Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants
Abstract
:1. Introduction
2. Functional Studies of mtARS Genes Mutations in Yeast
2.1. Two Genes in Human-Two Genes in Yeast
2.2. Two Genes in Human-One Gene in Yeast
2.3. One Gene in Human-One Gene in Yeast
2.4. One Gene in Human-Two Genes in Yeast
2.5. Specific Cases
2.6. The Peculiar Case of the GatCAB Complex
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheffler, I.E. A Century of Mitochondrial Research: Achievements and Perspectives. Mitochondrion 2001, 1, 3–31. [Google Scholar] [CrossRef]
- Morgenstern, M.; Stiller, S.B.; Lübbert, P.; Peikert, C.D.; Dannenmaier, S.; Drepper, F.; Weill, U.; Höß, P.; Feuerstein, R.; Gebert, M.; et al. Definition of a High-Confidence Mitochondrial Proteome at Quantitative Scale. Cell Rep. 2017, 19, 2836–2852. [Google Scholar] [CrossRef] [Green Version]
- Foury, F.; Roganti, T.; Lecrenier, N.; Purnelle, B. The Complete Sequence of the Mitochondrial Genome of Saccharomyces cerevisiae. FEBS Lett. 1998, 440, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Freel, K.C.; Friedrich, A.; Schacherer, J. Mitochondrial Genome Evolution in Yeasts: An All-Encompassing View. FEMS Yeast Res. 2015, 15, fov023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibba, M.; Soll, D. Aminoacyl-TRNA Synthesis. Annu. Rev. Biochem. 2000, 69, 617–650. [Google Scholar] [CrossRef] [PubMed]
- Delarue, M. Aminoacyl-TRNA Synthetases. Curr. Opin. Struct. Biol. 1995, 5, 48–55. [Google Scholar] [CrossRef]
- Ling, J.; Reynolds, N.; Ibba, M. Aminoacyl-TRNA Synthesis and Translational Quality Control. Annu. Rev. Microbiol. 2009, 63, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Cusack, S. Aminoacyl-tRNA Synthetases. Curr. Opin. Struct. Biol. 1997, 7, 881–889. [Google Scholar] [CrossRef]
- Bonnefond, L.; Fender, A.; Rudinger-Thirion, J.; Giegé, R.; Florentz, C.; Sissler, M. Toward the Full Set of Human Mitochondrial Aminoacyl-tRNA Synthetases: Characterization of AspRS and TyrRS. Biochemistry 2005, 44, 4805–4816. [Google Scholar] [CrossRef]
- Moulinier, L.; Ripp, R.; Castillo, G.; Poch, O.; Sissler, M. MiSynPat: An Integrated Knowledge Base Linking Clinical, Genetic, and Structural Data for Disease-Causing Mutations in Human Mitochondrial Aminoacyl-tRNA Synthetases. Hum. Mutat. 2017, 38, 1316–1324. [Google Scholar] [CrossRef] [Green Version]
- Diodato, D.; Ghezzi, D.; Tiranti, V. The Mitochondrial Aminoacyl tRNA Synthetases: Genes and Syndromes. Int. J. Cell. Biol. 2014, 2014, 787956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oprescu, S.N.; Griffin, L.B.; Beg, A.A.; Antonellis, A. Predicting the Pathogenicity of Aminoacyl-tRNA Synthetase Mutations. Methods 2017, 113, 139–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konovalova, S.; Tyynismaa, H. Mitochondrial Aminoacyl-tRNA Synthetases in Human Disease. Mol. Genet. Metab. 2013, 108, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Sissler, M.; González-Serrano, L.E.; Westhof, E. Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease. Trends Mol. Med. 2017, 23, 693–708. [Google Scholar] [CrossRef] [Green Version]
- Ardissone, A.; Piscosquito, G.; Legati, A.; Langella, T.; Lamantea, E.; Garavaglia, B.; Salsano, E.; Farina, L.; Moroni, I.; Pareyson, D.; et al. A Slowly Progressive Mitochondrial Encephalomyopathy Widens the Spectrum of AIFM1 Disorders. Neurology 2015, 84, 2193–2195. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, T.; Dallabona, C.; Ferrero, I.; Frontali, L.; Bolotin-Fukuhara, M. Mitochondrial Diseases and the Role of the Yeast Models. FEMS Yeast Res. 2010, 10, 1006–1022. [Google Scholar] [CrossRef]
- Frazier, A.E.; Thorburn, D.R.; Compton, A.G. Mitochondrial Energy Generation Disorders: Genes, Mechanisms, and Clues to Pathology. J. Biol. Chem. 2019, 294, 5386–5395. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K.; Collier, J.J.; Glasgow, R.I.C.; Robertson, F.M.; Pyle, A.; Blakely, E.L.; Alston, C.L.; Oláhová, M.; McFarland, R.; Taylor, R.W. Recent Advances in Understanding the Molecular Genetic Basis of Mitochondrial Disease. J. Inherit. Metab. Dis. 2020, 43, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Ceccatelli Berti, C.; di Punzio, G.; Dallabona, C.; Baruffini, E.; Goffrini, P.; Lodi, T.; Donnini, C. The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes 2021, 12, 300. [Google Scholar] [CrossRef] [PubMed]
