The Predictive Role of Biomarkers and Genetics in Childhood Asthma Exacerbations
Abstract
:1. Introduction
2. Methods
3. Biomarkers
3.1. Eosinophils
3.2. Fractional Exhaled Nitric Oxide
3.3. Volatile Organic Compounds
3.4. Other Molecules Of Exhaled Breath Condensate
3.5. IL-6
3.6. Urinary Metabolites
3.7. Salivary Biomarkers
4. Genetic and Transcriptomic Predisposition
4.1. GSDMB
4.2. RAD50
4.3. IL-33 and IL1RL1
4.4. IL4RA
4.5. FLJ22447
4.6. FCER2
4.7. ALOX5, LTAH4, LTC4S
4.8. ADRB2
4.9. CTNNA3 and SEMA3D
4.10. CHIT1, CHI3L1, CHIA
4.11. Gene-Environment Interaction
4.11.1. CDHR3
4.11.2. Other Gene-Environment Interactions
4.12. Transcriptomics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2016; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Castillo, J.R.; Peters, S.P.; Busse, W.W. Asthma exacerbations: Pathogenesis, prevention, and treatment. J. Allergy Clin. Immunol. 2017, 5, 918–927. [Google Scholar] [CrossRef] [PubMed]
- GINA. Global Strategy for Asthma Management and Prevention; GINA: Fontana, WI, USA, 2020. [Google Scholar]
- Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. Lancet 2018, 391, 783–800. [Google Scholar] [CrossRef]
- Dondi, A.; Calamelli, E.; Piccinno, V.; Ricci, G.; Corsini, I.; Biagi, C.; Lanari, M. Acute asthma in the pediatric emergency department: Infections are the main triggers of exacerbations. BioMed Res. Int. 2017, 2017, 9687061. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.G.; Christodoulou, I.; Rohde, G.; Agache, I.; Almqvist, C.; Bruno, A.; Bonini, S.; Bont, L.; Bossios, A.; Bousquet, J.; et al. Viruses and bacteria in acute asthma exacerbations–A GA2LEN-DARE* systematic review. Allergy 2011, 66, 458–468. [Google Scholar] [CrossRef]
- Murray, C.S.; Poletti, G.; Kebadze, T.; Morris, J.; Woodcock, A.; Johnston, S.L.; Custovic, A. Study of modifiable risk factors for asthma exacerbations: Virus infection and allergen exposure increase the risk of asthma hospital admissions in children. Thorax 2006, 61, 376–382. [Google Scholar] [CrossRef]
- D’Amato, G.; Vitale, C.; D’Amato, M.; Cecchi, L.; Liccardi, G.; Molino, A.; Vatrella, A.; Sanduzzi, A.; Maesano, C.; Annesi-Maesano, I. Thunderstorm-related asthma: What happens and why. Clin. Exp. Allergy 2016, 46, 390–396. [Google Scholar] [CrossRef]
- Harun, N.-S.; Lachapelle, P.; Douglass, J. Thunderstorm-triggered asthma: What we know so far. J. Asthma Allergy 2019, 12, 101–108. [Google Scholar] [CrossRef]
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef]
- Bai, T.R.; Vonk, J.M.; Postma, D.S.; Boezen, H.M. Severe exacerbations predict excess lung function decline in asthma. Eur. Respir. J. 2007, 30, 452–456. [Google Scholar] [CrossRef]
- Chapman, K.R. Impact of ‘mild’ asthma on health outcomes: Findings of a systematic search of the literature. Respir. Med. 2005, 99, 1350–1362. [Google Scholar] [CrossRef]
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef]
- FitzGerald, J.M.; Barnes, P.J.; Chipps, B.E.; Jenkins, C.R.; O’Byrne, P.M.; Pavord, I.D.; Reddel, H.K. The burden of exacerbations in mild asthma: A systematic review. ERJ Open Res. 2020, 6. [Google Scholar] [CrossRef]
- Peters, M.C.; Mauger, D.; Ross, K.R.; Phillips, B.; Gaston, B.; Cardet, J.C.; Israel, E.; Levy, B.D.; Phipatanakul, W.; Jarjour, N.N.; et al. Evidence for exacerbation-prone asthma and predictive biomarkers of exacerbation frequency. Am. J. Respir. Crit. Care Med. 2020, 202, 973–982. [Google Scholar] [CrossRef]
- Denlinger, L.C.; Heymann, P.; Lutter, R.; Gern, J.E. Exacerbation-prone asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 474–482. [Google Scholar] [CrossRef]
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and Other Tools) Resource; Food and Drug Administration: White Oak, MD, USA, 2016. [Google Scholar]
- Wu, A.C.; Tantisira, K.; Li, L.; Schuemann, B.; Weiss, S.T.; Fuhlbrigge, A.L. Predictors of symptoms are different from predictors of severe exacerbations from asthma in children. Chest 2011, 140, 100–107. [Google Scholar] [CrossRef]
- Tran, T.N.; Khatry, D.B.; Ke, X.; Ward, C.K.; Gossage, D. High blood eosinophil count is associated with more frequent asthma attacks in asthma patients. Ann. Allergy Asthma Immunol. 2014, 113, 19–24. [Google Scholar] [CrossRef]
- Malinovschi, A.; Fonseca, J.A.; Jacinto, T.; Alving, K.; Janson, C. Exhaled nitric oxide levels and blood eosinophil counts independently associate with wheeze and asthma events in national health and nutrition examination survey subjects. J. Allergy Clin. Immunol. 2013, 132, 821–827.e5. [Google Scholar] [CrossRef]
