into the TM6SF2 E167K Variant. J. Clin. Transl. Hepatol. 2018, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Canivet, C.M.; Bonnafous, S.; Rousseau, D.; Leclere, P.S.; Lacas-Gervais, S.; Patouraux, S.; Sans, A.; Luci, C.; Bailly-Maitre, B.; Iannelli, A.; et al. Hepatic FNDC5 Is a Potential Local Protective Factor against Non-Alcoholic Fatty Liver. Biochim. Et Biophys. Acta (BBA) Mol. Basis Dis. 2020, 165705. [Google Scholar] [CrossRef] [PubMed]
- Matheson, J.; Le Foll, B. Therapeutic Potential of Peroxisome Proliferator-Activated Receptor (PPAR) Agonists in Substance Use Disorders: A Synthesis of Preclinical and Human Evidence. Cells 2020, 9, 1196. [Google Scholar] [CrossRef]
- Augimeri, G.; Giordano, C.; Gelsomino, L.; Plastina, P.; Barone, I.; Catalano, S.; Andò, S.; Bonofiglio, D. The Role of PPARγ Ligands in Breast Cancer: From Basic Research to Clinical Studies. Cancers 2020, 12, 2623. [Google Scholar] [CrossRef]
- Majid, M.; Masood, A.; Kadla, S.A.; Hameed, I.; Ganai, B.A. Association of Pro12Ala Polymorphism of Peroxisome Proliferator-Activated Receptor Gamma 2 (PPARγ2) Gene with Type 2 Diabetes Mellitus in Ethnic Kashmiri Population. Biochem. Genet. 2017, 55, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Murakami-Nishida, S.; Matsumura, T.; Senokuchi, T.; Ishii, N.; Kinoshita, H.; Yamada, S.; Morita, Y.; Nishida, S.; Motoshima, H.; Kondo, T.; et al. Pioglitazone Suppresses Macrophage Proliferation in Apolipoprotein-E Deficient Mice by Activating PPARγ. Atherosclerosis 2019, 286, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Boutari, C.; Mantzoros, C.S. Adiponectin and Leptin in the Diagnosis and Therapy of NAFLD. Metabolism 2020, 103, 154028. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.M.; Gowda, N.; Fang, J.X.; Heller, N.M. Suppressor of Cytokine Signaling (SOCS)1 Regulates Interleukin-4 (IL-4)-Activated Insulin Receptor Substrate (IRS)-2 Tyrosine Phosphorylation in Monocytes and Macrophages via the Proteasome. J. Biol. Chem. 2016, 291, 20574–20587. [Google Scholar] [CrossRef] [Green Version]
- Stols-Gonçalves, D.; Hovingh, G.K.; Nieuwdorp, M.; Holleboom, A.G. NAFLD and Atherosclerosis: Two Sides of the Same Dysmetabolic Coin? Trends Endocrinol. Metab. 2019, 30, 891–902. [Google Scholar] [CrossRef]
- Childs, B.G.; Gluscevic, M.; Baker, D.J.; Laberge, R.-M.; Marquess, D.; Dananberg, J.; van Deursen, J.M. Senescent Cells: An Emerging Target for Diseases of Ageing. Nat. Rev. Drug Discov. 2017, 16, 718–735. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Bansal, Y.; Kumar, R.; Bansal, G. A Panoramic Review of IL-6: Structure, Pathophysiological Roles and Inhibitors. Bioorganic Med. Chem. 2020, 28, 115327. [Google Scholar] [CrossRef] [PubMed]
- Rose-John, S. Interleukin-6 Signalling in Health and Disease. F1000Research 2020, 9, 1013. [Google Scholar] [CrossRef] [PubMed]
- Fäldt, J.; Wernstedt, I.; Fitzgerald, S.M.; Wallenius, K.; Bergström, G.; Jansson, J.-O. Reduced Exercise Endurance in Interleukin-6-Deficient Mice. Endocrinology 2004, 145, 2680–2686. [Google Scholar] [CrossRef] [Green Version]
- Domin, R.; Dadej, D.; Pytka, M.; Zybek-Kocik, A.; Ruchała, M.; Guzik, P. Effect of Various Exercise Regimens on Selected Exercise-Induced Cytokines in Healthy People. Int. J. Environ. Res. Public Halth 2021, 18, 1261. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, J.; Lara-Reyna, S.; Jarosz-Griffiths, H.; McDermott, M.F. Tumour Necrosis Factor Signalling in Health and Disease. F1000Research 2019, 8, 111. [Google Scholar] [CrossRef]
- Jung, M.K.; Lee, J.S.; Kwak, J.-E.; Shin, E.-C. Tumor Necrosis Factor and Regulatory T Cells. Yonsei Med. J. 2019, 60, 126. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Carrozzi, V.; Ota, N.; Sambandam, A.; Wong, K.; Hackney, J.; Martinez-Martin, N.; Ouyang, W.; Pappu, R. Cutting Edge: IL-17B Uses IL-17RA and IL-17RB to Induce Type 2 Inflammation from Human Lymphocytes. J. Immunol. 2019, 202, 1935–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brembilla, N.C.; Senra, L.; Boehncke, W.-H. The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Front. Immunol. 2018, 9, 1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, L.; Mittenbühler, M.; Vesting, A.; Ostermann, A.; Wunderlich, C.; Wunderlich, F. Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation—Driven Liver and Colorectal Cancers. Cancers 2018, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Florin, L.; Lang, T. Tetraspanin Assemblies in Virus Infection. Front. Immunol. 2018, 9, 1140. [Google Scholar] [CrossRef]
