A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Chronic kidney disease | CKD |
Kidney Disease Outcomes Quality Initiative | KDOQI |
Mammalian target of rapamycin inhibitors | mTORs |
Cyclosporine | CsA |
Tacrolimus | TAC |
Sirolimus | SIR |
Azathioprine | AZA |
Mycophenolic acid | MPA |
Mycophenolate | MMF |
ATP binding cassette subfamily B member 1 | ABCB1 |
cytochrome P450 family 2 subfamily C member 9 | CYP2C9 |
cytochrome P450 family 2 subfamily C member 19 | CYP2C19 |
cytochrome P450 family 3 subfamily A member 5 | CYP3A5 |
interleukin 6 | IL-6 |
interleukin 10 | IL-10 |
inosine triphosphatase | ITPA |
macrophage migration inhibitory factor | MIF |
transforming growth factor beta 1 | TGFB1 |
tumor necrosis factor | TNF |
thiopurine S-methyltransferase | TPMT |
References
- Levey, A.S.; Atkins, R.; Coresh, J.; Cohen, E.P.; Collins, A.J.; Eckardt, K.-U.; Nahas, M.E.; Jaber, B.L.; Jadoul, M.; Levin, A.; et al. Chronic Kidney Disease as a Global Public Health Problem: Approaches and Initiatives—a Position Statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007, 72, 247–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coresh, J.; Selvin, E.; Stevens, L.A.; Manzi, J.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Levey, A.S. Prevalence of Chronic Kidney Disease in the United States. JAMA 2007, 298, 2038–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. Kidney Disease as a Risk Factor for Development of Cardiovascular Disease: A Statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003, 42, 1050–1065. [Google Scholar] [CrossRef]
- Moe, S.; Drüeke, T.; Cunningham, J.; Goodman, W.; Martin, K.; Olgaard, K.; Ott, S.; Sprague, S.; Lameire, N.; Eknoyan, G. Definition, Evaluation, and Classification of Renal Osteodystrophy: A Position Statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006, 69, 1945–1953. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.M.; Crisamore, K.R.; Empey, P.E. Clinical Pharmacogenomics: Applications in Nephrology. Clin. J. Am. Soc. Nephrol. Clin. J. Am. Soc. Nephrol. 2018, 13, 1561–1571. [Google Scholar] [CrossRef] [Green Version]
- Roden, D.M.; McLeod, H.L.; Relling, M.V.; Williams, M.S.; Mensah, G.A.; Peterson, J.F.; Van Driest, S.L. Pharmacogenomics. Lancet Lond. Engl. 2019, 394, 521–532. [Google Scholar] [CrossRef]
- Halloran, P.F. Immunosuppressive Drugs for Kidney Transplantation. N. Engl. J. Med. 2004, 351, 2715–2729. [Google Scholar] [CrossRef] [Green Version]
- Zaza, G.; Granata, S.; Sallustio, F.; Grandaliano, G.; Schena, F.P. Pharmacogenomics: A New Paradigm to Personalize Treatments in Nephrology Patients. Clin. Exp. Immunol. 2010, 159, 268–280. [Google Scholar] [CrossRef]
- Kurzawski, M.; Droździk, M. Pharmacogenetics in Solid Organ Transplantation: Genes Involved in Mechanism of Action and Pharmacokinetics of Immunosuppressive Drugs. Pharmacogenomics 2013, 14, 1099–1118. [Google Scholar] [CrossRef] [PubMed]
- Brazeau, D.A.; Attwood, K.; Meaney, C.J.; Wilding, G.E.; Consiglio, J.D.; Chang, S.S.; Gundroo, A.; Venuto, R.C.; Cooper, L.; Tornatore, K.M. Beyond Single Nucleotide Polymorphisms: CYP3A5∗3∗6∗7 Composite and ABCB1 Haplotype Associations to Tacrolimus Pharmacokinetics in Black and White Renal Transplant Recipients. Front. Genet. 2020, 11, 889. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, D.A.; van Schaik, R.H.N.; van der Heiden, I.P.; van der Werf, M.; Gregoor, P.J.H.S.; Lindemans, J.; Weimar, W.; van Gelder, T. Genetic Polymorphisms of the CYP3A4, CYP3A5, and MDR-1 Genes and Pharmacokinetics of the Calcineurin Inhibitors Cyclosporine and Tacrolimus. Clin. Pharmacol. Ther. 2003, 74, 245–254. [Google Scholar] [CrossRef]
- Staatz, C.E.; Goodman, L.K.; Tett, S.E. Effect of CYP3A and ABCB1 Single Nucleotide Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Calcineurin Inhibitors: Part II. Clin. Pharmacokinet. 2010, 49, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, D.A.; Bouamar, R.; Elens, L.; van Schaik, R.H.N.; van Gelder, T. The Role of Pharmacogenetics in the Disposition of and Response to Tacrolimus in Solid Organ Transplantation. Clin. Pharmacokinet. 2014, 53, 123–139. [Google Scholar] [CrossRef]
- van Gelder, T.; van Schaik, R.H.; Hesselink, D.A. Pharmacogenetics and immunosuppressive drugs in solid organ transplantation. Nat. Rev. Nephrol. 2014, 10, 725–731. [Google Scholar] [CrossRef]
- Evans, W.E. Pharmacogenetics of Thiopurine S-Methyltransferase and Thiopurine Therapy. Ther. Drug Monit. 2004, 26, 186–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budhiraja, P.; Popovtzer, M. Azathioprine-Related Myelosuppression in a Patient Homozygous for TPMT*3A. Nat. Rev. Nephrol. 2011, 7, 478–484. [Google Scholar] [CrossRef]