- Zeiger, R.S.; Schatz, M.; Li, Q.; Chen, W.; Khatry, D.B.; Gossage, D.; Tran, T.N. The Association of Blood Eosinophil counts to future asthma exacerbations in children with persistent asthma. J. Allergy Clin. Immunol. 2015, 3, 283–287. [Google Scholar] [CrossRef]
- King, C.; Price, D.; Wilson, A.; Chisholm, A.; Rigazio, A.; Burden, A.; Thomas, M. Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice. J. Asthma Allergy 2016, 9, 1. [Google Scholar] [CrossRef]
- Shah, S.P.; Grunwell, J.; Shih, J.; Stephenson, S.; Fitzpatrick, A.M. Exploring the utility of noninvasive type 2 inflammatory markers for prediction of severe asthma exacerbations in children and adolescents. J. Allergy Clin. Immunol. 2019, 7, 2624–2633. [Google Scholar] [CrossRef]
- Jackson, D.J.; Humbert, M.; Hirsch, I.; Newbold, P.; Garcia Gil, E. Ability of serum IgE concentration to predict exacerbation risk and benralizumab efficacy for patients with severe eosinophilic asthma. Adv. Ther. 2020, 37, 718–729. [Google Scholar] [CrossRef]
- Pijnenburg, M.W. Exhaled nitric oxide predicts asthma relapse in children with clinical asthma remission. Thorax 2005, 60, 215–218. [Google Scholar] [CrossRef]
- Fritsch, M.; Uxa, S.; Horak, F.; Putschoegl, B.; Dehlink, E.; Szepfalusi, Z.; Frischer, T. Exhaled nitric oxide in the management of childhood asthma: A prospective 6-months study. Pediatr. Pulmonol. 2006, 41, 855–862. [Google Scholar] [CrossRef]
- Zeiger, R.S.; Schatz, M.; Zhang, F.; Crawford, W.W.; Kaplan, M.S.; Roth, R.M.; Chen, W. Association of exhaled nitric oxide to asthma burden in asthmatics on inhaled corticosteroids. J. Asthma 2011, 48, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Robroeks, C.M.; van Berkel, J.J.; Jöbsis, Q.; van Schooten, F.-J.; Dallinga, J.W.; Wouters, E.F.; Dompeling, E. Exhaled volatile organic compounds predict exacerbations of childhood asthma in a 1-year prospective study. Eur. Respir. J. 2013, 42, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, D.; Smolinska, A.; Jöbsis, Q.; Rosias, P.P.R.; Muris, J.W.M.; Dallinga, J.W.; van Schooten, F.J.; Dompeling, E. Association between exhaled inflammatory markers and asthma control in children. J. Breath Res. 2016, 10, 016014. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, D.; Smolinska, A.; Jöbsis, Q.; Rosias, P.; Muris, J.; Dallinga, J.; Dompeling, E.; van Schooten, F.-J. Can exhaled volatile organic compounds predict asthma exacerbations in children? J. Breath Res. 2017, 11, 016016. [Google Scholar] [CrossRef]
- Keskin, O.; Balaban, S.; Keskin, M.; Kucukosmanoglu, E.; Gogebakan, B.; Ozkars, M.Y.; Kul, S.; Bayram, H.; Coskun, Y. Relationship between exhaled leukotriene and 8-isoprostane levels and asthma severity, asthma control level, and asthma control test score. Allergol. Immunopathol. 2014, 42, 191–197. [Google Scholar] [CrossRef]
- Robroeks, C.M.H.H.T.; Vliet, D.; Jöbsis, Q.; Braekers, R.; Rijkers, G.T.; Wodzig, W.K.W.H.; Bast, A.; Zimmermann, L.J.I.; Dompeling, E. Prediction of asthma exacerbations in children: Results of a one-year prospective study. Clin. Exp. Allergy 2012, 42, 792–798. [Google Scholar] [CrossRef]
- Jackson, D.J.; Bacharier, L.B.; Calatroni, A.; Gill, M.A.; Hu, J.; Liu, A.H.; Wheatley, L.M.; Gern, J.E.; Gruchalla, R.S.; Khurana Hershey, G.K.; et al. Serum IL-6: A biomarker in childhood asthma? J. Allergy Clin. Immunol. 2020, 145, 1701–1704. [Google Scholar] [CrossRef]
- Li, X.; Hastie, A.T.; Peters, M.C.; Hawkins, G.A.; Phipatanakul, W.; Li, H.; Moore, W.C.; Busse, W.W.; Castro, M.; Erzurum, S.C.; et al. Investigation of the relationship between IL-6 and type 2 biomarkers in severe asthma. J. Allergy Clin. Immunol. 2020, 145, 430–433. [Google Scholar] [CrossRef]
- Wedes, S.H.; Wu, W.; Comhair, S.A.A.; McDowell, K.M.; DiDonato, J.A.; Erzurum, S.C.; Hazen, S.L. Urinary bromotyrosine measures asthma control and predicts asthma exacerbations in children. J. Pediatr. 2011, 159, 248–255. [Google Scholar] [CrossRef]
- Rabinovitch, N. Urinary leukotriene E4 as a biomarker of exposure, susceptibility and risk in asthma. Immunol. Allergy Clin. North Am. 2012, 32, 433–445. [Google Scholar] [CrossRef]
- Kolmert, J.; Gómez, C.; Balgoma, D.; Sjödin, M.; Bood, J.; Konradsen, J.R.; Ericsson, M.; Thörngren, J.-O.; James, A.; Mikus, M.; et al. Urinary leukotriene E4 and prostaglandin D2 metabolites increase in adult and childhood severe asthma characterized by type 2 inflammation. A clinical observational study. Am. J. Respir. Crit. Care Med. 2021, 203, 37–53. [Google Scholar] [CrossRef]