- Prabhu, V.V.; Devaraj, S.N. KAI1/CD82, Metastasis Suppressor Gene as a Therapeutic Target for Non-Small-Cell Lung Carcinoma. J. Env. Pathol. Toxicol. Oncol. 2017, 36, 269–275. [Google Scholar] [CrossRef]
- Yeung, L.; Hickey, M.J.; Wright, M.D. The Many and Varied Roles of Tetraspanins in Immune Cell Recruitment and Migration. Front. Immunol. 2018, 9, 1644. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Kiss, T.; DelFavero, J.; Li, L.; Li, X.; Zheng, L.; Wang, J.; Jiang, C.; Shi, J.; Ungvari, Z.; et al. CD82-TRPM7-Numb Signaling Mediates Age-Related Cognitive Impairment. GeroScience 2020, 42, 595–611. [Google Scholar] [CrossRef]
- Neumann, E.; Schwarz, M.C.; Hasseli, R.; Hülser, M.-L.; Classen, S.; Sauerbier, M.; Rehart, S.; Mueller-Ladner, U. Tetraspanin CD82 Affects Migration, Attachment and Invasion of Rheumatoid Arthritis Synovial Fibroblasts. Ann. Rheum. Dis. 2018, 77, 1619–1626. [Google Scholar] [CrossRef]
- Lu, A.T.; Xue, L.; Salfati, E.L.; Chen, B.H.; Ferrucci, L.; Levy, D.; Joehanes, R.; Murabito, J.M.; Kiel, D.P.; Tsai, P.-C.; et al. GWAS of Epigenetic Aging Rates in Blood Reveals a Critical Role for TERT. Nat. Commun. 2018, 9, 387. [Google Scholar] [CrossRef] [Green Version]
- Akuta, N.; Suzuki, F.; Kobayashi, M.; Fujiyama, S.; Kawamura, Y.; Sezaki, H.; Hosaka, T.; Kobayashi, M.; Saitoh, S.; Arase, Y.; et al. Detection of TERT Promoter Mutation in Serum Cell-free DNA Using Wild-type Blocking PCR Combined with Sanger Sequencing in Hepatocellular Carcinoma. J. Med. Virol. 2020, 92, 3604–3608. [Google Scholar] [CrossRef] [PubMed]
- Trung, N.T.; Hoan, N.X.; Trung, P.Q.; Binh, M.T.; Van Tong, H.; Toan, N.L.; Bang, M.H.; Song, L.H. Clinical Significance of Combined Circulating TERT Promoter Mutations and MiR-122 Expression for Screening HBV-Related Hepatocellular Carcinoma. Sci Rep. 2020, 10, 8181. [Google Scholar] [CrossRef]
- Liu, S.; Gao, Y.; Zhang, C.; Li, H.; Pan, S.; Wang, X.; Du, S.; Deng, Z.; Wang, L.; Song, Z.; et al. SAMM50 Affects Mitochondrial Morphology through the Association of Drp1 in Mammalian Cells. FEBS Lett. 2016, 590, 1313–1323. [Google Scholar] [CrossRef]
- Ebrahimpour-Koujan, S.; Sohrabpour, A.A.; Foroughi, F.; Alvandi, E.; Esmaillzadeh, A. Effects of Vitamin D Supplementation on Liver Fibrogenic Factors in Non-Alcoholic Fatty Liver Patients with Steatohepatitis: Study Protocol for a Randomized Clinical Trial. Trials 2019, 20, 153. [Google Scholar] [CrossRef] [PubMed]
- Bakos, B.; Szili, B.; Szabó, B.; Horváth, P.; Kirschner, G.; Kósa, J.P.; Toldy, E.; Lakatos, P.; Tabák, Á.G.; Takács, I. Genetic Variants of VDR and CYP2R1 Affect BMI Independently of Serum Vitamin D Concentrations. BMC Med. Genet. 2020, 21, 129. [Google Scholar] [CrossRef]
- Hu, Z.; Tao, S.; Liu, H.; Pan, G.; Li, B.; Zhang, Z. The Association between Polymorphisms of Vitamin D Metabolic-Related Genes and Vitamin D 3 Supplementation in Type 2 Diabetic Patients. J. Diabetes Res. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, H.; Rhie, Y.; Lee, K. Vitamin D Level and Gene Polymorphisms in Korean Children with Type 1 Diabetes. Pediatr. Diabetes 2019. [Google Scholar] [CrossRef]
- Zhang, Z.; Thorne, J.L.; Moore, J.B. Vitamin D and Nonalcoholic Fatty Liver Disease. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 449–458. [Google Scholar] [CrossRef]
- Pacheco, D.; Izaola, O.; Primo, D.; de Luis, D. Allele a of the Rs16147 Variant of Neuropeptide Y Predicts Early Metabolic Improvements after Bariatric Surgery with Biliopancreatic Diversion in Morbid Obese Subjects. Clin. Nutr. Open Sci. 2021, 36, 26–34. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, Y.; Yang, K.; Shen, M.; Wang, Y. NPY Stimulates Cholesterol Synthesis Acutely by Activating the SREBP2-HMGCR Pathway through the Y1 and Y5 Receptors in Murine Hepatocytes. Life Sci. 2020, 262, 118478. [Google Scholar] [CrossRef] [PubMed]