- Yates, C.R.; Krynetski, E.Y.; Loennechen, T.; Fessing, M.Y.; Tai, H.L.; Pui, C.H.; Relling, M.V.; Evans, W.E. Molecular Diagnosis of Thiopurine S-Methyltransferase Deficiency: Genetic Basis for Azathioprine and Mercaptopurine Intolerance. Ann. Intern. Med. 1997, 126, 608–614. [Google Scholar] [CrossRef]
- Xiong, H.; Xin, H.-W.; Wu, X.-C.; Li, Q.; Xiong, L.; Yu, A.-R. Association between Inosine Triphosphate Pyrophosphohydrolase Deficiency and Azathioprine-Related Adverse Drug Reactions in the Chinese Kidney Transplant Recipients. Fundam. Clin. Pharmacol. 2010, 24, 393–400. [Google Scholar] [CrossRef]
- Kurzawski, M.; Dziewanowski, K.; Lener, A.; Drozdzik, M. TPMT but Not ITPA Gene Polymorphism Influences the Risk of Azathioprine Intolerance in Renal Transplant Recipients. Eur. J. Clin. Pharmacol. 2009, 65, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, J.W.; Zeevi, A.; Webber, S.A.; Girnita, D.M.; Selby, R.; Fu, J.; Shah, T.; Pravica, V.; Hutchinson, I.V.; et al. IMPDH1 Gene Polymorphisms and Association with Acute Rejection in Renal Transplant Patients. Clin. Pharmacol. Ther. 2008, 83, 711–717. [Google Scholar] [CrossRef]
- Xin, H.-W.; Xiong, H.; Wu, X.-C.; Li, Q.; Xiong, L.; Yu, A.-R. Relationships between Thiopurine S-Methyltransferase Polymorphism and Azathioprine-Related Adverse Drug Reactions in Chinese Renal Transplant Recipients. Eur. J. Clin. Pharmacol. 2009, 65, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Vannaprasaht, S.; Angsuthum, S.; Avihingsanon, Y.; Sirivongs, D.; Pongskul, C.; Makarawate, P.; Praditpornsilpa, K.; Tassaneeyakul, W.; Tassaneeyakul, W. Impact of the Heterozygous TPMT*1/*3C Genotype on Azathioprine-Induced Myelosuppression in Kidney Transplant Recipients in Thailand. Clin. Ther. 2009, 31, 1524–1533. [Google Scholar] [CrossRef]
- Takada, K.; Arefayene, M.; Desta, Z.; Yarboro, C.H.; Boumpas, D.T.; Balow, J.E.; Flockhart, D.A.; Illei, G.G. Cytochrome P450 Pharmacogenetics as a Predictor of Toxicity and Clinical Response to Pulse Cyclophosphamide in Lupus Nephritis. Arthritis Rheum. 2004, 50, 2202–2210. [Google Scholar] [CrossRef] [PubMed]
- Ngamjanyaporn, P.; Thakkinstian, A.; Verasertniyom, O.; Chatchaipun, P.; Vanichapuntu, M.; Nantiruj, K.; Totemchokchyakarn, K.; Attia, J.; Janwityanujit, S. Pharmacogenetics of Cyclophosphamide and CYP2C19 Polymorphism in Thai Systemic Lupus Erythematosus. Rheumatol. Int. 2011, 31, 1215–1218. [Google Scholar] [CrossRef]
- Chiou, Y.-H.; Wang, L.-Y.; Wang, T.-H.; Huang, S. Genetic Polymorphisms Influence the Steroid Treatment of Children with Idiopathic Nephrotic Syndrome. Pediatr. Nephrol. 2012, 27, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.M.; Attia, T.A.; El-Shal, A.S.; Abduelometty, F.A. Multi-Drug Resistance-1 Gene Polymorphisms in Nephrotic Syndrome: Impact on Susceptibility and Response to Steroids. Gene 2013, 530, 201–207. [Google Scholar] [CrossRef]
- Sadeghi-Bojd, S.; Falsafinejad, F.; Danesh, H.; Bizhani, F.; Bahari, G.; Hashemi, M. Macrophage Migration Inhibitory Factor -173 G>C Gene Polymorphism Is Associated with Increased Risk of Nephrotic Syndrome in Children. Iran. J. Kidney Dis. 2019, 13, 232–236. [Google Scholar] [PubMed]
- Luo, Y.; Gong, Y.; Yu, Y. Interleukin-10 Gene Promoter Polymorphisms Are Associated with Cyclosporin A-Induced Gingival Overgrowth in Renal Transplant Patients. Arch. Oral Biol. 2013, 58, 1199–1207. [Google Scholar] [CrossRef]
- Choi, H.J.; Cho, H.Y.; Ro, H.; Lee, S.H.; Han, K.H.; Lee, H.; Kang, H.G.; Ha, I.S.; Choi, Y.; Cheong, H. Il Polymorphisms of the MDR1 and MIF Genes in Children with Nephrotic Syndrome. Pediatr. Nephrol. 2011, 26, 1981–1988. [Google Scholar] [CrossRef]
- Berdeli, A.; Mir, S.; Ozkayin, N.; Serdaroglu, E.; Tabel, Y.; Cura, A. Association of Macrophage Migration Inhibitory Factor -173C Allele Polymorphism with Steroid Resistance in Children with Nephrotic Syndrome. Pediatr. Nephrol. 2005, 20, 1566–1571. [Google Scholar] [CrossRef]
- Świerczewska, M.; Ostalska-Nowicka, D.; Kempisty, B.; Szczepankiewicz, A.; Nowicki, M. Polymorphic Variants of MIF Gene and Prognosis in Steroid Therapy in Children with Idiopathic Nephrotic Syndrome. Acta Biochim. Pol. 2014, 61, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babel, N.; Cherepnev, G.; Kowalenko, A.; Horstrup, J.; Volk, H.-D.; Reinke, P. Nonimmunologic Complications and Gene Polymorphisms of Immunoregulatory Cytokines in Long-Term Renal Transplants. Kidney Int. 2004, 66, 428–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Srivastava, A.; Kapoor, R.; Mittal, R.D. Do Drug Transporter (ABCB1) SNPs Influence Cyclosporine and Tacrolimus Dose Requirements and Renal Allograft Outcome in the Posttransplantation Period? J. Clin. Pharmacol. 2011, 51, 603–615. [Google Scholar] [CrossRef]
- Santoro, A.; Felipe, C.R.; Tedesco-Silva, H.; Medina-Pestana, J.O.; Struchiner, C.J.; Ojopi, E.B.; Suarez-Kurtz, G. Pharmacogenetics of Calcineurin Inhibitors in Brazilian Renal Transplant Patients. Pharmacogenomics 2011, 12, 1293–1303. [Google Scholar] [CrossRef]