- Little, F.F.; Delgado, D.M.; Wexler, P.J.; Oppenheim, F.G.; Mitchell, P.; Feldman, J.A.; Walt, D.R.; Peng, R.D.; Matsui, E.C. Salivary inflammatory mediator profiling and correlation to clinical disease markers in asthma. PLoS ONE 2014, 9, e84449. [Google Scholar] [CrossRef]
- Licari, A.; Castagnoli, R.; Brambilla, I.; Marseglia, A.; Tosca, M.A.; Marseglia, G.L.; Ciprandi, G. Asthma endotyping and biomarkers in childhood asthma. Pediatr. Allergy Immunol. Pulmonol. 2018, 31, 44–55. [Google Scholar] [CrossRef]
- Loutsios, C.; Farahi, N.; Porter, L.; Lok, L.S.; Peters, A.M.; Condliffe, A.M.; Chilvers, E.R. Biomarkers of eosinophilic inflammation in asthma. Expert Rev. Respir. Med. 2014, 8, 143–150. [Google Scholar] [CrossRef]
- Wilson, N.M. Induced sputum in children: Feasibility, repeatability, and relation of findings to asthma severity. Thorax 2000, 55, 768–774. [Google Scholar] [CrossRef]
- Kerkhof, M.; Tran, T.N.; van den Berge, M.; Brusselle, G.G.; Gopalan, G.; Jones, R.C.M.; Kocks, J.W.H.; Menzies-Gow, A.; Nuevo, J.; Pavord, I.D.; et al. Association between blood eosinophil count and risk of readmission for patients with asthma: Historical cohort study. PLoS ONE 2018, 13, e0201143. [Google Scholar] [CrossRef]
- Denlinger, L.C.; Phillips, B.R.; Ramratnam, S.; Ross, K.; Bhakta, N.R.; Cardet, J.C.; Castro, M.; Peters, S.P.; Phipatanakul, W.; Aujla, S.; et al. Inflammatory and comorbid features of patients with severe asthma and frequent exacerbations. Am. J. Respir. Crit. Care Med. 2017, 195, 302–313. [Google Scholar] [CrossRef]
- Pavord, I.D.; Korn, S.; Howarth, P.; Bleecker, E.R.; Buhl, R.; Keene, O.N.; Ortega, H.; Chanez, P. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet 2012, 380, 651–659. [Google Scholar] [CrossRef]
- Kimura, H.; Konno, S.; Makita, H.; Taniguchi, N.; Shimizu, K.; Suzuki, M.; Kimura, H.; Goudarzi, H.; Nakamaru, Y.; Ono, J.; et al. Prospective predictors of exacerbation status in severe asthma over a 3-year follow-up. Clin. Exp. Allergy 2018, 48, 1137–1146. [Google Scholar] [CrossRef]
- Sterk, P.J.; Sinha, A. Emerging complexity in the biomarkers of exacerbation-prone asthma. Am. J. Respir. Crit. Care Med. 2020, 202, 915–917. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Mansur, A.H.; Brightling, C.E. Clinical utility of fractional exhaled nitric oxide in severe asthma management. Eur. Respir. J. 2020, 55, 1901633. [Google Scholar] [CrossRef]
- Visser, C.A.N.; Brand, P.L.P. Does a single measurement of exhaled nitric oxide predict asthma exacerbations? Arch. Dis. Child. 2011, 96, 781–782. [Google Scholar] [CrossRef]
- van Vliet, D.; Alonso, A.; Rijkers, G.; Heynens, J.; Rosias, P.; Muris, J.; Jöbsis, Q.; Dompeling, E. Prediction of asthma exacerbations in children by innovative exhaled inflammatory markers: Results of a longitudinal study. PLoS ONE 2015, 10, e0119434. [Google Scholar] [CrossRef]
- Stern, G.; de Jongste, J.; van der Valk, R.; Baraldi, E.; Carraro, S.; Thamrin, C.; Frey, U. Fluctuation phenotyping based on daily fraction of exhaled nitric oxide values in asthmatic children. J. Allergy Clin. Immunol. 2011, 128, 293–300. [Google Scholar] [CrossRef]
- Wang, K.; Verbakel, J.Y.; Oke, J.; Fleming-Nouri, A.; Brewin, J.; Roberts, N.; Harada, N.; Atsuta, R.; Takahashi, K.; Mori, K.; et al. Using fractional exhaled nitric oxide to guide step-down treatment decisions in patients with asthma: A systematic review and individual patient data meta-analysis. Eur. Respir. J. 2020, 55, 1902150. [Google Scholar] [CrossRef]
- Petsky, H.L.; Kew, K.M.; Chang, A.B. Exhaled nitric oxide levels to guide treatment for children with asthma. Cochrane Database Syst. Rev. 2016, 2016. [Google Scholar] [CrossRef]
- Peirsman, E.J.; Carvelli, T.J.; Hage, P.Y.; Hanssens, L.S.; Pattyn, L.; Raes, M.M.; Sauer, K.A.; Vermeulen, F.; Desager, K.N. Exhaled nitric oxide in childhood allergic asthma management: A randomised controlled trial: Exhaled nitric oxide in childhood allergic asthma. Pediatr. Pulmonol. 2014, 49, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Petsky, H.L.; Li, A.M.; Au, C.T.; Kynaston, J.A.; Turner, C.; Chang, A.B. Management based on exhaled nitric oxide levels adjusted for atopy reduces asthma exacerbations in children: A dual centre randomized controlled trial: Asthma management in children based on FeNO: RCT. Pediatr. Pulmonol. 2015, 50, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Buhl, R.; Korn, S.; Menzies-Gow, A.; Aubier, M.; Chapman, K.R.; Canonica, G.W.; Picado, C.; Donica, M.; Kuhlbusch, K.; Korom, S.; et al. Prospective, single-arm, longitudinal study of biomarkers in real-world patients with severe asthma. J. Allergy Clin. Immunol. 2020, 8, 2630–2639. [Google Scholar] [CrossRef] [PubMed]