- Stellingwerff, M.D.; Figuccia, S.; Bellacchio, E.; Alvarez, K.; Castiglioni, C.; Topaloglu, P.; Stutterd, C.A.; Erasmus, C.E.; Sanchez-Valle, A.; Lebon, S.; et al. LBSL: Case Series and DARS2 Variant Analysis in Early Severe Forms with Unexpected Presentations. Neurol. Genet. 2021, 7. [Google Scholar] [CrossRef]
- Maffezzini, C.; Laine, I.; Dallabona, C.; Clemente, P.; Calvo-Garrido, J.; Wibom, R.; Naess, K.; Barbaro, M.; Falk, A.; Donnini, C.; et al. Mutations in the Mitochondrial Tryptophanyl-tRNA Synthetase Cause Growth Retardation and Progressive Leukoencephalopathy. Mol. Genet. Genom. Med. 2019, 7, e654. [Google Scholar] [CrossRef] [Green Version]
- Sommerville, E.W.; Ng, Y.S.; Alston, C.L.; Dallabona, C.; Gilberti, M.; He, L.; Knowles, C.; Chin, S.L.; Schaefer, A.M.; Falkous, G.; et al. Clinical Features, Molecular Heterogeneity, and Prognostic Implications in YARS2-Related Mitochondrial Myopathy. JAMA Neurol. 2017, 74, 686–694. [Google Scholar] [CrossRef] [Green Version]
- Ardissone, A.; Lamantea, E.; Quartararo, J.; Dallabona, C.; Carrara, F.; Moroni, I.; Donnini, C.; Garavaglia, B.; Zeviani, M.; Uziel, G. A Novel Homozygous YARS2 Mutation in Two Italian Siblings and a Review of Literature. JIMD Rep. 2015, 20, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Smith, F.; Hopton, S.; Dallabona, C.; Gilberti, M.; Falkous, G.; Norwood, F.; Donnini, C.; Gorman, G.S.; Clark, B.; Taylor, R.W.; et al. Sideroblastic Anemia with Myopathy Secondary to Novel, Pathogenic Missense Variants in the YARS2 Gene. Haematologica 2018, 103, e564–e566. [Google Scholar] [CrossRef] [PubMed]
- Griffin, L.B.; Sakaguchi, R.; McGuigan, D.; Gonzalez, M.A.; Searby, C.; Züchner, S.; Hou, Y.-M.; Antonellis, A. Impaired Function Is a Common Feature of Neuropathy-Associated Glycyl-TRNA Synthetase Mutations. Hum. Mutat. 2014, 35, 1363–1371. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.C.; Meyer-Schuman, R.; Bacon, C.; Shy, M.E.; Antonellis, A.; Scherer, S.S. A Recurrent GARS Mutation Causes Distal Hereditary Motor Neuropathy. J. Peripher. Nerv. Syst. 2019, 24, 320–323. [Google Scholar] [CrossRef]
- Markovitz, R.; Ghosh, R.; Kuo, M.E.; Hong, W.; Lim, J.; Bernes, S.; Manberg, S.; Crosby, K.; Tanpaiboon, P.; Bharucha-Goebel, D.; et al. GARS-Related Disease in Infantile Spinal Muscular Atrophy: Implications for Diagnosis and Treatment. Am. J. Med. Genet. A 2020, 182, 1167–1176. [Google Scholar] [CrossRef]
- Dallabona, C.; Diodato, D.; Kevelam, S.H.; Haack, T.B.; Wong, L.-J.; Salomons, G.S.; Baruffini, E.; Melchionda, L.; Mariotti, C.; Strom, T.M.; et al. Novel (Ovario) Leukodystrophy Related to AARS2 Mutations. Neurology 2014, 82, 2063–2071. [Google Scholar] [CrossRef] [Green Version]
- Kuo, M.E.; Antonellis, A.; Shakkottai, V.G. Alanyl-TRNA Synthetase 2 (AARS2)-Related Ataxia Without Leukoencephalopathy. Cerebellum 2020, 19, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Pierce, S.B.; Chisholm, K.M.; Lynch, E.D.; Lee, M.K.; Walsh, T.; Opitz, J.M.; Li, W.; Klevit, R.E.; King, M.-C. Mutations in Mitochondrial Histidyl tRNA Synthetase HARS2 Cause Ovarian Dysgenesis and Sensorineural Hearing Loss of Perrault Syndrome. Proc. Natl. Acad. Sci. USA 2011, 108, 6543–6548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diodato, D.; Melchionda, L.; Haack, T.B.; Dallabona, C.; Baruffini, E.; Donnini, C.; Granata, T.; Ragona, F.; Balestri, P.; Margollicci, M.; et al. VARS2 and TARS2 Mutations in Patients with Mitochondrial Encephalomyopathies. Hum. Mutat. 2014, 35, 983–989. [Google Scholar] [CrossRef] [Green Version]
- Chin, H.-L.; Goh, D.L.-M.; Wang, F.S.; Tay, S.K.H.; Heng, C.K.; Donnini, C.; Baruffini, E.; Pines, O. A Combination of Two Novel VARS2 Variants Causes a Mitochondrial Disorder Associated with Failure to Thrive and Pulmonary Hypertension. J. Mol. Med. 2019, 97, 1557–1566. [Google Scholar] [CrossRef]
