Glutamatergic Neurons Differentiated from Embryonic Stem Cells: An Investigation of Differentiation and Associated Diseases
Abstract
:1. Introduction
2. As Part of Differentiation Research
2.1. The Study of Stimuli and Signal Transduction during Development/Differentiation
2.2. The Identification of the Genes, Proteins and Markers Involved in the Cellular Differentiation Process
2.3. The Use of 3-Dimensional (3D) Methods to Investigate Dynamic Spatial and Temporal Changes during Neuronal Morphology
2.4. Regulation and Functions of Extracellular Matrix (ECM) Secretion, Ion Channels, the Neuronal Microenvironment, among Others
2.5. Neurons That Have Been Developed Using Neurogenesis In Vitro Are Able to Integrate into Existing Tissue
3. In Pathophysiological Studies
4. Future Perspectives
4.1. A Potential Therapeutic Strategy for the Treatment of AD via Neurons/Tissues Replacement
4.2. Screening Drugs for the Treatment of AD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bibel, M.; Richter, J.; Schrenk, K.; Tucker, K.L.; Staiger, V.; Korte, M.; Goetz, M.; Barde, Y.A. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat. Neurosci. 2004, 7, 1003–1009. [Google Scholar] [CrossRef]
- Robertson, M.J.; Gip, P.; Schaffer, D.V. Neural stem cell engineering: Directed differentiation of adult and embryonic stem cells into neurons. Front. Biosci. 2008, 13, 21–50. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Y.; Cheng, Y.Y.; Yen, C.Y.; Hsieh, P.C. Mechanisms of pluripotency maintenance in mouse embryonic stem cells. Cell Mol. Life Sci. 2017, 74, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, J. A regulatory circuitry locking pluripotent stemness to embryonic stem cell: Interaction between threonine catabolism and histone methylation. Semin. Cancer Biol. 2019, 57, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Mallanna, S.K.; Rizzino, A. Systems biology provides new insights into the molecular mechanisms that control the fate of embryonic stem cells. J. Cell Physiol. 2012, 227, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, J.H.; Tung, L.C.; Lin, Y. Neural differentiation from embryonic stem cells in vitro: An overview of the signaling pathways. World J. Stem. Cells 2015, 7, 437–447. [Google Scholar] [CrossRef]
- Simandi, Z.; Horvath, A.; Cuaranta-Monroy, I.; Sauer, S.; Deleuze, J.F.; Nagy, L. RXR heterodimers orchestrate transcriptional control of neurogenesis and cell fate specification. Mol. Cell Endocrinol. 2018, 471, 51–62. [Google Scholar] [CrossRef]
- Junyent, S.; Garcin, C.L.; Szczerkowski, J.L.A.; Trieu, T.J.; Reeves, J.; Habib, S.J. Specialized cytonemes induce self-organization of stem cells. Proc. Natl. Acad. Sci. USA 2020, 117, 7236–7244. [Google Scholar] [CrossRef] [Green Version]
- Nat, R.; Dechant, G. Milestones of directed differentiation of mouse and human embryonic stem cells into telencephalic neurons based on neural development in vivo. Stem. Cells Dev. 2011, 20, 947–958. [Google Scholar] [CrossRef]
- Peljto, M.; Wichterle, H. Programming embryonic stem cells to neuronal subtypes. Curr. Opin. Neurobiol. 2011, 21, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Yuen, S.M.; Kwok, H.F. Temporal establishment of neural cell identity in vivo and in vitro. J. Tissue Eng. Regen. Med. 2017, 11, 2582–2589. [Google Scholar] [CrossRef]
- Esposito, M.S.; Piatti, V.C.; Laplagne, D.A.; Morgenstern, N.A.; Ferrari, C.C.; Pitossi, F.J.; Schinder, A.F. Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J. Neurosci. 2005, 25, 10074–10086. [Google Scholar] [CrossRef]