- Konradsen, J.R.; Skantz, E.; Nordlund, B.; Lidegran, M.; James, A.; Ono, J.; Ohta, S.; Izuhara, K.; Dahlén, S.-E.; Alving, K.; et al. Predicting asthma morbidity in children using proposed markers of Th2-type inflammation. Pediatr. Allergy Immunol. 2015, 26, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Malinovschi, A.; Janson, C.; Borres, M.; Alving, K. Simultaneously increased fraction of exhaled nitric oxide levels and blood eosinophil counts relate to increased asthma morbidity. J. Allergy Clin. Immunol. 2016, 138, 1301–1308. [Google Scholar] [CrossRef]
- Ferraro, V.; Carraro, S.; Bozzetto, S.; Zanconato, S.; Baraldi, E. Exhaled biomarkers in childhood asthma: Old and new approaches. Asthma Res. Pract. 2018, 4, 9. [Google Scholar] [CrossRef]
- Bannier, M.A.G.E.; Rosias, P.P.R.; Jöbsis, Q.; Dompeling, E. Exhaled breath condensate in childhood asthma: A review and current perspective. Front. Pediatr. 2019, 7, 150. [Google Scholar] [CrossRef]
- Jevnikar, Z.; Östling, J.; Ax, E.; Calvén, J.; Thörn, K.; Israelsson, E.; Öberg, L.; Singhania, A.; Lau, L.C.K.; Wilson, S.J.; et al. Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation. J. Allergy Clin. Immunol. 2019, 143, 577–590. [Google Scholar] [CrossRef]
- Sabir, M.; Tan, Y.Y.; Aris, A.; Mani, A.R. The role of endogenous bromotyrosine in health and disease. Free Radic. Res. 2019, 53, 1019–1034. [Google Scholar] [CrossRef]
- Fleming, L. Asthma exacerbation prediction: Recent insights. Curr. Opin. Allergy Clin. Immunol. 2018, 18, 117–123. [Google Scholar] [CrossRef]
- Rabinovitch, N.; Reisdorph, N.; Silveira, L.; Gelfand, E.W. Urinary leukotriene E4 levels identify children with tobacco smoke exposure at risk for asthma exacerbation. J. Allergy Clin. Immunol. 2011, 128, 323–327. [Google Scholar] [CrossRef]
- Williamson, S.; Munro, C.; Pickler, R.; Grap, M.J.; Elswick, R.K. Comparison of biomarkers in blood and saliva in healthy adults. Nurs. Res. Pract. 2012, 2012, 1–4. [Google Scholar] [CrossRef]
- Zamora-Mendoza, B.N.; Espinosa-Tanguma, R.; Ramírez-Elías, M.G.; Cabrera-Alonso, R.; Montero-Moran, G.; Portales-Pérez, D.; Rosales-Romo, J.A.; Gonzalez, J.F.; Gonzalez, C. Surface-enhanced raman spectroscopy: A non invasive alternative procedure for early detection in childhood asthma biomarkers in saliva. Photodiagn. Photodyn. Ther. 2019, 27, 85–91. [Google Scholar] [CrossRef]
- Okazaki, S.; Murai, H.; Kidoguchi, S.; Nomura, E.; Itoh, N.; Hashimoto, N.; Hamada, T.; Kawakita, A.; Yasutomi, M.; Ohshima, Y. The biomarker salivary SP-D may indicate small airway inflammation and asthma exacerbation. J. Investig. Allergol. Clin. Immunol. 2017, 27, 305–312. [Google Scholar] [CrossRef]
- Emmanouil, P.; Loukides, S.; Kostikas, K.; Papatheodorou, G.; Papaporfyriou, A.; Hillas, G.; Vamvakaris, I.; Triggidou, R.; Katafigiotis, P.; Kokkini, A.; et al. Sputum and BAL clara cell secretory protein and surfactant protein D levels in asthma. Allergy 2015, 70, 711–714. [Google Scholar] [CrossRef]
- Poachanukoon, O.; Roytrakul, S.; Koontongkaew, S. A shotgun proteomic approach reveals novel potential salivary protein biomarkers for asthma. J. Asthma 2020, 1–13. [Google Scholar] [CrossRef]
- Morales, E. Genetics and gene-environment interactions in childhood and adult onset asthma. Front. Pediatr. 2019, 7, 14. [Google Scholar] [CrossRef]
- Ricci, G.; Astolfi, A.; Remondini, D.; Cipriani, F.; Formica, S.; Dondi, A.; Pession, A. Pooled genome-wide analysis to identify novel risk loci for pediatric allergic asthma. PLoS ONE 2011, 6, e16912. [Google Scholar] [CrossRef]
- Bønnelykke, K. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat. Genet. 2014, 46, 8. [Google Scholar] [CrossRef]
- Qi, C.; Xu, C.-J.; Koppelman, G.H. The role of epigenetics in the development of childhood asthma. Expert Rev. Clin. Immunol. 2019, 15, 1287–1302. [Google Scholar] [CrossRef]
- Li, X.; Christenson, S.A.; Modena, B.; Li, H.; Busse, W.W.; Castro, M.; Denlinger, L.C.; Erzurum, S.C.; Fahy, J.V.; Gaston, B.; et al. Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways. J. Allergy Clin. Immunol. 2020. [Google Scholar] [CrossRef]