- Sun, C.; Song, J.; Jiang, Y.; Zhao, C.; Lu, J.; Li, Y.; Wang, Y.; Gao, M.; Xi, J.; Luo, S.; et al. Loss-of-Function Mutations in Lysyl-tRNA Synthetase Cause Various Leukoencephalopathy Phenotypes. Neurol. Genet. 2019, 5, e565. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhou, J.-B.; Zeng, Q.-Y.; Wu, S.; Xue, M.-Q.; Fang, P.; Wang, E.-D.; Zhou, X.-L. Hearing Impairment-Associated KARS Mutations Lead to Defects in Aminoacylation of Both Cytoplasmic and Mitochondrial TRNALys. Sci. China Life Sci. 2020, 63, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Cappuccio, G.; Ceccatelli Berti, C.; Baruffini, E.; Shashi, V.; Sullivan, J.; Jewett, T.; Stamper, T.; Maitz, S.; Canonico, F.; Revah-Politi, A.; et al. Bi-Allelic KARS1 Pathogenic Variants Affecting Functions of Cytosolic and Mitochondrial Isoforms Are Associated with a Progressive and Multi-System Disease. Hum. Mutati 2021, in press. [Google Scholar]
- Pierce, S.B.; Gersak, K.; Michaelson-Cohen, R.; Walsh, T.; Lee, M.K.; Malach, D.; Klevit, R.E.; King, M.-C.; Levy-Lahad, E. Mutations in LARS2, Encoding Mitochondrial Leucyl-TRNA Synthetase, Lead to Premature Ovarian Failure and Hearing Loss in Perrault Syndrome. Am. J. Hum. Genet. 2013, 92, 614–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassandrini, D.; Cilio, M.R.; Bianchi, M.; Doimo, M.; Balestri, M.; Tessa, A.; Rizza, T.; Sartori, G.; Meschini, M.C.; Nesti, C.; et al. Pontocerebellar Hypoplasia Type 6 Caused by Mutations in RARS2: Definition of the Clinical Spectrum and Molecular Findings in Five Patients. J. Inherit. Metab. Dis. 2013, 36, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, X.-L.; Ruan, Z.-R.; Liu, R.-J.; Eriani, G.; Wang, E.-D. A Human Disease-Causing Point Mutation in Mitochondrial Threonyl-tRNA Synthetase Induces Both Structural and Functional Defects. J. Biol. Chem. 2016, 291, 6507–6520. [Google Scholar] [CrossRef] [Green Version]
- Friederich, M.W.; Timal, S.; Powell, C.A.; Dallabona, C.; Kurolap, A.; Palacios-Zambrano, S.; Bratkovic, D.; Derks, T.G.J.; Bick, D.; Bouman, K.; et al. Pathogenic Variants in Glutamyl-tRNAGln Amidotransferase Subunits Cause a Lethal Mitochondrial Cardiomyopathy Disorder. Nat. Commun. 2018, 9, 4065. [Google Scholar] [CrossRef] [PubMed]
- Di Micco, P.; Fazzi D’Orsi, M.; Morea, V.; Frontali, L.; Francisci, S.; Montanari, A. The Yeast Model Suggests the Use of Short Peptides Derived from mt LeuRS for the Therapy of Diseases Due to Mutations in Several mt tRNAs. Biochim. Biophys. Acta 2014, 1843, 3065–3074. [Google Scholar] [CrossRef]
- Riley, L.G.; Cooper, S.; Hickey, P.; Rudinger-Thirion, J.; McKenzie, M.; Compton, A.; Lim, S.C.; Thorburn, D.; Ryan, M.T.; Giegé, R.; et al. Mutation of the Mitochondrial Tyrosyl-TRNA Synthetase Gene, YARS2, Causes Myopathy, Lactic Acidosis, and Sideroblastic Anemia--MLASA Syndrome. Am. J. Hum. Genet. 2010, 87, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Sasarman, F.; Nishimura, T.; Thiffault, I.; Shoubridge, E.A. A Novel Mutation in YARS2 Causes Myopathy with Lactic Acidosis and Sideroblastic Anemia. Hum. Mutat. 2012, 33, 1201–1206. [Google Scholar] [CrossRef]
- Riley, L.G.; Menezes, M.J.; Rudinger-Thirion, J.; Duff, R.; de Lonlay, P.; Rotig, A.; Tchan, M.C.; Davis, M.; Cooper, S.T.; Christodoulou, J. Phenotypic Variability and Identification of Novel YARS2 Mutations in YARS2 Mitochondrial Myopathy, Lactic Acidosis and Sideroblastic Anaemia. Orphanet. J. Rare Dis. 2013, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Shahni, R.; Wedatilake, Y.; Cleary, M.A.; Lindley, K.J.; Sibson, K.R.; Rahman, S. A Distinct Mitochondrial Myopathy, Lactic Acidosis and Sideroblastic Anemia (MLASA) Phenotype Associates with YARS2 Mutations. Am. J. Med. Genet. A 2013, 161, 2334–2338. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, J.; Eminoglu, T.F.; Vatansever, G.; Nakashima, M.; Tsurusaki, Y.; Saitsu, H.; Kawashima, H.; Matsumoto, N.; Miyake, N. A Novel Homozygous YARS2 Mutation Causes Severe Myopathy, Lactic Acidosis, and Sideroblastic Anemia 2. J. Hum. Genet. 2014, 59, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.G.; Heeney, M.M.; Rudinger-Thirion, J.; Frugier, M.; Campagna, D.R.; Zhou, R.; Hale, G.A.; Hilliard, L.M.; Kaplan, J.A.; Kwiatkowski, J.L.; et al. The Phenotypic Spectrum of Germline YARS2 Variants: From Isolated Sideroblastic Anemia to Mitochondrial Myopathy, Lactic Acidosis and Sideroblastic Anemia 2. Haematologica 2018, 103, 2008–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, H.; Schimmel, P.; An, E. Coli Aminoacyl-tRNA Synthetase Can Substitute for Yeast Mitochondrial Enzyme Function in Vivo. Cell 1987, 51, 643–649. [Google Scholar] [CrossRef]