- Glowacki, F.; Lionet, A.; Buob, D.; Labalette, M.; Allorge, D.; Provôt, F.; Hazzan, M.; Noël, C.; Broly, F.; Cauffiez, C. CYP3A5 and ABCB1 Polymorphisms in Donor and Recipient: Impact on Tacrolimus Dose Requirements and Clinical Outcome after Renal Transplantation. Nephrol. Dial. Transplant. 2011, 26, 3046–3050. [Google Scholar] [CrossRef] [Green Version]
- Kuypers, D.R.J.; Naesens, M.; de Jonge, H.; Lerut, E.; Verbeke, K.; Vanrenterghem, Y. Tacrolimus Dose Requirements and CYP3A5 Genotype and the Development of Calcineurin Inhibitor-Associated Nephrotoxicity in Renal Allograft Recipients. Ther. Drug Monit. 2010, 32, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Miura, M.; Satoh, S.; Inoue, K.; Kagaya, H.; Saito, M.; Inoue, T.; Habuchi, T.; Suzuki, T. Influence of CYP3A5, ABCB1 and NR1I2 Polymorphisms on Prednisolone Pharmacokinetics in Renal Transplant Recipients. Steroids 2008, 73, 1052–1059. [Google Scholar] [CrossRef]
- Grinyó, J.; Vanrenterghem, Y.; Nashan, B.; Vincenti, F.; Ekberg, H.; Lindpaintner, K.; Rashford, M.; Nasmyth-Miller, C.; Voulgari, A.; Spleiss, O.; et al. Association of Four DNA Polymorphisms with Acute Rejection after Kidney Transplantation. Transpl. Int. 2008, 21, 879–891. [Google Scholar] [CrossRef]
- von Ahsen, N.; Richter, M.; Grupp, C.; Ringe, B.; Oellerich, M.; Armstrong, V.W. No Influence of the MDR-1 C3435T Polymorphism or a CYP3A4 Promoter Polymorphism (CYP3A4-V Allele) on Dose-Adjusted Cyclosporin A Trough Concentrations or Rejection Incidence in Stable Renal Transplant Recipients. Clin. Chem. 2001, 47, 1048–1052. [Google Scholar] [CrossRef] [Green Version]
- Quteineh, L.; Verstuyft, C.; Furlan, V.; Durrbach, A.; Letierce, A.; Ferlicot, S.; Taburet, A.-M.; Charpentier, B.; Becquemont, L. Influence of CYP3A5 Genetic Polymorphism on Tacrolimus Daily Dose Requirements and Acute Rejection in Renal Graft Recipients. Basic Clin. Pharmacol. Toxicol. 2008, 103, 546–552. [Google Scholar] [CrossRef]
- Qiu, X.-Y.; Jiao, Z.; Zhang, M.; Zhong, L.-J.; Liang, H.-Q.; Ma, C.-L.; Zhang, L.; Zhong, M.-K. Association of MDR1, CYP3A4*18B, and CYP3A5*3 Polymorphisms with Cyclosporine Pharmacokinetics in Chinese Renal Transplant Recipients. Eur. J. Clin. Pharmacol. 2008, 64, 1069–1084. [Google Scholar] [CrossRef]
- Kagaya, H.; Miura, M.; Saito, M.; Habuchi, T.; Satoh, S. Correlation of IMPDH1 Gene Polymorphisms with Subclinical Acute Rejection and Mycophenolic Acid Exposure Parameters on Day 28 after Renal Transplantation. Basic Clin. Pharmacol. Toxicol. 2010, 107, 631–636. [Google Scholar] [CrossRef]
- Kurzawski, M.; Dziewanowski, K.; Gawrońska-Szklarz, B.; Domański, L.; Droździk, M. The Impact of Thiopurine S-Methyltransferase Polymorphism on Azathioprine-Induced Myelotoxicity in Renal Transplant Recipients. Ther. Drug Monit. 2005, 27, 435–441. [Google Scholar] [CrossRef]
- Kumaraswami, K.; Katkam, S.K.; Aggarwal, A.; Sharma, A.; Manthri, R.; Kutala, V.K.; Rajasekhar, L. Epistatic Interactions among CYP2C19*2, CYP3A4 and GSTP1 on the Cyclophosphamide Therapy in Lupus Nephritis Patients. Pharmacogenomics 2017, 18, 1401–1411. [Google Scholar] [CrossRef]
- Moussa, A.; Mabrouk, S.; Hamdouni, H.; Ajmi, M.; Tfifha, M.; Omezzine, A.; Abroug, S.; Bouslama, A. MDR-1 and CYP3A5 Polymorphisms in Pediatric Idiopathic Nephrotic Syndrome: Impact on Susceptibility and Response to Steroids (Preliminary Results). Clin. Lab. 2017, 63, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, G.; Jafar, T.; Mandal, K.; Mahdi, A.A.; Awasthi, S.; Sharma, R.K.; Kumar, A.; Gulati, S.; Agrawal, S. Does Cytokine Gene Polymorphism Affect Steroid Responses in Idiopathic Nephrotic Syndrome? Indian J. Med. Sci. 2008, 62, 383–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Relling, M.V.; Gardner, E.E.; Sandborn, W.J.; Schmiegelow, K.; Pui, C.-H.; Yee, S.W.; Stein, C.M.; Carrillo, M.; Evans, W.E.; Klein, T.E. Clinical Pharmacogenetics Implementation Consortium Guidelines for Thiopurine Methyltransferase Genotype and Thiopurine Dosing. Clin. Pharmacol. Ther. 2011, 89, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Ferraresso, M.; Tirelli, A.; Ghio, L.; Grillo, P.; Martina, V.; Torresani, E.; Edefonti, A. Influence of the CYP3A5 Genotype on Tacrolimus Pharmacokinetics and Pharmacodynamics in Young Kidney Transplant Recipients. Pediatr. Transplant. 2007, 11, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Uesugi, M.; Masuda, S.; Katsura, T.; Oike, F.; Takada, Y.; Inui, K. Effect of Intestinal CYP3A5 on Postoperative Tacrolimus Trough Levels in Living-Donor Liver Transplant Recipients. Pharmacogenet. Genomics 2006, 16, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Op den Buijsch, R.A.M.; Christiaans, M.H.L.; Stolk, L.M.L.; de Vries, J.E.; Cheung, C.Y.; Undre, N.A.; van Hooff, J.P.; van Dieijen-Visser, M.P.; Bekers, O. Tacrolimus Pharmacokinetics and Pharmacogenetics: Influence of Adenosine Triphosphate-Binding Cassette B1 (ABCB1) and Cytochrome (CYP) 3A Polymorphisms. Fundam. Clin. Pharmacol. 