- Kondo, T.; Sheets, P.L.; Zopf, D.A.; Aloor, H.L.; Cummins, T.R.; Chan, R.J.; Hashino, E. Tlx3 exerts context-dependent transcriptional regulation and promotes neuronal differentiation from embryonic stem cells. Proc. Natl. Acad. Sci. USA 2008, 105, 5780–5785. [Google Scholar] [CrossRef] [Green Version]
- Nikoletopoulou, V.; Plachta, N.; Allen, N.D.; Pinto, L.; Gotz, M.; Barde, Y.A. Neurotrophin receptor-mediated death of misspecified neurons generated from embryonic stem cells lacking Pax6. Cell Stem. Cell 2007, 1, 529–540. [Google Scholar] [CrossRef] [Green Version]
- Shimomura, A.; Patel, D.; Wilson, S.M.; Koehler, K.R.; Khanna, R.; Hashino, E. Tlx3 promotes glutamatergic neuronal subtype specification through direct interactions with the chromatin modifier CBP. PLoS ONE 2015, 10, e0135060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer, D.; Martianov, I.; Alpern, D.; Rhinn, M.; Keime, C.; Dolle, P.; Mengus, G.; Davidson, I. Essential role of the TFIID subunit TAF4 in murine embryogenesis and embryonic stem cell differentiation. Nat. Commun. 2016, 7, 11063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagino-Yamagishi, K.; Saijoh, Y.; Ikeda, M.; Ichikawa, M.; Minamikawa-Tachino, R.; Hamada, H. Predominant expression of Brn-2 in the postmitotic neurons of the developing mouse neocortex. Brain Res. 1997, 752, 261–268. [Google Scholar] [CrossRef]
- Ryan, A.K.; Rosenfeld, M.G. POU domain family values: Flexibility, partnerships, and developmental codes. Genes Dev. 1997, 11, 1207–1225. [Google Scholar] [CrossRef] [Green Version]
- Urban, S.; Kobi, D.; Ennen, M.; Langer, D.; Le Gras, S.; Ye, T.; Davidson, I. A Brn2-Zic1 axis specifies the neuronal fate of retinoic-acid-treated embryonic stem cells. J. Cell Sci. 2015, 128, 2303–2318. [Google Scholar] [CrossRef] [Green Version]
- Uda, Y.; Xu, S.; Matsumura, T.; Takei, Y. P2Y4 nucleotide receptor in neuronal precursors induces glutamatergic subtype markers in their descendant neurons. Stem. Cell Rep. 2016, 6, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Thoma, E.C.; Wischmeyer, E.; Offen, N.; Maurus, K.; Siren, A.L.; Schartl, M.; Wagner, T.U. Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons. PLoS ONE 2012, 7, e38651. [Google Scholar] [CrossRef] [Green Version]
- De Cegli, R.; Iacobacci, S.; Flore, G.; Gambardella, G.; Mao, L.; Cutillo, L.; Lauria, M.; Klose, J.; Illingworth, E.; Banfi, S.; et al. Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation. Nucleic Acids Res. 2013, 41, 711–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshizawa, M.; Taguchi, Y.H.; Yasuda, J. Inference of gene regulation via miRNAs during ES cell differentiation using MiRaGE method. Int. J. Mol. Sci. 2011, 12, 9265–9276. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, K.S.; Gut, I.M.; Lyman, M.E.; McNutt, P.M. Longitudinal RNA sequencing of the deep transcriptome during neurogenesis of cortical glutamatergic neurons from murine ESCs. F1000Research 2013, 2, 2–35. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, N.; Hashemi, S.M.; Salehi, M.; Jahani, H.; Mowla, S.J.; Soleimani, M.; Hosseinkhani, H. Influence of oriented nanofibrous PCL scaffolds on quantitative gene expression during neural differentiation of mouse embryonic stem cells. J. Biomed. Mater Res. A 2016, 104, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Hosseinkhani, H.; Hiraoka, Y.; Li, C.H.; Chen, Y.R.; Yu, D.S.; Hong, P.D.; Ou, K.L. Engineering three-dimensional collagen-IKVAV matrix to mimic neural microenvironment. ACS Chem. Neurosci. 2013, 4, 1229–1235. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Dong, X.; Fang, K.H.; Yuan, F.; Hu, Y.; Xu, M.; Huang, Y.; Zhang, X.; Fang, D.; Liu, Y. Develop a 3D neurological disease model of human cortical glutamatergic neurons using micropillar-based scaffolds. Acta Pharm. Sin. B 2019, 9, 557–564. [Google Scholar] [CrossRef]
