Different Expression of Mitochondrial and Endoplasmic Reticulum Stress Genes in Epicardial Adipose Tissue Depends on Coronary Atherosclerosis
Abstract
:1. Introduction
2. Results
2.1. Antropometric and Biochemical Characteristics
2.2. Mitochondrial and Endoplasmic Reticulum Stress Gene mRNA Expression in Adipose Tissue, Myocardium, and Intercostal Muscle
2.2.1. Mitochondrial Gene mRNA Expression in SAT and EAT
2.2.2. Mitochondrial Gene mRNA Expression in the Myocardium and Intercostal Muscle
2.2.3. Endoplasmic Reticulum Stress Gene mRNA Expression
3. Discussion
4. Materials and Methods
4.1. Study Subjects
4.2. Anthropometric Examination and Blood and Tissue Sampling
4.3. Hormonal and Biochemical Assays
5. Quantitative Real-Time PCR
5.1. Determination of mRNA Expression
5.2. Mitochondrial and Endoplasmic Reticulum Stress Genes
6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; Coggeshall, M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [Green Version]
- Patel, V.B.; Shah, S.; Verma, S.; Oudit, G.Y. Epicardial adipose tissue as a metabolic transducer: Role in heart failure and coronary artery disease. Heart Fail. Rev. 2017, 22, 889–902. [Google Scholar] [CrossRef] [PubMed]
- Kunimura, A.; Ishii, H.; Uetani, T.; Harada, K.; Hirayama, K.; Harata, S.; Shibata, Y.; Kawashima, K.; Shimbo, Y.; Takayama, Y.; et al. Impact of adipose tissue composition on cardiovascular risk assessment in patients with stable coronary artery disease. Atherosclerosis 2016, 251, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Chung, J.-H.; Kwon, B.-J.; Song, S.-W.; Choi, W.-S. The Associations of Epicardial Adipose Tissue with Coronary Artery Disease and Coronary Atherosclerosis. Int. Heart J. 2014, 55, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Matloch, Z.; Kratochvílová, H.; Cinkajzlová, A.; Lipš, M.; Kopecký, P.; Pořízka, M.; Haluzíková, D.; Lindner, J.; Mráz, M.; Kloučková, J.; et al. Changes in Omentin Levels and Its mRNA Expression in Epicardial Adipose Tissue in Patients Undergoing Elective Cardiac Surgery: The Influence of Type 2 Diabetes and Coronary Heart Disease. Physiol. Res. 2018, 67, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, T.; Zhang, L.; Zalewski, A.; Mannion, J.D.; Diehl, J.T.; Arafat, H.; Sarov-Blat, L.; O’Brien, S.; Keiper, E.A.; Johnson, A.G.; et al. Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation 2003, 108, 2460–2466. [Google Scholar] [CrossRef] [Green Version]
- Reinecke, F.; Smeitink, J.A.; van der Westhuizen, F.H. OXPHOS gene expression and control in mitochondrial disorders. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2009, 1792, 1113–1121. [Google Scholar] [CrossRef] [Green Version]
- Højlund, K.; Mogensen, M.; Sahlin, K.; Beck-Nielsen, H. Mitochondrial Dysfunction in Type 2 Diabetes and Obesity. Endocrinol. Metab. Clin. N. Am. 2008, 37, 713–731. [Google Scholar] [CrossRef]
- Ning, X.-H.; Zhang, J.; Liu, J.; Ye, Y.; Chen, S.-H.; From, A.H.; Bache, R.J.; A Portman, M. Signaling and expression for mitochondrial membrane proteins during left ventricular remodeling and contractile failure after myocardial infarction. J. Am. Coll. Cardiol. 2000, 36, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.S.; Kaufman, R.J. Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxid. Redox Signal. 2014, 21, 396–413. [Google Scholar] [CrossRef]
- Yao, Y.; Lu, Q.; Hu, Z.; Yufeng, Y.; Chen, Q.; Wang, Q.K. A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure. Nat. Commun. 2017, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schönthal, A.H. Endoplasmic Reticulum Stress: Its Role in Disease and Novel Prospects for Therapy. Science 2012, 2012, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladiges, W.C. Pancreatic β-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes 2005, 54, 1074–1081. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Kaufman, R.J. The unfolded protein response: A stress signaling pathway critical for health and disease. Neurology 2005, 66, S102–S109. [Google Scholar] [CrossRef] [PubMed]