- Natsoulis, G.; Hilger, F.; Fink, G.R. The HTS1 Gene Encodes Both the Cytoplasmic and Mitochondrial Histidine tRNA Synthetases of S. cerevisiae. Cell 1986, 46, 235–243. [Google Scholar] [CrossRef]
- Chiu, M.I.; Mason, T.L.; Fink, G.R. HTS1 Encodes Both the Cytoplasmic and Mitochondrial Histidyl-TRNA Synthetase of Saccharomyces Cerevisiae: Mutations Alter the Specificity of Compartmentation. Genetics 1992, 132, 987–1001. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, W.; Cao, L.; Na, X.; Yang, J. Two Novel Likely Pathogenic Variants of HARS2 Identified in a Chinese Family with Sensorineural Hearing Loss. Hereditas 2020, 157, 47. [Google Scholar] [CrossRef]
- Karstensen, H.G.; Rendtorff, N.D.; Hindbæk, L.S.; Colombo, R.; Stein, A.; Birkebæk, N.H.; Hartmann-Petersen, R.; Lindorff-Larsen, K.; Højland, A.T.; Petersen, M.B.; et al. Novel HARS2 Missense Variants Identified in Individuals with Sensorineural Hearing Impairment and Perrault Syndrome. Eur. J. Med. Genet. 2020, 63, 103733. [Google Scholar] [CrossRef]
- Demain, L.A.M.; Gerkes, E.H.; Smith, R.J.H.; Molina-Ramirez, L.P.; O’Keefe, R.T.; Newman, W.G. A Recurrent Missense Variant in HARS2 Results in Variable Sensorineural Hearing Loss in Three Unrelated Families. J. Hum. Genet. 2020, 65, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.-L.; Yeh, L.-S.; Chen, N.-K.; Ripmaster, T.; Schimmel, P.; Wang, C.-C. Translation of a Yeast Mitochondrial tRNA Synthetase Initiated at Redundant Non-AUG Codons. J. Biol. Chem. 2004, 279, 49656–49663. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-Y.; Tang, H.-L.; Chao, H.-Y.; Yeh, L.-S.; Wang, C.-C. An Unusual Pattern of Protein Expression and Localization of Yeast Alanyl-tRNA Synthetase Isoforms. Mol. Microbiol. 2006, 60, 189–198. [Google Scholar] [CrossRef]
- Götz, A.; Tyynismaa, H.; Euro, L.; Ellonen, P.; Hyötyläinen, T.; Ojala, T.; Hämäläinen, R.H.; Tommiska, J.; Raivio, T.; Oresic, M.; et al. Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy. Am. J. Hum. Genet. 2011, 88, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamps, R.; Szklarczyk, R.; Theunissen, T.E.; Hellebrekers, D.M.E.I.; Sallevelt, S.C.E.H.; Boesten, I.B.; de Koning, B.; van den Bosch, B.J.; Salomons, G.S.; Simas-Mendes, M.; et al. Genetic Defects in mtDNA-Encoded Protein Translation Cause Pediatric, Mitochondrial Cardiomyopathy with Early-Onset Brain Disease. Eur J. Hum. Genet. 2018, 26, 537–551. [Google Scholar] [CrossRef]
- Mazurova, S.; Magner, M.; Kucerova-Vidrova, V.; Vondrackova, A.; Stranecky, V.; Pristoupilova, A.; Zamecnik, J.; Hansikova, H.; Zeman, J.; Tesarova, M.; et al. Thymidine Kinase 2 and Alanyl-tRNA Synthetase 2 Deficiencies Cause Lethal Mitochondrial Cardiomyopathy: Case Reports and Review of the Literature. Cardiol. Young 2017, 27, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Sommerville, E.W.; Zhou, X.-L.; Oláhová, M.; Jenkins, J.; Euro, L.; Konovalova, S.; Hilander, T.; Pyle, A.; He, L.; Habeebu, S.; et al. Instability of the Mitochondrial Alanyl-tRNA Synthetase Underlies Fatal Infantile-Onset Cardiomyopathy. Hum. Mol. Genet. 2019, 28, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.S.; Zhang, W.J.; Lakshmanan, R.; Kinsella, J.A.; Uzun, G.A.; Karbay, M.; Tüfekçioglu, Z.; Hanagasi, H.; Burke, G.; Foulds, N.; et al. Analysis of Mutations in AARS2 in a Series of CSF1R-Negative Patients With Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia. JAMA Neurol. 2016, 73, 1433–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, D.S.; Rodrigues Brandão de Paiva, A.; Zhang, W.J.; Bugiardini, E.; Freua, F.; Tavares Lucato, L.; Macedo-Souza, L.I.; Lakshmanan, R.; Kinsella, J.A.; Merwick, A.; et al. Clinical and Genetic Characterization of Leukoencephalopathies in Adults. Brain 2017, 140, 1204–1211. [Google Scholar] [CrossRef]
- Wang, D.; Yu, M.; Zhang, W.; Wang, Z.; Yuan, Y. AARS2 Compound Heterozygous Variants in a Case of Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia. J. Neuropathol. Exp. Neurol. 2018, 77, 997–1000. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Long, L.; Chang, Y.-Y.; Lin, Y.-J.; Liu, M.; Lu, Z.-Q. An Adolescence-Onset Male Leukoencephalopathy with Remarkable Cerebellar Atrophy and Novel Compound Heterozygous AARS2 Gene Mutations: A Case Report. J. Hum. Genet. 2018, 63, 841–846. [Google Scholar] [CrossRef]