- Eiraku, M.; Watanabe, K.; Matsuo-Takasaki, M.; Kawada, M.; Yonemura, S.; Matsumura, M.; Wataya, T.; Nishiyama, A.; Muguruma, K.; Sasai, Y. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem. Cell 2008, 3, 519–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancaster, M.A.; Knoblich, J.A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 2014, 9, 2329–2340. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef]
- Pasca, A.M.; Sloan, S.A.; Clarke, L.E.; Tian, Y.; Makinson, C.D.; Huber, N.; Kim, C.H.; Park, J.Y.; O’Rourke, N.A.; Nguyen, K.D.; et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 2015, 12, 671–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchini, A.; Raspa, A.; Pugliese, R.; El Malek, M.A.; Pastori, V.; Lecchi, M.; Vescovi, A.L.; Gelain, F. Multifunctionalized hydrogels foster hNSC maturation in 3D cultures and neural regeneration in spinal cord injuries. Proc. Natl. Acad. Sci. USA 2019, 116, 7483–7492. [Google Scholar] [CrossRef] [Green Version]
- Smith, I.; Silveirinha, V.; Stein, J.L.; de la Torre-Ubieta, L.; Farrimond, J.A.; Williamson, E.M.; Whalley, B.J. Human neural stem cell-derived cultures in three-dimensional substrates form spontaneously functional neuronal networks. J. Tissue Eng. Regen. Med. 2017, 11, 1022–1033. [Google Scholar] [CrossRef]
- Yan, Y.; Bejoy, J.; Xia, J.; Guan, J.; Zhou, Y.; Li, Y. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses. Acta Biomater. 2016, 42, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.J.; Haigh, C.L. Simplified murine 3D neuronal cultures for investigating neuronal activity and neurodegeneration. Cell Biochem. Biophys. 2017, 75, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Dubois-Dauphin, M.L.; Toni, N.; Julien, S.D.; Charvet, I.; Sundstrom, L.E.; Stoppini, L. The long-term survival of in vitro engineered nervous tissue derived from the specific neural differentiation of mouse embryonic stem cells. Biomaterials 2010, 31, 7032–7042. [Google Scholar] [CrossRef] [PubMed]
- Halavi, M.; Hamilton, K.A.; Parekh, R.; Ascoli, G.A. Digital reconstructions of neuronal morphology: Three decades of research trends. Front. Neurosci. 2012, 6, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parekh, R.; Ascoli, G.A. Neuronal morphology goes digital: A research hub for cellular and system neuroscience. Neuron 2013, 77, 1017–1038. [Google Scholar] [CrossRef] [Green Version]
- Jungling, K.; Eulenburg, V.; Moore, R.; Kemler, R.; Lessmann, V.; Gottmann, K. N-cadherin transsynaptically regulates short-term plasticity at glutamatergic synapses in embryonic stem cell-derived neurons. J. Neurosci. 2006, 26, 6968–6978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, M.H.; Lee, E.G.; Lee, S.H.; Lee, Y.S.; Son, H. Neural cell adhesion molecule (NCAM) promotes the differentiation of hippocampal precursor cells to a neuronal lineage, especially to a glutamatergic neural cell type. Exp. Mol. Med. 2002, 34, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Aizman, I.; Tirumalashetty, B.J.; McGrogan, M.; Case, C.C. Comparison of the neuropoietic activity of gene-modified versus parental mesenchymal stromal cells and the identification of soluble and extracellular matrix-related neuropoietic mediators. Stem. Cell Res. Ther. 2014, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Young, A.; Machacek, D.W.; Dhara, S.K.; Macleish, P.R.; Benveniste, M.; Dodla, M.C.; Sturkie, C.D.; Stice, S.L. Ion channels and ionotropic receptors in human embryonic stem cell derived neural progenitors. Neuroscience 2011, 192, 793–805. [Google Scholar] [CrossRef] [Green Version]