- Corradi, D.; Maestri, R.; Callegari, S.; Pastori, P.; Goldoni, M.; Luong, T.V.; Bordi, C. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc. Pathol. 2004, 13, 313–316. [Google Scholar] [CrossRef]
- Nakajima, T.; Yokota, T.; Shingu, Y.; Yamada, A.; Iba, Y.; Ujihira, K.; Wakasa, S.; Ooka, T.; Takada, S.; Shirakawa, R.; et al. Impaired mitochondrial oxidative phosphorylation capacity in epicardial adipose tissue is associated with decreased concentration of adiponectin and severity of coronary atherosclerosis. Sci. Rep. 2019, 9, 3535. [Google Scholar] [CrossRef]
- Chechi, K.; Voisine, P.; Mathieu, L.; Laplante, M.; Bonnet, S.; Picard, F.; Joubert, P.; Richard, D. Functional characterization of the Ucp1-associated oxidative phenotype of human epicardial adipose tissue. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Aldiss, P. ‘Browning’the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk. Int. J. Cardiol. 2017, 228, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Montaigne, D. Mitochondrial dysfunction as an arrhythmogenic substrate: A translational proof-of-concept study in patients with metabolic syndrome in whom post-operative atrial fibrillation develops. J. Am. Coll. Cardiol. 2013, 62, 1466–1473. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, C.; Li, Z.; Kim, G.; Jeevanandam, V.; Uriel, N. Molecular Mechanism of the Association Between Atrial Fibrillation and Heart Failure Includes Energy Metabolic Dysregulation Due to Mitochondrial Dysfunction. J. Card. Fail. 2019, 25, 911–920. [Google Scholar] [CrossRef]
- Dahlman, I. Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-α. Diabetes 2006, 55, 1792–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cominacini, L.; Mozzini, C.; Garbin, U.; Pasini, A.; Stranieri, C.; Solani, E.; Vallerio, P.; Tinelli, I.A.; Pasini, A.F. Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic. Biol. Med. 2015, 88, 233–242. [Google Scholar] [CrossRef]
- Liu, M.-Q.; Chen, Z.; Chen, L.-X. Endoplasmic reticulum stress: A novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol. Sin. 2016, 37, 425–443. [Google Scholar] [CrossRef] [Green Version]
- Azfer, A.; Niu, J.; Rogers, L.M.; Adamski, F.M.; Kolattukudy, P.E. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am. J. Physiol. Circ. Physiol. 2006, 291, H1411–H1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremen, J.; Dolinkova, M.; Krajickova, J.; Blaha, J.; Anderlova, K.; Lacinova, Z.; Haluzikova, D.; Bosanska, L.; Vokurka, M.; Svacina, S.; et al. Increased Subcutaneous and Epicardial Adipose Tissue Production of Proinflammatory Cytokines in Cardiac Surgery Patients: Possible Role in Postoperative Insulin Resistance. J. Clin. Endocrinol. Metab. 2006, 91, 4620–4627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trachta, P.; Drápalová, J.; Kaválková, P.; Toušková, V.; Cinkajzlová, A.; Lacinová, Z.; Matoulek, M.; Zelinka, T.; Widimský, J.; Mráz, M.; et al. Three Months of Regular Aerobic Exercise in Patients with Obesity Improve Systemic Subclinical Inflammation Without Major Influence on Blood Pressure and Endocrine Production of Subcutaneous Fat. Physiol. Res. 2014, 63, S299–S308. [Google Scholar] [CrossRef]
- Cheng, T.-L.; Liao, C.-C.; Tsai, W.-H.; Lin, C.-C.; Yeh, C.-W.; Teng, C.-F.; Chang, W.-T. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase. J. Cell. Biochem. 2009, 107, 1002–1015. [Google Scholar] [CrossRef]
- Christe, M.; Hirzel, E.; Lindinger, A.; Kern, B.; Von Flüe, M.; Peterli, R.; Peters, T.; Eberle, A.N.; Lindinger, P.W. Obesity Affects Mitochondrial Citrate Synthase in Human Omental Adipose Tissue. ISRN Obes. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kadenbach, B.; Huettemann, M. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion 2015, 24, 64–76. [Google Scholar] [CrossRef]