- Kozlitina, J. Genetic Risk Factors and Disease Modifiers of Nonalcoholic Steatohepatitis. Gastroenterol. Clin. N. Am. 2020, 49, 25–44. [Google Scholar] [CrossRef]
- Krawczyk, M.; Portincasa, P.; Lammert, F. PNPLA3-Associated Steatohepatitis: Toward a Gene-Based Classification of Fatty Liver Disease. Semin. Liver Dis. 2013, 33, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Smagris, E.; BasuRay, S.; Li, J.; Huang, Y.; Lai, K.V.; Gromada, J.; Cohen, J.C.; Hobbs, H.H. Pnpla3I148M Knockin Mice Accumulate PNPLA3 on Lipid Droplets and Develop Hepatic Steatosis. Hepatology 2015, 61, 108–118. [Google Scholar] [CrossRef] [Green Version]
- BasuRay, S.; Smagris, E.; Cohen, J.C.; Hobbs, H.H. The PNPLA3 Variant Associated with Fatty Liver Disease (I148M) Accumulates on Lipid Droplets by Evading Ubiquitylation. Hepatology 2017, 66, 1111–1124. [Google Scholar] [CrossRef] [Green Version]
- Luukkonen, P.K.; Nick, A.; Hölttä-Vuori, M.; Thiele, C.; Isokuortti, E.; Lallukka-Brück, S.; Zhou, Y.; Hakkarainen, A.; Lundbom, N.; Peltonen, M.; et al. Human PNPLA3-I148M Variant Increases Hepatic Retention of Polyunsaturated Fatty Acids. JCI Insight 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Simons, N.; Isaacs, A.; Koek, G.H.; Kuč, S.; Schaper, N.C.; Brouwers, M.C.G.J. PNPLA3, TM6SF2, and MBOAT7 Genotypes and Coronary Artery Disease. Gastroenterology 2017, 152, 912–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naunyn, B. Der Diabetes Melitus; Alfred Hölder: Wien, Austria, 1898. [Google Scholar]
- Göke, B. Die Leber im Zentrum des Kohlenhydratstoffwechsels. Diabetologe 2016, 12, 460. [Google Scholar] [CrossRef] [Green Version]
- Ballestri, S.; Zona, S.; Targher, G.; Romagnoli, D.; Baldelli, E.; Nascimbeni, F.; Roverato, A.; Guaraldi, G.; Lonardo, A. Nonalcoholic Fatty Liver Disease Is Associated with an Almost Twofold Increased Risk of Incident Type 2 Diabetes and Metabolic Syndrome. Evidence from a Systematic Review and Meta-Analysis: NAFLD Foreruns Metabolic Syndrome. J. Gastroenterol. Hepatol. 2016, 31, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Marušić, M.; Paić, M.; Knobloch, M.; Liberati Pršo, A.-M. NAFLD, Insulin Resistance, and Diabetes Mellitus Type 2. Can. J. Gastroenterol. Hepatol. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Caussy, C.; Aubin, A.; Loomba, R. The Relationship Between Type 2 Diabetes, NAFLD, and Cardiovascular Risk. Curr. Diab. Rep. 2021, 21, 15. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Mantovani, A.; Targher, G. Hypertension, Diabetes, Atherosclerosis and NASH: Cause or Consequence? J. Hepatol. 2018, 68, 335–352. [Google Scholar] [CrossRef]
- De Vries, M.; Westerink, J.; Kaasjager, K.H.A.H.; de Valk, H.W. Prevalence of Nonalcoholic Fatty Liver Disease (NAFLD) in Patients With Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2020, 105, 3842–3853. [Google Scholar] [CrossRef]
- Barros, B.S.V.; Monteiro, F.C.; Terra, C.; Gomes, M.B. Prevalence of Non-Alcoholic Fatty Liver Disease and Its Associated Factors in Individuals with Type 1 Diabetes: A Cross-Sectional Study in a Tertiary Care Center in Brazil. Diabetol. Metab. Syndr. 2021, 13, 33. [Google Scholar] [CrossRef]
- Nobili, V.; Mantovani, A.; Cianfarani, S.; Alisi, A.; Mosca, A.; Sartorelli, M.R.; Maffeis, C.; Loomba, R.; Byrne, C.D.; Targher, G. Prevalence of Prediabetes and Diabetes in Children and Adolescents with Biopsy-Proven Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2019, 71, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.; Al-Mrabeh, A.; Zhyzhneuskaya, S.; Peters, C.; Barnes, A.C.; Aribisala, B.S.; Hollingsworth, K.G.; Mathers, J.C.; Sattar, N.; Lean, M.E.J. Remission of Human Type 2 Diabetes Requires Decrease in Liver and Pancreas Fat Content but Is Dependent upon Capacity for β Cell Recovery. Cell Metab. 2018, 28, 547–556.e3. [Google Scholar] [CrossRef] [Green Version]
- De Silva, N.M.G.; Borges, M.C.; Hingorani, A.; Engmann, J.; Shah, T.; Zhang, X.; Luan, J.; Langenberg, C.; Wong, A.; Kuh, D.; et al. Liver Function and Risk of Type 2 Diabetes: Bidirectional Mendelian Randomization Study. Diabetes 2019. [Google Scholar] [CrossRef] [Green Version]