- Das, S.; Miller, M.; Beppu, A.K.; Mueller, J.; McGeough, M.D.; Vuong, C.; Karta, M.R.; Rosenthal, P.; Chouiali, F.; Doherty, T.A.; et al. GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation. Proc. Natl. Acad. Sci. USA 2016, 113, 13132–13137. [Google Scholar] [CrossRef]
- Das, S. Chromosome 17q21 genes ORMDL3 and GSDMB in asthma and immune diseases. Adv. Immunol. 2017, 135, 1–52. [Google Scholar]
- Sordillo, J.E.; Kelly, R.; Bunyavanich, S.; McGeachie, M.; Qiu, W.; Croteau-Chonka, D.C.; Soto-Quiros, M.; Avila, L.; Celedón, J.C.; Brehm, J.M.; et al. Genome-wide expression profiles identify potential targets for gene-environment interactions in asthma severity. J. Allergy Clin. Immunol. 2015, 136, 885–892. [Google Scholar] [CrossRef]
- Murk, W.; Walsh, K.; Hsu, L.-I.; Zhao, L.; Bracken, M.B.; DeWan, A.T. Attempted replication of 50 reported asthma risk genes identifies a SNP in RAD50 as associated with childhood atopic asthma. Hum. Hered. 2011, 71, 97–105. [Google Scholar] [CrossRef]
- Li, X.; Howard, T.D.; Zheng, S.L.; Haselkorn, T.; Peters, S.P.; Meyers, D.A.; Bleecker, E.R. Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions. J. Allergy Clin. Immunol. 2010, 125, 328–335. [Google Scholar] [CrossRef]
- Grotenboer, N.S.; Ketelaar, M.E.; Koppelman, G.H.; Nawijn, M.C. Decoding asthma: Translating genetic variation in IL33 and IL1RL1 into disease pathophysiology. J. Allergy Clin. Immunol. 2013, 131, 856–865. [Google Scholar] [CrossRef]
- Ketelaar, M.E.; Portelli, M.A.; Dijk, F.N.; Shrine, N.; Faiz, A.; Vermeulen, C.J.; Xu, C.J.; Hankinson, J.; Bhaker, S.; Henry, A.P.; et al. Phenotypic and functional translation of IL33 genetics in asthma. J. Allergy Clin. Immunol. 2021, 147, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, S.E.; Balzar, S.; Ampleford, E.; Hawkins, G.A.; Busse, W.W.; Calhoun, W.J.; Castro, M.; Chung, K.F.; Erzurum, S.; Gaston, B.; et al. IL4Rα mutations are associated with asthma exacerbations and mast Cell/IgE expression. Am. J. Respir. Crit. Care Med. 2007, 175, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Huang, C.; Leng, D.; Sun, B.; Zhang, X.D. Transcriptome analysis of peripheral whole blood identifies crucial LncRNAs implicated in childhood asthma. BMC Med. Genom. 2020, 13, 136. [Google Scholar] [CrossRef] [PubMed]
- Forno, E.; Zhang, R.; Jiang, Y.; Kim, S.; Yan, Q.; Ren, Z.; Han, Y.-Y.; Boutaoui, N.; Rosser, F.; Weeks, D.E.; et al. Transcriptome-wide and differential expression network analyses of childhood asthma in nasal epithelium. J. Allergy Clin. Immunol. 2020, 146, 671–675. [Google Scholar] [CrossRef]
- Tantisira, K.G.; Silverman, E.S.; Mariani, T.J.; Xu, J.; Richter, B.G.; Klanderman, B.J.; Litonjua, A.A.; Lazarus, R.; Rosenwasser, L.J.; Fuhlbrigge, A.L.; et al. FCER2: A pharmacogenetic basis for severe exacerbations in children with asthma. J. Allergy Clin. Immunol. 2007, 120, 1285–1291. [Google Scholar] [CrossRef]
- Koster, E.S.; Maitland-van der Zee, A.-H.; Tavendale, R.; Mukhopadhyay, S.; Vijverberg, S.J.H.; Raaijmakers, J.A.M.; Palmer, C.N.A. FCER2 T2206C variant associated with chronic symptoms and exacerbations in steroid-treated asthmatic children: FCER2 T2206C variant associated with chronic symptoms and exacerbations. Allergy 2011, 66, 1546–1552. [Google Scholar] [CrossRef]
- Farzan, N.; Vijverberg, S.J.H.; Arets, H.G.; Raaijmakers, J.A.M.; Maitland-van der Zee, A.H. Pharmacogenomics of inhaled corticosteroids and leukotriene modifiers: A systematic review. Clin. Exp. Allergy 2017, 47, 271–293. [Google Scholar] [CrossRef]
- Lima, J.J.; Zhang, S.; Grant, A.; Shao, L.; Tantisira, K.G.; Allayee, H.; Wang, J.; Sylvester, J.; Holbrook, J.; Wise, R.; et al. Influence of leukotriene pathway polymorphisms on response to montelukast in asthma. Am. J. Respir. Crit. Care Med. 2006, 173, 379–385. [Google Scholar] [CrossRef]
- Telleria, J.J.; Blanco-Quiros, A.; Varillas, D.; Armentia, A.; Fernandez-Carvajal, I.; Jesus Alonso, M.; Diez, I. ALOX5 promoter genotype and response to montelukast in moderate persistent asthma. Respir. Med. 2008, 102, 857–861. [Google Scholar] [CrossRef]
- Turner, S.; Francis, B.; Vijverberg, S.; Pino-Yanes, M.; Maitland-van der Zee, A.H.; Basu, K.; Bignell, L.; Mukhopadhyay, S.; Tavendale, R.; Palmer, C.; et al. Childhood asthma exacerbations and the Arg16 Β2-receptor polymorphism: A meta-analysis stratified by treatment. J. Allergy Clin. Immunol. 2016, 138, 107–113. [Google Scholar] [CrossRef]