2007, 21, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Macphee, I.A.M.; Fredericks, S.; Mohamed, M.; Moreton, M.; Carter, N.D.; Johnston, A.; Goldberg, L.; Holt, D.W. Tacrolimus Pharmacogenetics: The CYP3A5*1 Allele Predicts Low Dose-Normalized Tacrolimus Blood Concentrations in Whites and South Asians. Transplantation 2005, 79, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Z.; Zheng, J.; Chen, Z.; Tang, Z.; Chen, J.; Li, L. Influence of CYP3A5 and MDR1 Polymorphisms on Tacrolimus Concentration in the Early Stage after Renal Transplantation. Clin. Transplant. 2005, 19, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak-Celińska, A.; Baer-Dubowska, W. Pharmacoepigenetics: An Element of Personalized Therapy? Expert Opin. Drug Metab. Toxicol. 2017, 13, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Stanke-Labesque, F.; Gautier-Veyret, E.; Chhun, S.; Guilhaumou, R. Inflammation Is a Major Regulator of Drug Metabolizing Enzymes and Transporters: Consequences for the Personalization of Drug Treatment. Pharmacol. Ther. 2020, 215, 107627. [Google Scholar] [CrossRef]
Author (Year of Publication) | Ethnicity | Drug | Phenotype or Trait | Gene | Polymorphism (Rs Number) | N | Selection Criteria of Non-Responders | Responders | N | Selection Criteria of Responders |
---|---|---|---|---|---|---|---|---|---|---|
Xiong, 2010 [18] | East Asians | AZA | Kidney transplant recipients | ITPA | 94C > A (rs1127354) | 35 | Hematotoxicity and/or hepatotoxicity and/or GI toxicity and/or flu-like symptoms | Renal transplants, AZA treatment present or previously | 120 | No adverse drug reactions |
Kurzawski, 2009 [19] | Caucasians | AZA | Renal transplant recipients | TPMT | *1 vs. *2,*3A,*3C | 108 | Leucopenia and/or Hepatotoxicity | Renal transplants, AZA treatment previously | 48 | No adverse drug reactions |
ITPA | 94C > A (rs1127354) | |||||||||
Wang, 2008 [20] | Caucasians | TAC, MMF, PRE | Kidney transplant recipients (no antiviral, anticancer, or other leucopenia-causing medication) | IMPDH1 | 898G > A | 60 | Leucopenia | Renal transplants | 129 | No adverse drug reactions |
IMPDH1 | rs2288550 | |||||||||
IMPDH1 | 1552G > A | |||||||||
Xin, 2009 [21] | East Asians | AZA, CsA, PRE | Renal transplant recipients | TPMT | *1 vs. *3C | 30 | Hematotoxicity and/or hepatotoxicity | Renal transplants | 120 | No adverse drug reactions |
Vannaprasaht, 2009 [22] | Asians | AZA, PRE, CNIs | Kidney transplant recipients | TPMT | *1 vs. *3C | 22 | Myelosuppression | Renal transplants | 117 | No adverse drug reactions |
Takada, 2004 [23] | Caucasians | pulse cyclophosphamide | Lupus nephritis | CYP2C19 | CYP2C19*2 (rs4244285) | 28 | Development of premature ovarian failure | Patients with lupus nephritis | 20 | No adverse drug reactions |
CYP2C9 | CYP2C9*2 (rs1799853) | |||||||||
CYP3A5 | CYP3A5*3 (rs776746) | |||||||||
Ngamjanyaporn, 2011 [24] | Asians | cyclophosphamide | SLE | CYP2C19 | *1 vs. *2 (rs4244285) | 36 | Ovarian toxicity | Patients with systemic lupus erythematosus | 35 | No adverse drug reactions |
Chiou, 2012 [25] | Asians | PRE | Idiopathic NS | CYP3A5 | 6986A > G (rs776746) | 16 | Steroid resistant NS | Patients with NS | 58 | Steroid sensitive NS |
ABCB1 | C1236T (rs1128503) | |||||||||
ABCB1 | G2677T (rs2032582) | |||||||||
ABCB1 | G2677A (rs2032582) | |||||||||
ABCB1 | C3435T (rs1045642) | |||||||||
Youssef, 2013 [26] | Mixed | PRE | Idiopathic NS | ABCB1 | C1236T (rs1128503) | 46 | Steroid non-responders | Patients with INS | 92 | Steroid responders |
ABCB1 | G2677T/A (rs2032582) | |||||||||
ABCB1 | C3435T (rs1045642) | |||||||||
Sadeghi-Bojd, 2019 [27] | Asians | steroids | Idiopathic NS | MIF | -173G > C (rs755622) | 27 | Steroid resistant | Patients with NS | 107 | Steroid responders |
Luo, 2013 [28] | East Asians | CsA | Gingival overgrowth in renal transplant recipients | IL-10 | -1082A > G | 122 | With gingival overgrowth | Renal transplants | 80 | Without gingival overgrowth |
IL-10 | -819C > T | |||||||||
IL-10 | -592C > A | |||||||||
Choi, 2011 [29] | East Asians | steroids | Idiopathic NS | ABCB1 | 1236C > T (rs1128503) | 69 | Steroid non-responders | Patients with NS | 101 | Steroid responders |
ABCB1 | 2677G > T (rs2032582) | |||||||||
ABCB1 | 2677G > A (rs2032582) | |||||||||
ABCB1 | 3435C > T (rs1045642) | |||||||||
MIF | G-173C (rs755622) | |||||||||
Berdeli, 2005 [30] | Mixed | steroids | Idiopathic NS | MIF | G-173C (rs755622) | 77 | Steroid non-responders | Patients with NS | 137 | Steroid responders |