- Fujii, H.; Kawada, N.; Japan Study Group of NAFLD (JSG-NAFLD). The Role of Insulin Resistance and Diabetes in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2020, 21, 3863. [Google Scholar] [CrossRef] [PubMed]
- Meroni, M.; Longo, M.; Rustichelli, A.; Dongiovanni, P. Nutrition and Genetics in NAFLD: The Perfect Binomium. Int. J. Mol. Sci. 2020, 21, 2986. [Google Scholar] [CrossRef] [Green Version]
- Barata, L.; Feitosa, M.F.; Bielak, L.F.; Halligan, B.; Baldridge, A.S.; Guo, X.; Yerges-Armstrong, L.M.; Smith, A.V.; Yao, J.; Palmer, N.D.; et al. Insulin Resistance Exacerbates Genetic Predisposition to Nonalcoholic Fatty Liver Disease in Individuals Without Diabetes. Hepatol. Commun. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NAFLD Clinical Study Group (NAFLD CSG); Krawczyk, M.; Bantel, H.; Rau, M.; Schattenberg, J.M.; Grünhage, F.; Pathil, A.; Demir, M.; Kluwe, J.; Boettler, T.; et al. Could Inherited Predisposition Drive Non-Obese Fatty Liver Disease? Results from German Tertiary Referral Centers. J. Hum. Genet. 2018, 63, 621–626. [Google Scholar] [CrossRef]
- Mancina, R.M.; Dongiovanni, P.; Petta, S.; Pingitore, P.; Meroni, M.; Rametta, R.; Borén, J.; Montalcini, T.; Pujia, A.; Wiklund, O.; et al. The MBOAT7-TMC4 Variant Rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European Descent. Gastroenterology 2016, 150, 1219–1230.e6. [Google Scholar] [CrossRef] [Green Version]
- Longo, M.; Meroni, M.; Erconi, V.; Carli, F.; Macchi, C.; Ronchi, D.; Sabatini, S.; Paolini, E.; De Caro, E.R.; Alisi, A.; et al. TM6SF2/PNPLA3/MBOAT7 Loss-of-Function Genetic Variants Impact on NAFLD Development and Progression Both in Patients and in in Vitro Models. Dig. Liver Dis. 2021, 53, S27–S28. [Google Scholar] [CrossRef]
- Kogiso, T.; Sagawa, T.; Kodama, K.; Taniai, M.; Hashimoto, E.; Tokushige, K. Development and Course of Diabetes According to Genetic Factors and Diabetes Treatment among Patients with Nonalcoholic Fatty Liver Disease. Nutrition 2021, 83, 111080. [Google Scholar] [CrossRef]
- Xia, M.-F.; Lin, H.-D.; Chen, L.-Y.; Wu, L.; Ma, H.; Li, Q.; Aleteng, Q.; Hu, Y.; He, W.-Y.; Gao, J.; et al. The PNPLA3 Rs738409 C>G Variant Interacts with Changes in Body Weight over Time to Aggravate Liver Steatosis, but Reduces the Risk of Incident Type 2 Diabetes. Diabetologia 2019, 62, 644–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guidance from the American Association for the Study of Liver Diseases: Hepatology, Vol. XX, No. X, 2017. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Petroni, M.L.; Brodosi, L.; Bugianesi, E.; Marchesini, G. Management of Non-Alcoholic Fatty Liver Disease. BMJ 2021, 372, m4747. [Google Scholar] [CrossRef]
- Li, H.-Y.; Gan, R.-Y.; Shang, A.; Mao, Q.-Q.; Sun, Q.-C.; Wu, D.-T.; Geng, F.; He, X.-Q.; Li, H.-B. Plant-Based Foods and Their Bioactive Compounds on Fatty Liver Disease: Effects, Mechanisms, and Clinical Application. Oxidative Med. Cell. Longev. 2021, 2021, 1–23. [Google Scholar] [CrossRef]
- Mantovani, A.; Dalbeni, A. Treatments for NAFLD: State of Art. Int. J. Mol. Sci. 2021, 22, 2350. [Google Scholar] [CrossRef]
- Attia, S.L.; Softic, S.; Mouzaki, M. Evolving Role for Pharmacotherapy in NAFLD/NASH. Clin. Transl. Sci. 2021, 14, 11–19. [Google Scholar] [CrossRef]
- Lian, J.; Fu, J. Efficacy of Various Hypoglycemic Agents in the Treatment of Patients with Nonalcoholic Liver Disease With or Without Diabetes: A Network Meta-Analysis. Front. Endocrinol. 2021, 12, 649018. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, T.; He, K.; Xu, M.; Gong, J.-P. Cardiolipin Inhibitor Ameliorates the Non-Alcoholic Steatohepatitis through Suppressing NLRP3 Inflammasome Activation. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8158–8167. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, Y.; Xing, J.; Liu, L.; Qiao, F.; Li, J.; Chen, Y. Baicalin Attenuates Hepatic Injury in Non-Alcoholic Steatohepatitis Cell Model by Suppressing Inflammasome-Dependent GSDMD-Mediated Cell Pyroptosis. Int. Immunopharmacol. 2020, 81, 106195. [Google Scholar] [CrossRef]