- Simão, D.; Silva, M.M.; Terrasso, A.P.; Arez, F.; Sousa, M.F.Q.; Mehrjardi, N.Z.; Šarić, T.; Gomes-Alves, P.; Raimundo, N.; Alves, P.M.; et al. Recapitulation of human neural microenvironment signatures in iPSC-derived NPC 3D differentiation. Stem. Cell Rep. 2018, 11, 552–564. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Ao, Z.; Hu, L.; Moon, Y.; Wu, Z.; Lu, H.C.; Kim, J.; Guo, F. Acoustofluidic assembly of 3D neurospheroids to model Alzheimer’s disease. Analyst 2020, 145, 6243–6253. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Jodat, Y.A.; Samanipour, R.; Zorzi, G.; Zhu, K.; Hirano, M.; Chang, K.; Arnaout, A.; Hassan, S.; Matharu, N.; et al. Toward a neurospheroid niche model: Optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs. Biofabrication 2020, 13, 015014. [Google Scholar] [CrossRef]
- Barber, M.; Pierani, A. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells. Dev. Neurobiol. 2016, 76, 847–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grønning Hansen, M.; Laterza, C.; Palma-Tortosa, S.; Kvist, G.; Monni, E.; Tsupykov, O.; Tornero, D.; Uoshima, N.; Soriano, J.; Bengzon, J.; et al. Grafted human pluripotent stem cell-derived cortical neurons integrate into adult human cortical neural circuitry. Stem. Cells Transl. Med. 2020, 9, 1365–1377. [Google Scholar] [CrossRef]
- Wernig, M.; Benninger, F.; Schmandt, T.; Rade, M.; Tucker, K.L.; Bussow, H.; Beck, H.; Brustle, O. Functional integration of embryonic stem cell-derived neurons in vivo. J. Neurosci. 2004, 24, 5258–5268. [Google Scholar] [CrossRef] [Green Version]
- Benninger, F.; Beck, H.; Wernig, M.; Tucker, K.L.; Brustle, O.; Scheffler, B. Functional integration of embryonic stem cell-derived neurons in hippocampal slice cultures. J. Neurosci. 2003, 23, 7075–7083. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lepier, A.; Berninger, B.; Tolkovsky, A.M.; Herbert, J. Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus. PLoS ONE 2012, 7, e31547. [Google Scholar] [CrossRef] [Green Version]
- Copi, A.; Jungling, K.; Gottmann, K. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network. J. Neurophysiol. 2005, 94, 4538–4543. [Google Scholar] [CrossRef] [Green Version]
- Begum, A.N.; Aguilar, J.S.; Elias, L.; Hong, Y. Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Neurotoxicology 2016, 57, 45–53. [Google Scholar] [CrossRef]
- Wang, H.; Chang, L.; Aguilar, J.S.; Dong, S.; Hong, Y. Bisphenol-A exposure induced neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Environ. Int. 2019, 127, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Altschuler, R.A.; O’Shea, K.S.; Miller, J.M. Stem cell transplantation for auditory nerve replacement. Hear. Res. 2008, 242, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Hackelberg, S.; Tuck, S.J.; He, L.; Rastogi, A.; White, C.; Liu, L.; Prieskorn, D.M.; Miller, R.J.; Chan, C.; Loomis, B.R.; et al. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration. PLoS ONE 2017, 12, e0180427. [Google Scholar] [CrossRef]