- Basu, K.; Palmer, C.N.A.; Tavendale, R.; Lipworth, B.J.; Mukhopadhyay, S. Adrenergic Β2-receptor genotype predisposes to exacerbations in steroid-treated asthmatic patients taking frequent albuterol or salmeterol. J. Allergy Clin. Immunol. 2009, 124, 1188–1194. [Google Scholar] [CrossRef]
- McGeachie, M.J.; Wu, A.C.; Tse, S.M.; Clemmer, G.L.; Sordillo, J.; Himes, B.E.; Lasky-Su, J.; Chase, R.P.; Martinez, F.D.; Weeke, P.; et al. CTNNA3 and SEMA3D: Promising loci for asthma exacerbation identified through multiple genome-wide association studies. J. Allergy Clin. Immunol. 2015, 136, 1503–1510. [Google Scholar] [CrossRef]
- Perin, P.; Potočnik, U. Polymorphisms in recent GWA identified asthma genes CA10, SGK493, and CTNNA3 are associated with disease severity and treatment response in childhood asthma. Immunogenetics 2014, 66, 143–151. [Google Scholar] [CrossRef]
- Ober, C.; Tan, Z.; Sun, Y.; Possick, J.D.; Pan, L.; Nicolae, R.; Radford, S.; Parry, R.R.; Heinzmann, A.; Deichmann, K.A.; et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N. Engl. J. Med. 2008, 358, 1682–1691. [Google Scholar] [CrossRef]
- Tang, H.; Fang, Z.; Sun, Y.; Li, B.; Shi, Z.; Chen, J.; Zhang, T.; Xiu, Q. YKL-40 in asthmatic patients, and its correlations with exacerbation, eosinophils and immunoglobulin, E. Eur. Respir. J. 2010, 35, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Guerra, S.; Melén, E.; Sunyer, J.; Xu, C.-J.; Lavi, I.; Benet, M.; Bustamante, M.; Carsin, A.-E.; Dobaño, C.; Guxens, M.; et al. Genetic and epigenetic regulation of YKL-40 in childhood. J. Allergy Clin. Immunol. 2018, 141, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Bochkov, Y.A.; Watters, K.; Ashraf, S.; Griggs, T.F.; Devries, M.K.; Jackson, D.J.; Palmenberg, A.C.; Gern, J.E. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc. Natl. Acad. Sci. USA 2015, 112, 5485–5490. [Google Scholar] [CrossRef] [PubMed]
- Everman, J.L. Functional genomics of CDHR3 confirms its role in HRV-C infection and childhood asthma exacerbations. J Allergy Clin. Immunol. 2019, 144, 10. [Google Scholar] [CrossRef]
- Sharma, S.; Raby, B.A.; Hunninghake, G.M.; Soto-Quirós, M.; Avila, L.; Murphy, A.J.; Lasky-Su, J.; Klanderman, B.J.; Sylvia, J.S.; Weiss, S.T.; et al. Variants in TGFB1, dust mite exposure, and disease severity in children with asthma. Am. J. Respir. Crit. Care Med. 2009, 179, 356–362. [Google Scholar] [CrossRef]
- Du, R.; Litonjua, A.A.; Tantisira, K.G.; Lasky-Su, J.; Sunyaev, S.R.; Klanderman, B.J.; Celedón, J.C.; Avila, L.; Soto-Quiros, M.E.; Weiss, S.T. Genome-wide association study reveals class I MHC–restricted T cell–associated molecule gene (CRTAM) variants interact with vitamin D levels to affect asthma exacerbations. J. Allergy Clin. Immunol. 2012, 129, 368–373. [Google Scholar] [CrossRef]
- Poon, A.H.; Mahboub, B.; Hamid, Q. Vitamin D deficiency and severe asthma. Pharmacol. Ther. 2013, 140, 148–155. [Google Scholar] [CrossRef]
- Moffatt, M.F.; Phil, D.; Gut, I.G.; Strachan, D.P. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 2010, 11, 1211–1221. [Google Scholar] [CrossRef]
- Moffatt, M.F.; Kabesch, M.; Liang, L.; Dixon, A.L.; Strachan, D.; Heath, S.; Depner, M.; von Berg, A.; Bufe, A.; Rietschel, E.; et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 2007, 448, 470–473. [Google Scholar] [CrossRef]
- Cantero-Recasens, G.; Fandos, C.; Rubio-Moscardo, F.; Valverde, M.A.; Vicente, R. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum. Mol. Genet. 2010, 19, 111–121. [Google Scholar] [CrossRef]
- Tulah, A.S.; Holloway, J.W.; Sayers, I. Defining the contribution of SNPs identified in asthma GWAS to clinical variables in asthmatic children. BMC Med. Genom. 2013, 14, 100. [Google Scholar] [CrossRef]
- Çalışkan, M.; Bochkov, Y.A.; Kreiner-Møller, E.; Bønnelykke, K.; Stein, M.M.; Du, G.; Bisgaard, H.; Jackson, D.J.; Gern, J.E.; Lemanske, R.F.; et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N. Engl. J. Med. 2013, 368, 1398–1407. [Google Scholar] [CrossRef]
- Worgall, T.S. Sphingolipids, ORMDL3 and asthma: What is the evidence? Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 99–103. [Google Scholar] [CrossRef]
- Schmiedel, B.J.; Seumois, G.; Samaniego-Castruita, D.; Cayford, J.; Schulten, V.; Chavez, L.; Ay, F.; Sette, A.; Peters, B.; Vijayanand, P. 17q21 asthma-risk variants switch CTCF binding and regulate IL-2 production by T cells. Nat. Commun. 2016, 7, 13426. [Google Scholar] [CrossRef]