- Chen, H.-W.; Yen, C.-C.; Kuo, L.-L.; Lo, C.-W.; Huang, C.-S.; Chen, C.-C.; Lii, C.-K. Benzyl Isothiocyanate Ameliorates High-Fat/Cholesterol/Cholic Acid Diet-Induced Nonalcoholic Steatohepatitis through Inhibiting Cholesterol Crystal-Activated NLRP3 Inflammasome in Kupffer Cells. Toxicol. Appl. Pharmacol. 2020, 393, 114941. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, H.; Kim, M.Y.; Ji, S.Y.; Kim, S.Y.; Lee, H.; Kim, G.-Y.; Park, C.; Keum, Y.-S.; Hong, S.H.; Cheong, J.; et al. Auranofin Attenuates Non-Alcoholic Fatty Liver Disease by Suppressing Lipid Accumulation and NLRP3 Inflammasome-Mediated Hepatic Inflammation In Vivo and In Vitro. Antioxidants 2020, 9, 1040. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Jang, J.H.; Kim, S.W.; Han, S.-H.; Ma, K.-H.; Jang, J.-K.; Kang, H.C.; Cho, Y.-Y.; Lee, H.S.; Lee, J.Y. Sweroside Prevents Non-Alcoholic Steatohepatitis by Suppressing Activation of the NLRP3 Inflammasome. Int. J. Mol. Sci. 2020, 21, 2790. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Gao, X.; Luo, Y.; Fan, W.; Shen, T.; Ding, C.; Yao, M.; Song, S.; Yan, L. Apigenin Ameliorates HFD-Induced NAFLD through Regulation of the XO/NLRP3 Pathways. J. Nutr. Biochem. 2019, 71, 110–121. [Google Scholar] [CrossRef]
- Flores-Costa, R.; Duran-Güell, M.; Casulleras, M.; López-Vicario, C.; Alcaraz-Quiles, J.; Diaz, A.; Lozano, J.J.; Titos, E.; Hall, K.; Sarno, R.; et al. Stimulation of Soluble Guanylate Cyclase Exerts Antiinflammatory Actions in the Liver through a VASP/NF-ΚB/NLRP3 Inflammasome Circuit. Proc. Natl. Acad. Sci. USA 2020, 117, 28263–28274. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ou, Y.; Hu, G.; Wen, C.; Yue, S.; Chen, C.; Xu, L.; Xie, J.; Dai, H.; Xiao, H.; et al. Naringenin Attenuates Non-alcoholic Fatty Liver Disease by Down-regulating the NLRP3/NF-κB Pathway in Mice. Br. J. Pharm. 2020, 177, 1806–1821. [Google Scholar] [CrossRef]
- Patel, K.; Singh, G.K.; Patel, D.K. A Review on Pharmacological and Analytical Aspects of Naringenin. Chin. J. Integr. Med. 2018, 24, 551–560. [Google Scholar] [CrossRef]
- Zobeiri, M.; Belwal, T.; Parvizi, F.; Naseri, R.; Farzaei, M.H.; Nabavi, S.F.; Sureda, A.; Nabavi, S.M. Naringenin and Its Nano-Formulations for Fatty Liver: Cellular Modes of Action and Clinical Perspective. Curr. Pharm. Biotechnol. 2018, 19, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Den Hartogh, D.J.; Tsiani, E. Antidiabetic Properties of Naringenin: A Citrus Fruit Polyphenol. Biomolecules 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Jantan, I.; Haque, M.d.A.; Arshad, L.; Harikrishnan, H.; Septama, A.W.; Mohamed-Hussein, Z.-A. Dietary Polyphenols Suppress Chronic Inflammation by Modulation of Multiple Inflammation-Associated Cell Signaling Pathways. J. Nutr. Biochem. 2021, 108634. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Parama, D.; Daimari, E.; Girisa, S.; Banik, K.; Harsha, C.; Dutta, U.; Kunnumakkara, A.B. Rationalizing the Therapeutic Potential of Apigenin against Cancer. Life Sci. 2021, 267, 118814. [Google Scholar] [CrossRef] [PubMed]
Gene | Name | Polymorphism | Substitution | Association with NAFLD | Reference | Patients Notes |
---|---|---|---|---|---|---|
Lipids/free fatty acids/glucose metabolism | ||||||
PON1 | Paraoxonase-1 | rs854560 | L55M | NAFLD development risk factor | [74] | Romanian NAFLD patients |
PLIN2 | Perilipin-2 | rs35568725 | S251P | NAFLD development risk factor | [75] | American NASH patients |
PNPLA3 | Patatin-like phospholipase domain-containing protein 3 | rs738409 | 444C>GI148M | NAFLD development risk factor | [76] | Turkish NAFLD patients |
[77] | Chinese NAFLD patients | |||||
Associated with NAFLD and NASH susceptibility and progression | [78] | Brazilian NAFLD patients | ||||
rs2281135 | Associated with hepatocyte ballooning, lobular and portal inflammation, and NASH | [79] | Indian NAFLD patients | |||
CDKAL1 | Cdk5 regulatory associated protein 1-like 1 | rs10946398 | C | Associated with the high triglyceride glucose index and NAFLD development | [80] | Northern Chinese NAFLD patients |
TM6SF2 | Transmembrane 6 Superfamily Member 2 | rs58542926 | CT/TT E167K | High risk of NAFLD and CRA | [81,82] | Chinese Han NAFLD and CRA patients |
[77] | Chinese NAFLD patients | |||||