- Gaignard, P.; Menezes, M.; Schiff, M.; Bayot, A.; Rak, M.; de Baulny, H.O.; Su, C.-H.; Gilleron, M.; Lombes, A.; Abida, H.; et al. Mutations in CYC1, Encoding Cytochrome c1 Subunit of Respiratory Chain Complex III, Cause Insulin-Responsive Hyperglycemia. Am. J. Hum. Genet. 2013, 93, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Urbanová, M.; Mráz, M.; Ďurovcová, V.; Trachta, P.; Kloučková, J.; Kaválková, P.; Haluzíková, D.; Lacinová, Z.; Hansíková, H.; Wenchich, L.; et al. The Effect of Very-Low-Calorie Diet on Mitochondrial Dysfunction in Subcutaneous Adipose Tissue and Peripheral Monocytes of Obese Subjects with Type 2 Diabetes Mellitus. Physiol. Res. 2017, 66, 811–822. [Google Scholar] [CrossRef]
- Wortel, I.M.; van der Meer, L.T.; Kilberg, M.S.; van Leeuwen, F.N. Surviving Stress: Modulation of ATF4-Mediated Stress Responses in Normal and Malignant Cells. Trends Endocrinol. Metab. 2017, 28, 794–806. [Google Scholar] [CrossRef]
- Chen, X.; Shen, J.; Prywes, R. The Luminal Domain of ATF6 Senses Endoplasmic Reticulum (ER) Stress and Causes Translocation of ATF6 from the ER to the Golgi. J. Biol. Chem. 2002, 277, 13045–13052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Lee, J.; Liem, D.; Ping, P. HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene 2017, 618, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Ramji, D.P.; Foka, P. CCAAT/enhancer-binding proteins: Structure, function and regulation. Biochem. J. 2002, 365, 561–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | noCAD | CAD | P |
---|---|---|---|
No. of subjects (f/m) | 11 (3/8) | 27 (5/22) | x |
Age (year) | 59.8 ± 4.8 | 67.6 ± 1.65 | 0.421 |
Weight (kg) | 80.5 ± 3.98 | 87.7 ± 3.07 | 0.193 |
Height (cm) | 172 ± 3.09 | 175 ± 1.55 | 0.348 |
Body mass index (kg/m2) | 27.1 ± 0.96 | 28.6 ± 0.91 | 0.339 |
Waist circumference (cm) | 99.2 ± 3.53 | 104 ± 2.42 | 0.332 |
Hip circumference (cm) | 102 ± 3.08 | 107 ± 1.51 | 0.149 |
Waist/hip ratio | 0.96 ± 0.01 | 0.96 ± 0.02 | 0.872 |
Epicardial adipose tissue (mm) | 3.00 (2.00–3.00) | 4.00 (3.00–4.00) | 0.014 |
Total cholesterol (mmol/L) | 4.12 ± 0.29 | 3.76 ± 0.18 | 0.237 |
Triglycerides (mmol/L) | 1.33 ± 0.16 | 1.45 ± 0.18 | 1 |
LDL cholesterol (mmol/L) | 2.36 ± 0.24 | 1.99 ± 0.14 | 0.163 |
HDL cholesterol (mmol/L) | 1.25 ± 0.12 | 1.15 ± 0.09 | 0.126 |
Fasting glucose (mmol/L) | 5.4 ± 0.17 | 6.76 ± 0.33 | 0.011 |
HbA1c (mmol/mol) | 35.4 ± 1.18 | 43.6 ± 1.98 | 0.012 |
Insulin (µIU/mL) | 18.4 (14.4–20.2) | 24.2 (16.7–37.5) | 0.095 |
C-peptide (ng/mL) | 2.76 ± 0.32 | 3.05 ± 0.22 | 0.497 |
T2DM (n, %) | 0 (0%) | 10 (37.0%) | 0.021 |
Arterial hypertension (n, %) | 7 (63.6%) | 26 (96.3%) | 0.008 |
Dyslipidemia (n, %) | 6 (54.5%) | 26 (96.3%) | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kratochvílová, H.; Mráz, M.; Kasperová, B.J.; Hlaváček, D.; Mahrík, J.; Laňková, I.; Cinkajzlová, A.; Matloch, Z.; Lacinová, Z.; Trnovská, J.; et al. Different Expression of Mitochondrial and Endoplasmic Reticulum Stress Genes in Epicardial Adipose Tissue Depends on Coronary Atherosclerosis. Int. J. Mol. Sci. 2021, 22, 4538. https://doi.org/10.3390/ijms22094538
Kratochvílová H, Mráz M, Kasperová BJ, Hlaváček D, Mahrík J, Laňková I, Cinkajzlová A, Matloch Z, Lacinová Z, Trnovská J, et al. Different Expression of Mitochondrial and Endoplasmic Reticulum Stress Genes in Epicardial Adipose Tissue Depends on Coronary Atherosclerosis. International Journal of Molecular Sciences. 2021; 22(9):4538. https://doi.org/10.3390/ijms22094538
Chicago/Turabian StyleKratochvílová, Helena, Miloš Mráz, Barbora J. Kasperová, Daniel Hlaváček, Jakub Mahrík, Ivana Laňková, Anna Cinkajzlová, Zdeněk Matloch, Zdeňka Lacinová, Jaroslava Trnovská, and et al. 2021. "Different Expression of Mitochondrial and Endoplasmic Reticulum Stress Genes in Epicardial Adipose Tissue Depends on Coronary Atherosclerosis" International Journal of Molecular Sciences 22, no. 9: 4538. https://doi.org/10.3390/ijms22094538
APA StyleKratochvílová, H., Mráz, M., Kasperová, B. J., Hlaváček, D., Mahrík, J., Laňková, I., Cinkajzlová, A., Matloch, Z., Lacinová, Z., Trnovská, J., Ivák, P., Novodvorský, P., Netuka, I., & Haluzík, M. (2021). Different Expression of Mitochondrial and Endoplasmic Reticulum Stress Genes in Epicardial Adipose Tissue Depends on Coronary Atherosclerosis. International Journal of Molecular Sciences, 22(9), 4538. https://doi.org/10.3390/ijms22094538