- Lee, G.R.; Fields, P.E.; Iv, T.J.G.; Flavell, R.A. Regulation of the Th2 cytokine locus by a locus control region. Immunity 2003, 19, 145–153. [Google Scholar] [CrossRef]
- Potaczek, D.P.; Kabesch, M. Current concepts of IgE regulation and impact of genetic determinants. Clin. Exp. Allergy 2012, 42, 852–871. [Google Scholar] [CrossRef]
- Borish, L.; Chipps, B.; Deniz, Y.; Gujrathi, S.; Zheng, B.; Dolan, C.M. Total serum IgE levels in a large cohort of patients with severe or difficult-to-treat asthma. Ann. Allergy Asthma Immunol. 2005, 95, 247–253. [Google Scholar] [CrossRef]
- Michel, S.; Busato, F.; Genuneit, J.; Pekkanen, J.; Dalphin, J.-C.; Riedler, J.; Mazaleyrat, N.; Weber, J.; Karvonen, A.M.; Hirvonen, M.-R.; et al. Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy 2013, 68, 355–364. [Google Scholar] [CrossRef]
- Schieck, M.; Sharma, V.; Michel, S.; Toncheva, A.A.; Worth, L.; Potaczek, D.P.; Genuneit, J.; Kretschmer, A.; Depner, M.; Dalphin, J.-C.; et al. A polymorphism in the TH 2 locus control region is associated with changes in DNA methylation and gene expression. Allergy 2014, 69, 1171–1180. [Google Scholar] [CrossRef]
- Weidinger, S.; Willis-Owen, S.A.G.; Kamatani, Y.; Baurecht, H.; Morar, N.; Liang, L.; Edser, P.; Street, T.; Rodriguez, E.; O’Regan, G.M.; et al. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Hum. Mol. Genet. 2013, 22, 4841–4856. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Hu, H.; Jin, Y.; Xue, M. Polymorphisms of RAD50, IL33 and IL1RL1 are associated with atopic asthma in Chinese population: Association of RAD50, IL33 and IL1RL1 with asthma in China. Tissue Antigens 2015, 86, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Ren, Z.; Deng, Y.; Wang, Y.; Zhou, H. Lack of association between RAD50-IL13 polymorphisms and pediatric asthma susceptibility in Northeastern Han Chinese. J. Asthma 2016, 53, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.C.L.; Lam, C.W.K.; Tam, L.-S.; Wong, C.K. IL33: Roles in allergic inflammation and therapeutic perspectives. Front. Immunol. 2019, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Massoud, A.H.; Charbonnier, L.-M.; Lopez, D.; Pellegrini, M.; Phipatanakul, W.; Chatila, T.A. An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells. Nat. Med. 2016, 22, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Y.; Zeng, X.C.; Li, J.; Du, X.Y. Role of interleukin-4 genetic polymorphisms and environmental factors in the risk of asthma in children. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Gould, H.J.; Sutton, B.J. IgE in allergy and asthma today. Nat. Rev. Immunol. 2008, 8, 205–217. [Google Scholar] [CrossRef]
- Sharma, V.; Michel, S.; Gaertner, V.; Franke, A.; Vogelberg, C.; von Berg, A.; Bufe, A.; Heinzmann, A.; Laub, O.; Rietschel, E.; et al. A role of FCER1A and FCER2 polymorphisms in IgE regulation. Allergy 2014, 69, 231–236. [Google Scholar] [CrossRef]
- Akdis, C.A.; Blesken, T.; Akdis, M.; Alkan, S.S.; Heusser, C.H.; Blaser, K. Glucocorticoids inhibit human antigen-specific and enhance total IgE and IgG4 production due to differential effects on T and B cells in vitro. Eur. J. Immunol. 1997, 27, 2351–2357. [Google Scholar] [CrossRef]
- Fischer, A.; König, W. Regulation of CD23 expression, soluble cd23 release and immunoglobulin synthesis of peripheral blood lymphocytes by glucocorticoids. Immunology 1990, 71, 473–479. [Google Scholar]
- Palmer, C.N.A.; Lipworth, B.J.; Lee, S.; Ismail, T.; Macgregor, D.F.; Mukhopadhyay, S. Arginine-16 2 adrenoceptor genotype predisposes to exacerbations in young asthmatics taking regular salmeterol. Thorax 2006, 61, 940–944. [Google Scholar] [CrossRef]
- James, A.L.; Wenzel, S. Clinical relevance of airway remodelling in airway diseases. Eur. Respir. J. 2007, 30, 134–155. [Google Scholar] [CrossRef]
- Lee, C.G.; Da Silva, C.A.; Lee, J.-Y.; Hartl, D.; Elias, J.A. Chitin regulation of immune responses: An old molecule with new roles. Curr. Opin. Immunol. 2008, 20, 684–689. [Google Scholar] [CrossRef]
- Bierbaum, S.; Nickel, R.; Koch, A.; Lau, S.; Deichmann, K.A.; Wahn, U.; Superti-Furga, A.; Heinzmann, A. Polymorphisms and haplotypes of acid mammalian chitinase are associated with bronchial asthma. Am. J. Respir. Crit. Care Med. 2005, 172, 1505–1509. [Google Scholar] [CrossRef]