[78] | Brazilian NAFLD patients | |||||
HSD17B13 | 17β-Hydroxysteroid dehydrogenase type 13 | rs6834314 | G/G | Increased steatosis but decreased inflammation, ballooning, Mallory–Denk bodies | [83] | Caucasians NAFLD patients |
rs62305723 | P260S | |||||
ABHD5 | Abhydrolase Domain-Containing Protein 5 | c.193A>G | T65A | NAFLD development risk factor | [84] | Two Romanian origin sisters, two and five years old, normal BMI |
40G>T; G 14Ter | [85] | Seven families of Italian origin | ||||
CETP | Cholesteryl ester transfer protein | rs1800777 | G/A | Associated with the presence of steatosis and lobulillar inflammation | [86] | Caucasian NAFLD patients |
ADIPOQ | GBP-28; regulating glucose levels and fatty acid breakdown | rs1501299 | G/T | Increased NAFLD susceptibility | [87] | Meta-analysis |
rs11377 | C/G | A risk factor for NAFLD development | [88] | Meta-analysis | ||
LEPR | Leptin receptor | Q223R | Risk factor for NAFLD in Chinese population | [89] | Meta-analysis | |
K109R | Risk factor for NAFLD in Southeast Asian population | |||||
APOA5 | Apolipoprotein A5 | rs10750097 | (G/G) | Associated with NAFLD | [90] | Chinese Han NAFLD patients |
rs1263173 | (A/A) | |||||
rs17120035 | (T/T) | |||||
rs662799 | (G/G) | |||||
APOC3 | Apolipoprotein C3 | rs2070667 | A | Associated with high-grade lobular inflammation in NAFLD patients | [91] | Chinese Han NAFLD patients |
455T>C | associated with NAFLD | [92] | Asian Indian adolescents with overweight/obesity | |||
APOE | Apolipoprotein E | rs429358 | C | Associated with steatosis and liver damage | [93] | UK biobank samples |
GPAM/ GPAT1 | Glycerol-3-phosphate acyltransferase | rs2792751 | T | |||
LAL | Lysosomal acid lipase | E8SJM-C.894 | G>A | LAL activity associated with cryptogenic fibrosis and cirrhosis; not associated with cryptogenic liver steatosis | [94] | Portugal patients with abnormal liver enzymes |
FNDC5 | Irisin, the cleaved extracellular fragment of the Fibronectin type III domain-containing protein 5 | rs3480 | G | G allele is associated with more severe steatosis in NAFLD Through a microRNA-mediated mechanism controlling FNDC5 mRNA stability | [95] | Caucasian NAFLD patients |
AA | Associated with severe fibrosis in NAFLD patients with sarcopenia | [96] | Chinese NAFLD patients | |||
GCKR | Glucokinase regulatory protein | rs1260326 | T | y associated with NAFLD among Asian, liver biopsy, adult, and paediatric groups | [97] | Asian NAFLD patients |
rs780094 | T | Significantly increased in NAFLD cases | ||||
NNMT | Nicotinamide-N-Methyltransferase | rs694539 | AA | Significantly correlated with the steatosis degree, NAFLD, and NASH risk factor | [98] | Egyptian NAFLD patients |
PPARγ | Peroxisome proliferator-activated receptor-γ | rs9817428 | C | NAFLD susceptibility | [99] | Chinese NAFLD patients |
rs1175543 | G | |||||
rs13433696 | G | |||||
rs2920502 | C | |||||
ATGR1 | Angiotensin II type 1 receptor | rs1492100 | T | |||
rs5186 | A1166C | A1166C variant affects liver disease, insulin resistance, and endothelial dysfunction in NAFLD | [100] | Non-diabetic Italian NAFLD patients | ||
SPATS2L | Spermatogenesis Associated Serine Rich 2 Like | rs295120 | A/C | Associated with obesity/adiposity in NAFLD paediatric patients | [101] | Hispanic NAFLD paediatric patients |
rs99521 | T/G | |||||
rs295120 | A/C | |||||
SEMA6A | Semaphorin 6A | rs2303752 | T/C | |||
CAMK1D | Calcium/calmodulin-dependent protein kinase ID | rs17583338 | T/C | |||
GAS2 | Growth Arrest Specific 2 | rs11026723 | A/G | |||
NCKAP5 | NCK Associated Protein 5 | rs12619898 | G/A | |||
rs17397163 | G/A | |||||
rs11687204 | C/T | |||||
rs17397380 | A/C | |||||
Unknown | rs8005339 | A/G | ||||
RFX8 | Regulatory Factor X 8 | rs10865041 | G/T | Associated with IR in NAFLD paediatric patients | ||
FAM19A1 | TAFA Chemokine Like Family Member 1 | rs9846667 | A/G | |||
WBSCR17 | Williams–Beuren Syndrome Chromosomal Region 17 Protein | rs11773571 | C/T | |||
DZANK1 | Double Zinc Ribbon and Ankyrin Repeat Domains 1 | rs4361192 | C/T | |||
LINC00851 | Long Intergenic Non-Protein Coding RNA 851 | rs2295067 | A/G | |||
Unknown | rs8046133 | G/A | ||||