- Szpisjak, L.; Zsindely, N.; Engelhardt, J.I.; Vecsei, L.; Kovacs, G.G.; Klivenyi, P. Novel AARS2 Gene Mutation Producing Leukodystrophy: A Case Report. J. Hum. Genet. 2017, 62, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Qin, Q.; Xing, Y.; Guo, D.; Di, L.; Jia, J. AARS2 Leukoencephalopathy: A New Variant of Mitochondrial Encephalomyopathy. Mol. Genet. Genomic. Med. 2019, 7, e00582. [Google Scholar] [CrossRef] [Green Version]
- Peragallo, J.H.; Keller, S.; van der Knaap, M.S.; Soares, B.P.; Shankar, S.P. Retinopathy and Optic Atrophy: Expanding the Phenotypic Spectrum of Pathogenic Variants in the AARS2 Gene. Ophthalmic. Genet. 2018, 39, 99–102. [Google Scholar] [CrossRef]
- Hamatani, M.; Jingami, N.; Tsurusaki, Y.; Shimada, S.; Shimojima, K.; Asada-Utsugi, M.; Yoshinaga, K.; Uemura, N.; Yamashita, H.; Uemura, K.; et al. The First Japanese Case of Leukodystrophy with Ovarian Failure Arising from Novel Compound Heterozygous AARS2 Mutations. J. Hum. Genet. 2016, 61, 899–902. [Google Scholar] [CrossRef] [PubMed]
- Taglia, I.; Di Donato, I.; Bianchi, S.; Cerase, A.; Monti, L.; Marconi, R.; Orrico, A.; Rufa, A.; Federico, A.; Dotti, M.T. AARS2-Related Ovarioleukodystrophy: Clinical and Neuroimaging Features of Three New Cases. Acta Neurol. Scand. 2018, 138, 278–283. [Google Scholar] [CrossRef]
- Kim, E.-J.; Kim, Y.-E.; Jang, J.-H.; Cho, E.-H.; Na, D.L.; Seo, S.W.; Jung, N.-Y.; Jeong, J.H.; Kwon, J.C.; Park, K.H.; et al. Analysis of Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, and Other Dementia-Related Genes in 107 Korean Patients with Frontotemporal Dementia. Neurobiol. Aging 2018, 72, 186–e1. [Google Scholar] [CrossRef]
- Kiraly-Borri, C.; Jevon, G.; Ji, W.; Jeffries, L.; Ricciardi, J.-L.; Konstantino, M.; Ackerman, K.G.; Lakhani, S.A. Siblings with Lethal Primary Pulmonary Hypoplasia and Compound Heterozygous Variants in the AARS2 Gene: Further Delineation of the Phenotypic Spectrum. Cold Spring Harb. Mol. Case Stud. 2019, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Butala, A.; Mahida, S.; Richter, J.; Mu, W.; Poretti, A.; Vernon, H.; VanGerpen, J.; Atwal, P.S.; Middlebrooks, E.H.; et al. Expansion of the Clinical Spectrum Associated with AARS2-Related Disorders. Am. J. Med. Genet. A 2019, 179, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Euro, L.; Konovalova, S.; Asin-Cayuela, J.; Tulinius, M.; Griffin, H.; Horvath, R.; Taylor, R.W.; Chinnery, P.F.; Schara, U.; Thorburn, D.R.; et al. Structural Modeling of Tissue-Specific Mitochondrial Alanyl-tRNA Synthetase (AARS2) Defects Predicts Differential Effects on Aminoacylation. Front. Genet. 2015, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-C.; Chang, K.-J.; Tang, H.-L.; Hsieh, C.-J.; Schimmel, P. Mitochondrial Form of a tRNA Synthetase Can Be Made Bifunctional by Manipulating Its Leader Peptide. Biochemistry 2003, 42, 1646–1651. [Google Scholar] [CrossRef]
- Chihara, T.; Luginbuhl, D.; Luo, L. Cytoplasmic and Mitochondrial Protein Translation in Axonal and Dendritic Terminal Arborization. Nat. Neurosci. 2007, 10, 828–837. [Google Scholar] [CrossRef]
- Qin, X.; Hao, Z.; Tian, Q.; Zhang, Z.; Zhou, C.; Xie, W. Cocrystal Structures of Glycyl-tRNA Synthetase in Complex with tRNA Suggest Multiple Conformational States in Glycylation. J. Biol. Chem. 2014, 289, 20359–20369. [Google Scholar] [CrossRef] [Green Version]
- Nafisinia, M.; Riley, L.G.; Gold, W.A.; Bhattacharya, K.; Broderick, C.R.; Thorburn, D.R.; Simons, C.; Christodoulou, J. Compound Heterozygous Mutations in Glycyl-TRNA Synthetase (GARS) Cause Mitochondrial Respiratory Chain Dysfunction. PLoS ONE 2017, 12, e0178125. [Google Scholar] [CrossRef] [Green Version]
- Motley, W.W.; Talbot, K.; Fischbeck, K.H. GARS Axonopathy: Not Every Neuron’s Cup of TRNA. Trends Neurosci. 2010, 33, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.J.; Lovato, M.; Schimmel, P. One of Two Genes Encoding Glycyl-TRNA Synthetase in Saccharomyces cerevisiae Provides Mitochondrial and Cytoplasmic Functions. J. Biol. Chem. 2000, 275, 27681–27688. [Google Scholar] [CrossRef]
- Chen, S.-J.; Wu, Y.-H.; Huang, H.-Y.; Wang, C.-C. Saccharomyces Cerevisiae Possesses a Stress-Inducible Glycyl-TRNA Synthetase Gene. PLoS ONE 2012, 7, e33363. [Google Scholar] [CrossRef] [Green Version]