- Lin, L.; Liu, A.; Li, H.; Feng, J.; Yan, Z. Inhibition of histone methyltransferases EHMT1/2 reverses amyloid-β-induced loss of AMPAR currents in human stem cell-derived cortical neurons. J. Alzheimers Dis. 2019, 70, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Ubina, T.; Magallanes, M.; Srivastava, S.; Warden, C.D.; Yee, J.K.; Salvaterra, P.M. A human embryonic stem cell model of Aβ-dependent chronic progressive neurodegeneration. Front. Neurosci. 2019, 13, 1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tachibana, M.; Amato, P.; Sparman, M.; Gutierrez, N.M.; Tippner-Hedges, R.; Ma, H.; Kang, E.; Fulati, A.; Lee, H.S.; Sritanaudomchai, H.; et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 2013, 153, 1228–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanza, R.P.; Cibelli, J.B.; West, M.D. Human therapeutic cloning. Nat. Med. 1999, 5, 975–977. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.H.; Tung, L.C.; Lee-Chen, G.J.; Yin, Y.; Lin, Y. An approach for differentiating uniform glutamatergic neurons from mouse embryonic stem cells. Anal. Biochem. 2011, 410, 149–151. [Google Scholar] [CrossRef]
- Chuang, J.H.; Tung, L.C.; Yin, Y.; Lin, Y. Differentiation of glutamatergic neurons from mouse embryonic stem cells requires raptor S6K signaling. Stem. Cell Res. 2013, 11, 1117–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matoba, S.; Zhang, Y. Somatic cell nuclear transfer reprogramming: Mechanisms and applications. Cell Stem. Cell 2018, 23, 471–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genes/Proteins/Markers | Functions |
---|---|
Tlx3 (HOX11L2) | Promotes the differentiation of glutamatergic neurons in the central nervous system [13,15]. |
Pax6 | Plays a very early role in the specification of retinal neurons and in the developing cortex [14]. |
TAF4 | Is a subunit in TFIID and has been shown to play roles in embryogenesis [16]. |
Brn2 (Pou3f2) | Brn2 and Brn2–Zic1 axis are important in neuronal differentiation induced by retinoic acid [17,18,19]. |
P2Y4 | Extracellular nucleotides can mediate this nucleotide receptor to induce glutamatergic markers [20]. |
Ngn2 | Is a helix–loop–helix TF and is sufficient to induce the differentiation of ESCs into glutamatergic neurons [21]. |
E30012A19Rik | One of the master regulators of gene expression for ESCs to differentiate into glutamatergic neurons [22]. |
miRNAs | miR-200 family and miR-17-92 cluster members are relevant in the neuronal differentiation of ESCs [23]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, J.-H.; Yang, W.-C.; Lin, Y. Glutamatergic Neurons Differentiated from Embryonic Stem Cells: An Investigation of Differentiation and Associated Diseases. Int. J. Mol. Sci. 2021, 22, 4592. https://doi.org/10.3390/ijms22094592
Chuang J-H, Yang W-C, Lin Y. Glutamatergic Neurons Differentiated from Embryonic Stem Cells: An Investigation of Differentiation and Associated Diseases. International Journal of Molecular Sciences. 2021; 22(9):4592. https://doi.org/10.3390/ijms22094592
Chicago/Turabian StyleChuang, Jen-Hua, Wen-Chin Yang, and Yenshou Lin. 2021. "Glutamatergic Neurons Differentiated from Embryonic Stem Cells: An Investigation of Differentiation and Associated Diseases" International Journal of Molecular Sciences 22, no. 9: 4592. https://doi.org/10.3390/ijms22094592
APA StyleChuang, J. -H., Yang, W. -C., & Lin, Y. (2021). Glutamatergic Neurons Differentiated from Embryonic Stem Cells: An Investigation of Differentiation and Associated Diseases. International Journal of Molecular Sciences, 22(9), 4592. https://doi.org/10.3390/ijms22094592