OPCML | Opioid Binding Protein/cell Adhesion Molecule Like | rs3923850 | A/G | DM susceptibility in NAFLD pediatric patients | ||
rs11727927 | G/A | |||||
Unknown | rs11644684 | C/A | ||||
PEMT | Phosphatidylethanolamine N-methyltransferase | rs7946 | T | Risk of NAFLD development | [102] | Lean-NAFLD Indian patients |
KLB | Klotho beta | rs7674434 | G | Associated with obesity and hepatic inflammation | [103] | Obese/non-obese NAFLD/non-NAFLD Chinese patients |
rs12152703 | T | |||||
rs17618244 | G>A | Associated with NAFLD severity in paediatric patients | [104] | Italian NAFLD paediatric patients | ||
TCF7L2 | Transcription factor 7-like 2 | rs7903146 | CT + TT | A protective factor against the development of NAFLD | [105] | Chinese NAFLD and CAD patients |
C/T | Associated with NAFLD in Asian Indians | [106] | Non-diabetic Asian Indian NAFLD patients | |||
SH2B1 | SH2B adapter protein 1 | rs7359397 | T | Associated with a higher risk of developing a severe stage of NAFLD | [107] | Spanish overweight/obese patients with NAFLD |
IGF1 | Insulin-like growth factor 1 | rs6214 | AA and AG | Protective effects for NAFLD susceptibility | [108] | Iranian NAFLD patients |
IRS2 | Insulin receptor substrate 2 | rs2289046 | GG + AG | A marker of decreased NAFLD susceptibility | [109] | Iranian NAFLD patients |
MBOAT7 | Lysophosphatidylinositol acyltransferase 1 (LPIAT1) | rs641738 | C>T | Associated with higher liver fat, NAFLD presence, and severity risk factor | [110] | Caucasian adults, a meta-analysis |
NAFLD/NASH development risk factor | [111] | Caucasian NAFLD patients | ||||
Immune/inflammatory response | ||||||
IL6R | Interleukin 6 Receptor | rs2228145 | C>A | Associated with NAFLD development in Russian population of Karelia | [112] | Karelian NASH patients |
TNF-α | Tumor Necrosis Factor α | rs1800629 | AG/AA | Associated with NAFLD in the Iranian population | [113] | Iranian NAFLD patients |
IL-6 | Interleukin 6 | rs1800795 | CG/CC | |||
G | NAFLD-associated hyperglycemia in children | [114] | Italian NAFLD paediatric patients | |||
ANRIL | P15 Antisense RNA | rs1556516 | G | |||
IL27 | Interleukin 27 | rs4788048 | Associated with hepatocyte ballooning, lobular and portal inflammation and NASH | [79] | Indian NAFLD patients | |
SOCS1 | Suppressor of cytokine signaling 1 | rs243330 | 1656G>A | Associated with obese NAFLD patients | [115] | Polish NAFLD patients |
PIN1 | Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 | rs2233678 | G | Associated with a high NAFLD risk | [116] | Chinese patient case-study |
rs2287839 | C | |||||
IL-17A | Interleukin-17A | rs2275913 | 197G/A | Associate with NAFLD development in obese Turkish children | [117] | Obese Turkish children with NAFLD |
IL17RA | Interleukin 17 Receptor A | rs5748926 | T | High NAFLD activity score, a promising biomarker | [118] | eMERGE Network data |
Other genes | ||||||
TERT | Telomerase Reverse Transcriptase | C228T | Catalytic subunit of telomerase; risk factor of NAFLD to HCC promotion | [119] | NAFLD Japanese patients | |
TRIB1 | Tribbles-1 | rs17321515 | A | Associated with the risk of NAFLD in the Chinese Han population | [120,121] | Chinese Han NAFLD patients |
rs2954029 | A | |||||
rs2954021 | A | Marker of transition from simple hepatic steatosis into NASH | [122] | American NAFLD patients | ||
CD82 (KAI1) | Metastasis suppressor, a membrane glycoprotein | rs2303861 | A/G | Associated with the risk of NAFLD in the Iranian population | [123] | Iranian NAFLD patients |
SAMM50 | Sorting and assembly machinery component 50 homolog | rs2143571 | G | Associated with the presence and severity of NAFLD in a Korean population | [124] | Korean NAFLD patients |
rs3761472 | A | |||||
rs2073080 | T | |||||
rs738491 | TT + CT | Risk and severity of NAFLD in Chinese Han population | [125] | Chinese Han NAFLD patients | ||
rs2073082 | AG + GG | |||||
PTPRD | Protein tyrosine phosphatase receptor type D | rs35929428 | GA; R995C | Risk factor for NAFLD development, hepatic lipid accumulation, and fibrosis | [126] | Japanese NAFLD patients |
TMPO/LAP2 | Lamina-associated polypeptide-2 | InsA;T99fs | Associated with NAFLD; increased lipid droplet accumulation | [127] | Twin-based study | |