Swierczewska, 2014 [31] | Caucasians | steroids | Idiopathic NS | MIF | G-173C (rs755622) | 41 | Steroid non-responders | Patients with NS | 30 | Steroid responders |
Babel, 2004 [32] | Caucasians | CsA+ TAC/PRE and ATG/anti-IL-2R antibody | Long-term renal transplants | IL10 | A-1082G (rs1800896) | 51 | Type 2/steroid-induced DM | Renal transplants | 207 | No adverse drug reactions |
TNFa | A-308G (rs1800629) | |||||||||
IL-6 | C-174G | |||||||||
TGFB1 10 | C > T | |||||||||
Singh, 2011 [33] | Asians | CsA | Rejection episodes in renal transplant recipients | ABCB1 | 1236 C > T (rs1128503) | 49 | Rejection episodes | Renal transplants | 176 | No rejection episodes |
CsA | ABCB1 | 2677 G > T (rs2032582) | 72 | 176 | ||||||
CsA | ABCB1 | 3435 C > T (rs1045642) | 70 | 176 | ||||||
TAC | ABCB1 | 1236 C > T (rs1128503) | 46 | 29 | ||||||
TAC | ABCB1 | 2677 G > T (rs2032582) | 46 | 29 | ||||||
TAC | ABCB1 | 3435 C > T (rs1045642) | ||||||||
Santoro, 2011 [34] | Mixed | CsA and AZA/SRL or TAC and AZA/SRL | Renal transplant patients | CYP3A5 | CYP3A5*3 (rs776746) | 15 | Biopsy-proven rejection episodes | Renal transplants | 138 | No biopsy-proven rejection episodes |
ABCB1 | 1236 C > T (rs1128503) | 139 | 15 | |||||||
ABCB1 | 2677 G > T (rs2032582) | 129 | 15 | |||||||
ABCB1 | 3435 C > T (rs1045642) | 140 | 15 | |||||||
Glowacki, 2011 [35] | Caucasians | TAC | Acute tubular necrosis/TAC tubular or vascular toxicity after renal transplantation | ABCB1 | 3435 C > T (rs1045642) | 16 | Acute tubular necrosis/TAC tubular or vascular toxicity | Renal transplants | 187 | No acute tubular necrosis/TAC tubular or vascular toxicity |
Kuypers, 2010 [36] | Caucasians | calcineurin inhibitor | Calcineurin inhibitor-associated nephrotoxicity in renal allograft recipients | CYP3A5 | CYP3A5*3 (rs776746) | 51 | Calcineurin inhibitor-associated nephrotoxicity | Renal allograft recipients | 253 | |
Miura, 2008 [37] | East Asians | PRE and TAC and MMF | Acute rejection in renal transplant recipients | ABCB1 | 1236 C > T (rs1128503) | 43 | Acute rejection | Renal transplants | 52 | No acute rejection |
ABCB1 | 2677 G > T (rs2032582) | |||||||||
ABCB1 | 2677 G > A (rs2032582) | |||||||||
ABCB1 | 3435 C > T (rs1045642) | |||||||||
Grinyo, 2008 [38] | Caucasians | CsA and MMF | Acute rejection after kidney transplantation | ABCB1 | 3435 C > T (rs1045642) | 77 | Biopsy-proven acute rejection | Renal transplants | 160 | No biopsy-proven acute rejection |
ABCB1 | 1236 C > T (rs1128503) | |||||||||
ABCB1 | 2677 G > T (rs2032582) | |||||||||
ABCB1 | 2677 G > A (rs2032582) | |||||||||
IMPDH1 | G1320A | |||||||||
IL-10 | C-592A (rs1800872) | |||||||||
IL-10 | A-1082G (rs1800896) | |||||||||
IL-10 | C-819T (rs3021097) | |||||||||
TGF-b1 | C869T (rs1800470) | |||||||||
Von Ahsen, 2001 [39] | Caucasians | CsA | Rejection episodes in stable renal transplant recipients | ABCB1 | 3435 C > T (rs1045642) | 47 | Rejection | Renal transplants | 77 | No rejection |
Quteineh, 2008 [40] | Caucasians | TAC | Delayed allograft function in renal graft recipients | CYP3A5 | CYP3A5*3 (rs776746) | 77 | Delayed graft function | Renal transplants | 59 | No delayed graft function |
Qiu, 2008 [41] | East Asians | CsA | Rejection episodes in renal transplant recipients | ABCB1 | 1236 C > T (rs1128503) | 6 | Rejection | Renal transplants | 97 | No rejection |
ABCB1 | 2677 G > T/A (rs2032582) | 6 | 97 | |||||||
ABCB1 | 3435 C > T (rs1045642) | 6 | 97 | |||||||
CYP3A5 | CYP3A5*3 (rs776746) | 6 | 97 | |||||||
Kagaya, 2010 [42] | Asians | MMF | Subclinical acute rejection after renal transplantation | IMPDH | rs2278293 | 21 | Subclinical acute rejection | 61 | No subclinical acute rejection | |
IMPDH | rs2278294 | |||||||||
Kurzawski, 2005 [43] | Caucasians | AZA | AZA-induced myelotoxicity in renal transplant recipients | TPMT | *1 vs. *2,*3A,*3C | 67 | AZA-induced myelotoxicity | Renal transplants | 113 | No adverse drug reactions |
Kumaraswami, 2017 [44] | Asians | cyclophosphamide | Lupus nephritis | CYP2C19 | CYP2C19*2 (rs4244285) | 24 | No response | Lupus nephritis patients | 123 | Complete and partial response |
CYP2C9 | CYP2C9*2 (rs1799853) | |||||||||
CYP3A5 | CYP3A5*3 (rs776746) | |||||||||
Moussa, 2017 [45] | Mixed | steroids | Pediatric idiopathic nephrotic syndrome | ABCB1 | C1236T (rs1128503) | 10 | Steroid non-responders | Idiopathic nephrotic syndrome | 53 | Steroid responders |
ABCB1 | G2677A | |||||||||
ABCB1 | C3435T (rs1045642) | |||||||||
CYP3A5 | CYP3A5*3 (rs776746) | |||||||||
Tripathi, 2008 [46] | Asians | glucocorticoids | Idiopathic nephrotic syndrome | TNF-α | A-308G (rs1800629) | 35 | Steroid resistant | Idiopathic nephrotic syndrome | 115 | Steroid sensitive |
IL-6 | G174C (rs1800795) |