- Antonellis, A.; Lee-Lin, S.-Q.; Wasterlain, A.; Leo, P.; Quezado, M.; Goldfarb, L.G.; Myung, K.; Burgess, S.; Fischbeck, K.H.; Green, E.D. Functional Analyses of Glycyl-TRNA Synthetase Mutations Suggest a Key Role for tRNA-Charging Enzymes in Peripheral Axons. J. Neurosci. 2006, 26, 10397–10406. [Google Scholar] [CrossRef] [Green Version]
- Chien, C.-I.; Chen, Y.-W.; Wu, Y.-H.; Chang, C.-Y.; Wang, T.-L.; Wang, C.-C. Functional Substitution of a Eukaryotic Glycyl-tRNA Synthetase with an Evolutionarily Unrelated Bacterial Cognate Enzyme. PLoS ONE 2014, 9, e94659. [Google Scholar] [CrossRef] [Green Version]
- Oprescu, S.N.; Chepa-Lotrea, X.; Takase, R.; Golas, G.; Markello, T.C.; Adams, D.R.; Toro, C.; Gropman, A.L.; Hou, Y.-M.; Malicdan, M.C.V.; et al. Compound Heterozygosity for Loss-of-Function GARS Variants Results in a Multisystem Developmental Syndrome That Includes Severe Growth Retardation. Hum. Mutat. 2017, 38, 1412–1420. [Google Scholar] [CrossRef] [PubMed]
- Tolkunova, E.; Park, H.; Xia, J.; King, M.P.; Davidson, E. The Human Lysyl-TRNA Synthetase Gene Encodes Both the Cytoplasmic and Mitochondrial Enzymes by Means of an Unusual Alternative Splicing of the Primary Transcript. J. Biol. Chem. 2000, 275, 35063–35069. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.; Octobre, G.; Kobbi, L.; Comisso, M.; Flisiak, S.; Mirande, M. Activation of Human Mitochondrial Lysyl-TRNA Synthetase upon Maturation of Its Premitochondrial Precursor. Biochemistry 2012, 51, 909–916. [Google Scholar] [CrossRef]
- Santos-Cortez, R.L.P.; Lee, K.; Azeem, Z.; Antonellis, P.J.; Pollock, L.M.; Khan, S.; Andrade-Elizondo, P.B.; Chiu, I.; Adams, M.D.; Basit, S.; et al. Mutations in KARS, Encoding Lysyl-TRNA Synthetase, Cause Autosomal-Recessive Nonsyndromic Hearing Impairment DFNB89. Am. J. Hum. Genet. 2013, 93, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Scheidecker, S.; Bär, S.; Stoetzel, C.; Geoffroy, V.; Lannes, B.; Rinaldi, B.; Fischer, F.; Becker, H.D.; Pelletier, V.; Pagan, C.; et al. Mutations in KARS Cause a Severe Neurological and Neurosensory Disease with Optic Neuropathy. Hum. Mutat. 2019, 40, 1826–1840. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, H.M.; Sakaguchi, R.; Liu, C.; Igarashi, T.; Pehlivan, D.; Chu, K.; Iyer, R.; Cruz, P.; Cherukuri, P.F.; Hansen, N.F.; et al. Compound Heterozygosity for Loss-of-Function Lysyl-tRNA Synthetase Mutations in a Patient with Peripheral Neuropathy. Am. J. Hum. Genet. 2010, 87, 560–566. [Google Scholar] [CrossRef] [Green Version]
- Kohda, M.; Tokuzawa, Y.; Kishita, Y.; Nyuzuki, H.; Moriyama, Y.; Mizuno, Y.; Hirata, T.; Yatsuka, Y.; Yamashita-Sugahara, Y.; Nakachi, Y.; et al. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies. PLoS Genet. 2016, 12, e1005679. [Google Scholar] [CrossRef] [PubMed]
- Verrigni, D.; Diodato, D.; Di Nottia, M.; Torraco, A.; Bellacchio, E.; Rizza, T.; Tozzi, G.; Verardo, M.; Piemonte, F.; Tasca, G.; et al. Novel Mutations in KARS Cause Hypertrophic Cardiomyopathy and Combined Mitochondrial Respiratory Chain Defect. Clin. Genet. 2017, 91, 918–923. [Google Scholar] [CrossRef]
- Gatti, D.L.; Tzagoloff, A. Structure and Evolution of a Group of Related Aminoacyl-tRNA Synthetases. J. Mol. Biol. 1991, 218, 557–568. [Google Scholar] [CrossRef]
- Sepuri, N.B.V.; Gorla, M.; King, M.P. Mitochondrial Lysyl-TRNA Synthetase Independent Import of tRNA Lysine into Yeast Mitochondria. PLoS ONE 2012, 7, e35321. [Google Scholar] [CrossRef]
- Ruan, Z.-R.; Fang, Z.-P.; Ye, Q.; Lei, H.-Y.; Eriani, G.; Zhou, X.-L.; Wang, E.-D. Identification of Lethal Mutations in Yeast Threonyl-tRNA Synthetase Revealing Critical Residues in Its Human Homolog. J. Biol. Chem. 2015, 290, 1664–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, J.; Peterson, K.M.; Simonović, I.; Cho, C.; Söll, D.; Simonović, M. Yeast Mitochondrial Threonyl-tRNA Synthetase Recognizes tRNA Isoacceptors by Distinct Mechanisms and Promotes CUN Codon Reassignment. Proc. Natl. Acad. Sci. USA 2012, 109, 3281–3286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Serrano, L.E.; Chihade, J.W.; Sissler, M. When a Common Biological Role Does Not Imply Common Disease Outcomes: Disparate Pathology Linked to Human Mitochondrial Aminoacyl-tRNA Synthetases. J. Biol. Chem. 2019, 294, 5309–5320. [Google Scholar] [CrossRef] [Green Version]