TLL1 | Tolloid-like 1 | rs17047200 | AT/TT | advanced risk of fibrosis | [128] | Japanese NAFLD patients |
KCL1 | Kinesin light chain 1 | rs4906353 | T | Association with a high risk of NAFLD development | [129] | Korean NAFLD patients |
VDR | Vitamin D receptor | rs1544410 | CC | Associated with advanced fibrosis in NAFLD patients | [130] | Japanese NAFLD patients |
MTHFR | Methylene tetrahydrofolate reductase | rs1801133 | C677T | Association with a high risk of NAFLD development | [131] | Chinese NAFLD patients |
NPY | Neuropeptide Y | rs16147 | A | A lower percentage of steatohepatitis and lobular inflammation in obese NAFLD patients | [132] | Spanish NAFLD patients |
ALDH2 | Aldehyde dehydrogenase 2 | rs671 | GA and AA | Associated with increased probability of NAFLD among Chinese subjects | [133] | Chinese NAFLD patients |
PCSK7 | Proprotein convertase subtilisin/kexin type 7 | rs236918 | C | Associated with higher triglycerides, aminotransferases, and hepatic inflammation | [134] | Cross-sectional Liver Biopsy Cohort |
Treatment | Funtion/Target | Line/Mutant | Effect | Reference |
---|---|---|---|---|
Cardiolipin inhibitor shRNA-CLS1 | NLRP3 inflammasome | C57BL/6 | shRNA-CLS1 treatment significantly reduced the levels of IL-1β and IL-18; NLRP3, ASC, and Caspase-1 | [214] |
Baicalin, a flavone glycoside | NLRP3 and GSDMD | Human HepG2 cells | Down-regulates NLRP3, Caspase1, ASC, GSDMD, IL-1β, and IL-18 | [215] |
Benzyl isothiocyanate | NLRP3 inflammasome | C57BL/6 | Suppressed lipid accumulation, macrophage infiltration, fibrosis, crown-like structure formation, p20 caspase 1, and p17 IL-1β expression | [216] |
Auranofin | NLRP3 Inflammasome | C57BL/6 | Decreases the body weight, epididymal fat weight, levels of AST, glucose, triglyceride, cholesterol, and LDL-c; suppressed the expressions of IL-1β, IL-18, caspase-1, NLRP3, NADPH oxidase 4, and PPARγ | [217] |
Sweroside | NLRP3 Inflammasome | C57BL/6 | Inhibits NLRP3 inflammasome activation by decreasing IL-1β and caspase-1 production; reduces serum AST and ALT levels, hepatic immune cell infiltration, hepatic triglyceride accumulation, and liver fibrosis | [218] |
Apigenin | inflammation | C57BL/6 | Apigenin reverses activation of the NLRP3 inflammasome, reduces inflammatory cytokines IL-1β and IL-18 released, inhibits xanthine oxidase activity, and reduces uric acid and ROS | [219] |
Soluble guanylate cyclase stimulator praliciguat (PRL) | VASP/ NF-κB/NLRP3 inflammasome | C57BL/6 | The PRL anti-inflammatory effect was associated with suppression of hepatic levels of IL-1β, NLPR3, ASC, and c-caspase-1. Mechanistically, PRL induces the protein kinase G (PKG)-mediated phosphorylation of the VASP, thus reducing NF-κB activity and Il1b and Nlrp3 gene transcription | [220] |
Naringenin; NLRP3 inhibitor MCC950 | NLRP3, inflammation | NLRP3−/− HepG2 cells, primary hepatocytes, and Kuffer cells; C57BL/6 | Naringenin inhibits activation of the NLRP3/NF-κB pathway, lipid deposition, and IL-1β expression | [221] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabravolski, S.A.; Bezsonov, E.E.; Baig, M.S.; Popkova, T.V.; Nedosugova, L.V.; Starodubova, A.V.; Orekhov, A.N. Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. Int. J. Mol. Sci. 2021, 22, 4459. https://doi.org/10.3390/ijms22094459
Dabravolski SA, Bezsonov EE, Baig MS, Popkova TV, Nedosugova LV, Starodubova AV, Orekhov AN. Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. International Journal of Molecular Sciences. 2021; 22(9):4459. https://doi.org/10.3390/ijms22094459
Chicago/Turabian StyleDabravolski, Siarhei A., Evgeny E. Bezsonov, Mirza S. Baig, Tatyana V. Popkova, Ludmila V. Nedosugova, Antonina V. Starodubova, and Alexander N. Orekhov. 2021. "Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk" International Journal of Molecular Sciences 22, no. 9: 4459. https://doi.org/10.3390/ijms22094459
APA StyleDabravolski, S. A., Bezsonov, E. E., Baig, M. S., Popkova, T. V., Nedosugova, L. V., Starodubova, A. V., & Orekhov, A. N. (2021). Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. International Journal of Molecular Sciences, 22(9), 4459. https://doi.org/10.3390/ijms22094459