Drug | Gene | Polymorphism | Rs Number | N of Studies | OR with 95% CI Fixed Effects | OR with 95% CI Random Effects | I2 (%) | p-Value for Q | Egger Test p-Value | Begg–Mazumdar p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Pulse cyclophosphamide | CYP2C9 | CYP2C9*2 | rs1799853 | 2 | ||||||
All | ||||||||||
Dominant | 1.24 (0.20–7.90) | 1.24 (0.20–7.90) | 0 | 0.41 | - | - | ||||
Recessive | 1.89 (0.11–32.69) | 1.89 (0.11–32.69) | 0 | 0.52 | ||||||
Additive | 1.93 (0.11–33.45) | 1.93 (0.11–33.45) | 0 | 0.54 | ||||||
Pulse cyclophosphamide | CYP2C19 | CYP2C19*2 (G681A) | rs4244285 | 3 | ||||||
All | ||||||||||
Dominant | 1.07 (0.60–1.90) | 0.81 (0.17–3.90) | 86 | 0.001 | - | - | ||||
Recessive | 1.25 (0.34–4.63) | 1.25 (0.34–4.63) | 0 | 0.89 | ||||||
Additive | 1.36 (0.34–5.36) | 1.36 (0.34–5.36) | 0 | 0.48 | ||||||
Caucasians | 1 | - | - | |||||||
Asians | 2 | |||||||||
Dominant | 1.88 (0.98–3.60) | 1.88 (0.98–3.60) | 0 | 0.50 | - | - | ||||
Recessive | 1.46 (0.33–3.67) | 1.46 (0.33–3.67) | 0 | 0.84 | ||||||
Additive | 2.06 (0.44–9.58) | 2.06 (0.44–9.58) | 0 | 0.94 | ||||||
Pulse cyclophosphamide | CYP3A5 | CYP3A5*3 | rs776746 | |||||||
All | 2 | |||||||||
Dominant | 0.67 (0.30–1.48) | 0.67 (0.30–1.48) | 0% | 0.54 | - | - | ||||
Recessive | 0.90 (0.30–2.68) | 0.90 (0.30–2.68) | 0% | 0.58 | - | - | ||||
Additive | 0.73 (0.17–3.08) | 0.73 (0.17–3.08) | 0% | 0.32 | - | - |
Drug | Gene | Polymorphism | Rs Number | N of Studies | OR with 95% CI Fixed Effects | OR with 95% CI Random Effects | I2 (%) | p-Value for Q | Egger Test p-Value | Begg–Mazumdar p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Prednizolone | ||||||||||
All | TPMT | *1 vs. *3C | 2 | |||||||
Dominant | 0.49 (0.18–1.37) | 0.64 (0.01–50.02) | 94.4% | <0.0001 | - | - | ||||
Recessive | 4 (0.08–202.85) | 4 (0.08–202.85) | 0% | >0.9999 | - | - | ||||
Additive | 4.5 (0.09–228.51) | 4.5 (0.09–228.51) | 0% | >0.9999 | - | - | ||||
All | CYP3A5 | CYP3A5*3 | rs776746 | 2 | ||||||
Dominant | 2.38 (0.41–13.67) | 2.38 (0.41–13.67) | 0% | 0.84 | - | - | ||||
Recessive | 2.54 (1.03–6.22) | 2.54 (1.03–6.22) | 0% | 0.73 | - | - | ||||
Additive | 3.24 (0.54–19.51) | 3.24 (0.54–19.51) | 0% | 0.80 | - | - | ||||
All | ABCB1 | C3435T | rs1045642 | 9 | ||||||
Dominant | 0.86 (0.63–1.18) | 0.86 (0.63–1.18) | 0% | 0.61 | 0.62 | 0.48 | ||||
Recessive | 1.21 (0.86–1.70) | 1.21 (0.86–1.70) | 0% | 0.76 | 0.72 | 0.76 | ||||
Additive | 0.97 (0.64–1.48) | 0.97 (0.64–1.48) | 0% | 0.95 | 0.31 | 0.61 | ||||
Caucasians | ABCB1 | C3435T | rs1045642 | 2 | ||||||
Dominant | 1.02 (0.28–3.68) | 1.05 (0.26–4.28) | 14.7% | 0.28 | - | - | ||||
Recessive | 2.02 (0.82–4.96) | 2.05 (0.73–5.75) | 23.6% | 0.25 | - | - | ||||
Additive | 1.84 (0.46–7.32) | 1.84 (0.46–7.32) | 0% | 0.68 | - | - | ||||
Asians | ABCB1 | C3435T | rs1045642 | 5 | ||||||
Dominant | 0.89 (0.62–1.28) | 0.89 (0.62–1.28) | 0% | 0.83 | 0.24 | 0.48 | ||||
Recessive | 1.07 (0.66–1.75) | 1.07 (0.66–1.75) | 0% | 0.86 | 0.82 | 0.48 | ||||
Additive | 1.01 (0.59–1.74) | 1.01 (0.59–1.74) | 0% | 0.99 | 0.79 | 0.82 | ||||
Mixed | ABCB1 | C3435T | rs1045642 | 2 | ||||||
Dominant | 0.75 (0.39–1.44) | 0.66 (0.19–2.31) | 70.6% | 0.07 | - | - | ||||
Recessive | 1.17 (0.68–2.02) | 1.17 (0.68–2.02) | 0% | 0.36 | - | - | ||||
Additive | 0.76 (0.37–1.59) | 0.76 (0.36–1.61) | 3.8% | 0.31 | - | - | ||||
All | ABCB1 | C1236T | rs1128503 | 9 | ||||||
Dominant | 1.29 (0.91–1.84) | 1.31 (0.90–1.89) | 5% | 0.39 | 0.62 | 0.36 | ||||
Recessive | 1.70 (1.22–2.38) | 1.62 (1.10–2.40) | 20.4% | 0.26 | 0.09 | 0.26 | ||||
Additive | 1.63 (1.01–2.64) | 1.62 (0.95–2.76) | 14% | 0.32 | 0.72 | 0.76 | ||||
Caucasians | ABCB1 | C1236T | rs1128503 | 2 | ||||||
Dominant | 0.56 (0.21–1.52) | 0.56 (0.21–1.52) | 0% | 0.38 | - | - | ||||
Recessive | 0.94 (0.33–2.63) | 0.94 (0.33–2.63) | 0% | 0.65 | - | - | ||||
Additive | 0.63 (0.18–2.22) | 0.63 (0.18–2.22) | 0% | 0.42 | - | - | ||||
Asians | ABCB1 | C1236T | rs1128503 | 5 | ||||||
Dominant | 1.42 (0.91–2.21) | 1.48 (0.90–2.43) | 7.6% | 0.36 | 0.27 | 0.82 | ||||
Recessive | 1.69 (1.11–2.60) | 1.58 (0.88–2.83) | 37.1% | 0.17 | 0.46 | 0.48 | ||||
Additive | 1.90 (1.02–3.53) | 1.92 (0.88–4.19) | 27.2% | 0.24 | 0.94 | 0.82 | ||||
Mixed | ABCB1 | C1236T | rs1128503 | 2 | ||||||
Dominant | 1.55 (0.79–3.05) | 1.55 (0.79–3.05) | 0% | 0.68 | - | - | ||||
Recessive | 2.17 (1.14–4.12) | 2.06 (0.88–4.81) | 39.3% | 0.20 | - | - | ||||
Additive | 1.97 (0.76–5.12) | 1.97 (0.76–5.12) | 0% | 0.46 | - | - | ||||
Prednizolone | ABCB1 | G2677T | rs2032582 | 5 | ||||||
All | ||||||||||
Dominant | 1.08 (0.60–1.93) | 1.08 (0.60–1.93) | 0% | 0.83 | 0.43 | 0.23 | ||||
Recessive | 1.16 (0.67–2.01) | 1.11 (0.48–2.57) | 53.8% | 0.07 | 0.72 | 0.08 | ||||
Additive | 1.34 (0.66–2.71) | 1.34 (0.66–2.71) | 0% | 0.73 | 0.76 | 0.48 | ||||
Caucasians | ABCB1 | G2677T | rs2032582 | 2 | ||||||
Dominant | 1.42 (0.36–5.62) | 1.42 (0.36–5.62) | 0% | 0.57 | - | - | ||||