- Su, D.; Lieberman, A.; Lang, B.F.; Simonovic, M.; Söll, D.; Ling, J. An Unusual tRNAThr Derived from tRNAHis Reassigns in Yeast Mitochondria the CUN Codons to Threonine. Nucleic Acids Res. 2011, 39, 4866–4874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapointe, J.; Duplain, L.; Proulx, M. A Single Glutamyl-tRNA Synthetase Aminoacylates tRNAGlu and tRNAGln in Bacillus Subtilis and Efficiently Misacylates Escherichia Coli TRNAGln1 in Vitro. J. Bacteriol. 1986, 165, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Sekine, S.; Nureki, O.; Shimada, A.; Vassylyev, D.G.; Yokoyama, S. Structural Basis for Anticodon Recognition by Discriminating Glutamyl-tRNA Synthetase. Nat. Struct. Biol. 2001, 8, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Frechin, M.; Senger, B.; Brayé, M.; Kern, D.; Martin, R.P.; Becker, H.D. Yeast Mitochondrial Gln-tRNA(Gln) Is Generated by a GatFAB-Mediated Transamidation Pathway Involving Arc1p-Controlled Subcellular Sorting of Cytosolic GluRS. Genes Dev. 2009, 23, 1119–1130. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Sheppard, K.; Tumbula-Hansen, D.; Söll, D. Gln-TRNAGln Formation from Glu-tRNAGln Requires Cooperation of an Asparaginase and a Glu-tRNAGln Kinase. J. Biol. Chem. 2005, 280, 8150–8155. [Google Scholar] [CrossRef] [Green Version]
- Nagao, A.; Suzuki, T.; Katoh, T.; Sakaguchi, Y.; Suzuki, T. Biogenesis of Glutaminyl-mt tRNAGln in Human Mitochondria. Proc. Natl. Acad. Sci. USA 2009, 106, 16209–16214. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, M. Gamma-Glutamyl Phosphate Attached to Glutamine-Specific tRNA. A Precursor of Glutaminyl-tRNA in Bacillus Subtilis. Eur. J. Biochem. 1969, 11, 405–412. [Google Scholar] [CrossRef]
- Curnow, A.W.; Hong, K.W.; Yuan, R.; Kim, S.I.; Martins, O.; Winkler, W.; Henkin, T.M.; Söll, D. Glu-TRNAGln Amidotransferase: A Novel Heterotrimeric Enzyme Required for Correct Decoding of Glutamine Codons during Translation. Proc. Natl. Acad. Sci. USA 1997, 94, 11819–11826. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, A.; Yao, M.; Chimnaronk, S.; Sakai, N.; Tanaka, I. Ammonia Channel Couples Glutaminase with Transamidase Reactions in GatCAB. Science 2006, 312, 1954–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheper, G.C.; van der Klok, T.; van Andel, R.J.; van Berkel, C.G.M.; Sissler, M.; Smet, J.; Muravina, T.I.; Serkov, S.V.; Uziel, G.; Bugiani, M.; et al. Mitochondrial Aspartyl-tRNA Synthetase Deficiency Causes Leukoencephalopathy with Brain Stem and Spinal Cord Involvement and Lactate Elevation. Nat. Genet. 2007, 39, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Mulero, J.J.; Rosenthal, J.K.; Fox, T.D. PET112, a Saccharomyces cerevisiae Nuclear Gene Required to Maintain Rho+ Mitochondrial DNA. Curr. Genet. 1994, 25, 299–304. [Google Scholar] [CrossRef]
- Merz, S.; Westermann, B. Genome-Wide Deletion Mutant Analysis Reveals Genes Required for Respiratory Growth, Mitochondrial Genome Maintenance and Mitochondrial Protein Synthesis in Saccharomyces cerevisiae. Genome Biol. 2009, 10, R95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinker, R.J.; Lim, A.Z.; Stefanetti, R.J.; McFarland, R. Current and Emerging Clinical Treatment in Mitochondrial Disease. Mol. Diagn. Ther. 2021, 25, 181–206. [Google Scholar] [CrossRef]
Cases | Human | Yeast |
---|---|---|
Two to Two | mtARS, cytARS | mtARS, cytARS |
Two to one | mtARS, cytARS | ARS |
One to One | ARS | ARS |
One to Two | ARS | mtARS, cytARS |
Human Gene vs. Yeast Gene | Protein | Human Gene | OMIM Phenotype | Yeast Gene(s) | Yeast Model |
---|---|---|---|---|---|
Two to Two | mt aspartyl-tRNA synthetase | DARS2 | #611105: leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation, LBSL | MSD1 | [20] |
mt phenylalanyl-tRNA synthetase | FARS2 | #614946: combined oxidative phosphorylation deficiency 14; COXPD14 #617046: spastic paraplegia 77, autosomal recessive, SPG77 #203700: mitochondrial DNA depletion syndrome 4A (Alpers type); MTDPS4A | MSF1 | no yeast model described | |
mt isoleucyl-tRNA synthetase | IARS2 | #616007: cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, and skeletal dysplasia; CAGSSS #256000: Leigh syndrome; LS | ISM1 | no yeast model described | |
mt methionyl-tRNA synthetase | MARS2 | #611390: spastic ataxia 3, autosomal recessive; SPAX3 #616430: combined oxidative phosphorylation deficiency 25; COXPD25 | MSM1 | no yeast model described | |