Recessive | 0.64 (0.24–1.70) | 0.62 (0.15–2.61) | 53.5% | 0.14 | - | - | ||||
Additive | 0.89 (0.19–4.14) | 0.91 (0.16–5.23) | 22.3% | 0.26 | - | - | ||||
Asians | ABCB1 | G2677T | rs2032582 | 3 | ||||||
Dominant | 1.01 (0.53–1.93) | 1.01 (0.53–1.93) | 0% | 0.63 | - | - | ||||
Recessive | 1.53 (0.78–3.00) | 1.57 (0.55–4.47) | 54.6% | 0.11 | - | - | ||||
Additive | 1.49 (0.67–3.30) | 1.49 (0.67–3.30) | 0% | 0.82 | - | - | ||||
Prednizolone | ABCB1 | G2677A | rs2032582 | |||||||
All | 5 | |||||||||
Dominant | 1.21 (0.62–2.37) | 1.30 (0.59–2.84) | 21.1% | 0.28 | 0.16 | 0.08 | ||||
Recessive | 1.64 (0.60–4.47) | 1.64 (0.60–4.47) | 0% | 0.68 | 0.48 | 0.82 | ||||
Additive | 1.22 (0.38–3.91) | 1.22 (0.38–3.91) | 0% | 0.55 | 0.23 | 0.23 | ||||
Caucasians | ABCB1 | G2677A | rs2032582 | 1 | ||||||
Asians | 4 | |||||||||
Dominant | 1.07 (0.54–2.14) | 1.08 (0.53–2.18) | 2.9% | 0.38 | 0.50 | 0.75 | ||||
Recessive | 1.39 (0.48–4.01) | 1.39 (0.48–4.01) | 0% | 0.70 | 0.90 | 0.75 | ||||
Additive | 0.91 (0.26–3.13) | 0.91 (0.26–3.13) | 0% | 0.76 | 0.49 | 0.33 | ||||
Prednizolone | MIF | −173 G > C | rs755622 | |||||||
All | 4 | |||||||||
Dominant | 1.56 (1.09–2.24) | 1.28 (0.55–3.00) | 80.6% | 0.001 | 0.16 | <0.0001 | ||||
Recessive | 2.90 (1.02–8.30) | 2.88 (0.68–12.16) | 45.3% | 0.14 | 0.91 | 0.75 | ||||
Additive | 2.98 (1.03–8.63) | 2.93 (0.54–15.99) | 59.4% | 0.06 | 0.92 | 0.75 | ||||
Prednizolone | IL-6 | C-174G | rs1800795 | |||||||
All | 2 | |||||||||
Dominant | 0.82 (0.49–1.37) | 0.82 (0.49–1.37) | 0% | 0.69 | - | - | ||||
Recessive | 0.80 (0.43–1.48) | 0.32 (0.02–4.28) | 82.8% | 0.02 | - | - | ||||
Additive | 0.66 (0.31–1.40) | 0.31 (0.02–3.76) | 80.9% | 0.02 | - | - | ||||
Prednizolone | TNF | G-308A | ||||||||
All | 2 | |||||||||
Dominant | 0.82 (0.49–1.38) | 0.82 (0.49–1.38) | 0% | 0.35 | - | - | ||||
Recessive | 0.12 (0.02–0.65) | 0.12 (0.02–0.65) | 0% | 0.38 | ||||||
Additive | 0.12 (0.02–0.64) | 0.12 (0.02–0.64) | 0% | 0.38 |
Drug | Gene | Polymorphism | Rs Number | N of Studies | OR with 95% CI Fixed Effects | OR with 95% CI Random Effects | I2 (%) | p-Value for Q | Egger Test p-Value | Begg–Mazumdar p-Value |
---|---|---|---|---|---|---|---|---|---|---|
MMF | ABCB1 | 3435C > T | rs1045642 | |||||||
All | 2 | |||||||||
Dominant | 2.07 (1.09–3.94) | 2.07 (1.09–3.94) | 0% | 0.41 | - | - | ||||
Recessive | 1.43 (0.81–2.54) | 1.27 (0.52–3.09) | 46.3% | 0.17 | - | - | ||||
Additive | 2.25 (1.05–4.84) | 1.99 (0.64–6.22) | 47.2% | 0.17 | - | - | ||||
MMF | ABCB1 | 1236C > T | rs1128503 | |||||||
All | 2 | |||||||||
Dominant | 1.67 (0.93–3.00) | 1.67 (0.93–3.00) | 0% | 0.51 | - | - | ||||
Recessive | 1.89 (1.05–3.40) | 1.63 (0.52–5.11) | 70.2% | 0.07 | - | - | ||||
Additive | 2.43 (1.17–5.04) | 2.13 (0.73–6.18) | 33.9% | 0.22 | - | - | ||||
MMF | ABCB1 | 2677G > T | rs2032582 | |||||||
All | 2 | |||||||||
Dominant | 2.20 (1.16–4.17) | 2.20 (1.16–4.17) | 0% | 0.81 | - | - | ||||
Recessive | 1.79 (0.94–3.40) | 1.37 (0.36–5.18) | 66.2% | 0.09 | - | - | ||||
Additive | 2.92 (1.32–6.46) | 2.77 (1.09–7.05) | 14% | 0.28 | - | - | ||||
MMF | ABCB1 | 2677G > A | rs2032582 | |||||||
All | 2 | |||||||||
Dominant | 3.72 (0.72–19.22) | 3.72 (0.72–19.22) | 0% | 0.50 | - | - | ||||
Recessive | 3.04 (0.22–42.65) | 3.04 (0.22–42.65) | 0% | 0.75 | - | - | ||||
Additive | 4.14 (0.28–61.96) | 4.14 (0.28–61.96) | 0% | 0.94 | - | - |
Drug | Gene | Polymorphism | Rs Number | N of Studies | OR with 95% CI Fixed Effects | OR with 95% CI Random Effects | I2 (%) | p-Value for Q | Egger Test p-Value | Begg–Mazumdar p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Cyclosporine (CsA) | TPMT | 1 vs. 3C | ||||||||
All | 2 | |||||||||
Dominant | 0.49 (0.18–1.37) | 0.64 (0.01–50.02) | 94.4% | <0.0001 | - | - | ||||
Recessive | 4 (0.08–202.85) | 4 (0.08–202.85) | 0% | >0.9999 | - | - | ||||
Additive | 4.5 (0.09–228.51) | 4.5 (0.09–228.51) | 0% | >0.9999 | - | - | ||||
CsA | IL10 | −1082A > G | ||||||||
All | 3 | |||||||||
Dominant | 0.75 (0.49–1.14) | 0.76 (0.42–1.37) | 48.1% | 0.15 | - | - | ||||
Recessive | 1.11 (0.70–1.77) | 1.11 (0.70–1.77) | 0% | 0.93 | - | - | ||||
Additive | 1.04 (0.59–1.85) | 1.04 (0.59–1.85) | 0% | 0.59 | - | - | ||||
CsA | IL10 | −819C > T | ||||||||
All | 2 | |||||||||
Dominant | 1.72 (1.09–2.72) | 1.72 (1.09–2.72) | 0% | 0.33 | - | - | ||||
Recessive | 1.90 (1.12–3.24) | 2.30 (0.82–6.40) | 61.9% | 0.11 | - | - | ||||
Additive | 2.70 (1.43–5.10) | 2.70 (1.43–5.10) | 0% | 0.56 | - | - | ||||
CsA | IL10 | −592C > A | ||||||||
All | 2 | |||||||||
Dominant | 1.67 (1.07–2.60) | 1.67 (1.04–2.70) | 13.5% | 0.28 | - | - | ||||
Recessive | 1.93 (1.16–3.22) | 2.17 (0.91–5.19) | 57.6% | 0.12 | - | - | ||||
Additive | 2.79 (1.52–5.13) | 2.79 (1.52–5.13) | 0% | 0.49 | - | - | ||||
CsA | TGFB1 | C869T (P10L) | ||||||||
All | 2 | |||||||||
Dominant | 0.80 (0.47–1.37) | 0.80 (0.47–1.37) | 0% | 0.67 | - | - | ||||
Recessive | 0.68 (0.44–1.05) | 0.68 (0.44–1.05) | 0% | 0.49 | - | - | ||||
Additive | 0.66 (0.36–1.19) | 0.66 (0.36–1.19) | 0% | 0.94 | - | - | ||||
CsA | ABCB1 | 1236C > T | rs1128503 | |||||||
All | 4 | |||||||||
Dominant | 0.91 (0.59–1.40) | 0.82 (0.32–2.14) | 71% | 0.02 | 0.88 | 0.75 | ||||
Recessive | 1.14 (0.72–1.80) | 1.00 (0.38–2.60) | 70.5% | 0.02 | 0.68 | 0.75 | ||||
Additive | 1.04 (0.60–1.80) | 0.91 (0.23–3.58) | 77.1% | 0.00 | 0.84 | 0.75 | ||||
CsA | ||||||||||
All | 3 | |||||||||
Dominant | 0.88 (0.55–1.38) | 0.85 (0.24–3.01) | 85.7% | 0.001 | - | - | ||||
Recessive | 1.03 (0.63–1.69) | 1.33 (0.31–5.80) | 83.7% | 0.00 | - | - | ||||
Additive | 0.97 (0.54–1.75) | 1.32 (0.17–10.44) | 88.9% | 0.0001 | - | - | ||||
CsA | ABCB1 | 3435 C > T | rs1045642 | |||||||
All | 5 | |||||||||
Dominant | 1.02 (0.67–1.54) | 1.02 (0.55–1.90) | 50.6% | 0.09 | 0.94 | 0.48 | ||||
Recessive | 1.47 (1.01–2.16) | 1.47 (1.01–2.16) | 0% | 0.84 | 0.64 | 0.82 | ||||
Additive | 1.33 (0.81–2.18) | 1.37 (0.71–2.67) | 33.7% | 0.20 | 0.70 | 0.48 | ||||
CsA | ||||||||||
All | 3 | |||||||||
Dominant | 0.44 (0.09–2.16) | 0.44 (0.09–2.16) | 0% | 0.999 | - | - | ||||
Recessive | 0.98 (0.53–1.82) | 0.98 (0.53–1.82) | 0% | 0.78 | - | - | ||||
Additive | 0.48 (0.09–2.40) | 0.48 (0.09–2.40) | 0% | 0.97 | - | - |
Drug | Gene | Polymorphism | Rs Number | N of Studies | OR with 95% CI Fixed Effects | OR with 95% CI Random Effects | I2 (%) | p-Value for Q | Egger Test p-Value | Begg–Mazumdar p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Azathioprine | TPMT | 1 vs. 3C | ||||||||
All | 4 | |||||||||
Dominant | 1.64 (0.83–3.26) | 2.14 (0.22–21.08) | 90.1% | <0.0001 | 0.75 | 0.33 | ||||
Recessive | 2.33 (0.24–22.55) | 2.33 (0.24–22.55) | 0% | 0.99 | 0.80 | >0.9999 | ||||
Additive | 2.78 (0.29–26.75) | 2.78 (0.29–26.75) | 0% | 0.99 | 0.59 | >0.9999 | ||||
Azathioprine | ITPA | 94C > A | rs1127354 | |||||||
All | 2 | |||||||||
Dominant | 1.60 (0.84–3.06) | 1.59 (0.81–3.14) | 8.6% | 0.30 | - | - | ||||
Recessive | 21.82 (1.07–445.72) | 21.82 (1.07–445.72) | 0% | >0.9999 | - | - | ||||
Additive | 10.19 (0.92–113.39) | 10.19 (0.92–113.39) | 0% | 0.35 | - | - |
Drug | Gene | Polymorphism | Rs Number | N of Studies | OR with 95% CI Fixed Effects | OR with 95% CI Random Effects | I2 (%) | p-Value for Q | Egger Test p-Value | Begg–Mazumdar p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Tacrolimus | CYP3A5 | CYP3A5*3 | rs776746 | |||||||
All | 3 | |||||||||
Dominant | 0.24 (0.08–0.69) | 0.24 (0.08–0.69) | 0% | 0.86 | - | - | ||||
Recessive | 0.88 (0.53–1.46) | 0.88 (0.53–1.46) | 0% | 0.87 | - | - | ||||
Additive | 0.25 (0.08–0.77) | 0.25 (0.08–0.77) | 0% | 0.91 | - | - | ||||
Tacrolimus | ABCB1 | 1236C > T | rs1128503 | |||||||
All | 2 | |||||||||
Dominant | 1.53 (0.62–3.81) | 1.53 (0.62–3.81) | 0% | 0.54 | - | - | ||||
Recessive | 1.08 (0.52–2.21) | 1.08 (0.52–2.21) | 0% | 0.54 | - | - | ||||
Additive | 1.48 (0.54–4.10) | 1.48 (0.54–4.10) | 0% | 0.49 | - | - | ||||
Tacrolimus | ABCB1 | 2677 G > T | rs2032582 | |||||||
All | 2 | |||||||||
Dominant | 0.44 (0.17–1.10) | 0.58 (0.07–4.61) | 77.3% | 0.04 | - | - | ||||
Recessive | 0.46 (0.21–1.03) | 0.46 (0.21–1.03) | 0% | 0.66 | - | - | ||||
Additive | 0.33 (0.12–0.91) | 0.40 (0.08–2.14) | 56% | 0.13 | - | - | ||||
Tacrolimus | ABCB1 | 3435C > T | rs1045642 | |||||||
All | 3 | |||||||||
Dominant | 0.76 (0.43–1.34) | 0.66 (0.21–2.13) | 73.7% | 0.02 | - | - | ||||
Recessive | 1.47 (0.83–2.59) | 1.24 (0.43–3.57) | 69.4% | 0.04 | - | - | ||||
Additive | 1.06 (0.53–2.12) | 0.83 (0.20–3.47) | 74.2% | 0.02 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tziastoudi, M.; Pissas, G.; Raptis, G.; Cholevas, C.; Eleftheriadis, T.; Dounousi, E.; Stefanidis, I.; Theoharides, T.C. A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 4480. https://doi.org/10.3390/ijms22094480
Tziastoudi M, Pissas G, Raptis G, Cholevas C, Eleftheriadis T, Dounousi E, Stefanidis I, Theoharides TC. A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease. International Journal of Molecular Sciences. 2021; 22(9):4480. https://doi.org/10.3390/ijms22094480
Chicago/Turabian StyleTziastoudi, Maria, Georgios Pissas, Georgios Raptis, Christos Cholevas, Theodoros Eleftheriadis, Evangelia Dounousi, Ioannis Stefanidis, and Theoharis C. Theoharides. 2021. "A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease" International Journal of Molecular Sciences 22, no. 9: 4480. https://doi.org/10.3390/ijms22094480
APA StyleTziastoudi, M., Pissas, G., Raptis, G., Cholevas, C., Eleftheriadis, T., Dounousi, E., Stefanidis, I., & Theoharides, T. C. (2021). A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease. International Journal of Molecular Sciences, 22(9), 4480. https://doi.org/10.3390/ijms22094480