mt asparaginyl-tRNA synthetase | NARS2 | #618434: deafness, autosomal recessive 94; DFNB94 #203700: mitochondrial DNA depletion syndrome 4A (Alpers type); MTDPS4A #616239: combined oxidative phosphorylation deficiency 24; COXPD24 | SLM5 | no yeast model described | |
mt prolyl-tRNA synthetase | PARS2 | #618437: developmental and epileptic encephalopathy 75; DEE75 | AIM10 | no yeast model described | |
mt seryl-tRNA synthetase | SARS2 | #613845: hyperuricemia, pulmonary hypertension, renal failure, and alkalosis; HUPRAS | DIA4 | no yeast model described | |
mt tryptophanyl-tRNA synthetase | WARS2 | #617710: neurodevelopmental disorder, mitochondrial, with abnormal movements and lactic acidosis, with or without seizures; NEMMLAS | MSW1 | [21] | |
mt tyrosyl-tRNA synthetase | YARS2 | #613561: myopathy, lactic acidosis, and sideroblastic anemia 2; MLASA2 | MSY1 | [22,23,24] | |
One to One | mt and cyt glycyl-tRNA synthetase | GARS | #601472: Charcot-Marie-Tooth disease, axonal, type 2D; CMTD2 #600794: neuronopathy, distal hereditary motor, type VA; HMN5A #619042: spinal muscular atrophy, infantile, James type; SMAJI | GRS1 | [25,26,27] |
Two to One | mt alanyl-tRNA synthetase | AARS2 | #615889: leukoencephalopathy, progressive, with ovarian failure; LKENP #614096: combined oxidative phosphorylation deficiency 8; COXPD8 | ALA1 | [28,29] |
mt cysteinyl-tRNA synthetase | CARS2 | #616672: combined oxidative phosphorylation deficiency 27; COXPD27 | CRS1 | no yeast model described | |
mt histidyl-tRNA synthetase | HARS2 | #614926: Perrault syndrome 2; PRLTS2 | HTS1 | [30] | |
mt valyl-tRNA synthetase | VARS2 | #615917: combined oxidative phosphorylation deficiency 20; COXPD20 | VAS1 | [31,32] | |
One to Two | mt and cyt lysyl-tRNA synthetase | KARS | #613641: Charcot-Marie-Tooth disease, recessive intermediate, B; CMTRIB #613916: deafness, autosomal recessive 89; DFNB89 #619196: deafness, congenital, and adult-onset progressive leukoencephalopathy; DEAPLE #619147: leukoencephalopathy, progressive, infantile-onset, with or without deafness; LEPID | KRS1 MSK1 | [33,34,35] |
Others | mt leucyl-tRNA synthetase | LARS2 | #615300: Perrault syndrome 4; PRLTS4 #617021: hydrops, lactic acidosis, and sideroblastic anemia; HLASA | NAM2 | [36] |
mt arginyl-tRNA synthetase | RARS2 | #611523: pontocerebellar hypoplasia, type 6; PCH6 | MSR1 | [37] | |
mt threonyl-tRNA synteatse | TARS2 | #615918: combined oxidative phosphorylation deficiency 21; COXPD21 | THS1 MST1 | [38] | |
mt glutamyl-tRNA and mt glutamyl-tRNAGln synthetase | EARS2 | #614924: combined oxidative phosphorylation deficiency 12; COXPD12 | MSE1/GUS1 * | no yeast model described | |
GatTCAB complex | QRSL1 | #618835: combined oxidative phosphorylation deficiency 40; COXPD40 | HER2 | [39] | |
GATB | #618838: combined oxidative phosphorylation deficiency 41; COXPD41 | PET112 | |||
GATC | #618839: combined oxidative phosphorylation deficiency 42; COXPD42 | GTF1 |
Human/Yeast mtARS | Anticodon-Codon mt Human | Anticodon-Codon mt Yeast | aa Codified in Human | aa Codified in Yeast |
---|---|---|---|---|
RARS2/Msr1 | UCG-CGN | UCG-CGN | Arg | Arg |
- | UCU-AGR | Ter | Arg | |
LARS2/Nam2 | UAA-UUR | UAA-UUR | Leu | Leu |
UAG-CUN | - | Leu | Thr | |
TARS2/Mst1 | UGU-ACN | UGU-ACN | Thr | Thr |
- | UAG-CUN | Leu | Thr |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figuccia, S.; Degiorgi, A.; Ceccatelli Berti, C.; Baruffini, E.; Dallabona, C.; Goffrini, P. Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int. J. Mol. Sci. 2021, 22, 4524. https://doi.org/10.3390/ijms22094524
Figuccia S, Degiorgi A, Ceccatelli Berti C, Baruffini E, Dallabona C, Goffrini P. Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. International Journal of Molecular Sciences. 2021; 22(9):4524. https://doi.org/10.3390/ijms22094524
Chicago/Turabian StyleFiguccia, Sonia, Andrea Degiorgi, Camilla Ceccatelli Berti, Enrico Baruffini, Cristina Dallabona, and Paola Goffrini. 2021. "Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants" International Journal of Molecular Sciences 22, no. 9: 4524. https://doi.org/10.3390/ijms22094524
APA StyleFiguccia, S., Degiorgi, A., Ceccatelli Berti, C., Baruffini, E., Dallabona, C., & Goffrini, P. (2021). Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. International Journal of Molecular Sciences, 22(9), 4524. https://doi.org/10.3390/ijms22094524