- Wu, A.C.; Lasky-Su, J.; Rogers, C.A.; Klanderman, B.J.; Litonjua, A. Polymorphisms of chitinases are not associated with asthma. J. Allergy Clin. Immunol. 2010, 125, 754–757. [Google Scholar] [CrossRef]
- Leckband, D.; Sivasankar, S. Cadherin recognition and adhesion. Curr. Opin. Cell Biol. 2012, 24, 620–627. [Google Scholar] [CrossRef]
- Bizzintino, J.; Lee, W.-M.; Laing, I.A.; Vang, F.; Pappas, T.; Zhang, G.; Martin, A.C.; Khoo, S.-K.; Cox, D.W.; Geelhoed, G.C.; et al. Association between human rhinovirus C and severity of acute asthma in children. Eur. Respir. J. 2011, 37, 1037–1042. [Google Scholar] [CrossRef]
- Duvernelle, C.; Freund, V.; Frossard, N. Transforming growth factor-β and its role in asthma. Pulm. Pharmacol. Ther. 2003, 16, 181–196. [Google Scholar] [CrossRef]
- Patiño-Lopez, G.; Hevezi, P.; Lee, J.; Willhite, D.; Verge, G.M.; Lechner, S.M.; Ortiz-Navarrete, V.; Zlotnik, A. Human class-I restricted T cell associated molecule is highly expressed in the cerebellum and is a marker for activated NKT and CD8+ T lymphocytes. J. Neuroimmunol. 2006, 171, 145–155. [Google Scholar] [CrossRef]
- Midyat, L.; Gulen, F.; Karaca, E.; Ozkinay, F.; Tanac, R.; Demir, E.; Cogulu, O.; Aslan, A.; Ozkinay, C.; Onay, H.; et al. MicroRNA expression profiling in children with different asthma phenotypes: MicroRNA expression in different asthma phenotypes. Pediatr. Pulmonol. 2016, 51, 582–587. [Google Scholar] [CrossRef]
- Tian, M.; Zhou, Y.; Jia, H.; Zhu, X.; Cui, Y. The clinical significance of changes in the expression levels of MicroRNA-1 and inflammatory factors in the peripheral blood of children with acute-stage asthma. BioMed Res. Int. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Kho, A.T.; McGeachie, M.J.; Moore, K.G.; Sylvia, J.M.; Weiss, S.T.; Tantisira, K.G. Circulating MicroRNAs and prediction of asthma exacerbation in childhood asthma. Respir. Res. 2018, 19, 128. [Google Scholar] [CrossRef]
- Yan, Q. A Genome-wide association study of severe asthma exacerbations in latino children and adolescents. Eur. Respir. J. 2021, 57. [Google Scholar] [CrossRef]
- Zhang, P.; Cao, L.; Zhou, R.; Yang, X.; Wu, M. The LncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat. Commun. 2019, 10, 1495. [Google Scholar] [CrossRef]
- Li, X.; Ye, S.; Lu, Y. Long non-coding RNA NEAT1 overexpression associates with increased exacerbation risk, severity, and inflammation, as well as decreased lung function through the interaction with MicroRNA-124 in asthma. J. Clin. Lab. Anal. 2020, 34, e23023. [Google Scholar] [CrossRef]
- Pardue Jones, B.; Fleming, G.M.; Otillio, J.K.; Asokan, I.; Arnold, D.H. Pediatric acute asthma exacerbations: Evaluation and management from emergency department to intensive care unit. J. Asthma 2016, 53, 607–617. [Google Scholar] [CrossRef]
- Herrera-Luis, E.; Hernandez-Pacheco, N.; Vijverberg, S.J.; Flores, C.; Pino-Yanes, M. Role of genomics in asthma exacerbations. Curr. Opin. Pulm. Med. 2019, 25, 101–112. [Google Scholar] [CrossRef]
Biomarkers | Exacerbation Prediction | Other Purposed Uses in Literature | |||
---|---|---|---|---|---|
Population Age | Quantitative Cut-Offs/ Qualitative Panels | OR/RR | [Ref.] | ||
B-Eos | 5–12 years | Higher log 10 eosinophil count | [18] |
| |
6–17 years | ≥300/mmc | OR 1.35 | [19] | ||
≥6 years | ≥300/mmc | OR 1.60 with Eos 300-500/mmc; OR 2.19 with Eos > 500/mmc | [20] | ||
5–11 years | ≥300/mmc | OR 1.52 | [21] | ||
≥12 years | ≥400/mmc | OR 1.48 | [22] | ||
5–11 years ≥12 years | ≥150/mmc ≥300/mmc | OR 2.39 OR 2.04 | [23] | ||
>12 years | ≥450/mmc | OR 1.33–1.84 | [24] | ||
FeNO | 6–18 years | >49 ppb | [25] |
| |
6–18 years | >22.9 ppb | [26] | |||
12–56 years | ≥48 ppb | RR 2.4; compared with FeNO < 20ppb | [27] | ||
6-12 years >12 years | 20–35 ppb (intermediate), > 35 ppb (high) 25–50 ppb (intermediate), >50 ppb (high) | OR 1.44 with intermediate values, OR 2.32 with high values | [20] | ||
VOCs | 6–16 years | 7 VOCs profile | [28] |
| |
6–18 years | 15 VOCs profile | [29] | |||
6–17 years | 7 VOCs profile | [30] | |||
EBC 8-isoprostane | 6–18 years | Higher: mean value 114 pg/mL in ≥4 exacerbation/y vs. 52 pg/mL in 1–3 exacerbation/y) | [31] |
| |
IL5 | 6–16 years | [32] | |||
IL6 | 6–17 years | (Risk increased of 24% for each quartile increase in baseline IL-6 level (interquartile range, 0.39–1.65 pg/mL)) | [33] |
| |
≥12 years | ≥3.1 pg/mL | OR 1.24 | [34] | ||
Urinary metabolites Urinary Bromotyrosine | 6–21 years | (higher: range 0.02–0.68 with increased risk vs. 0.00–0.18 with lower risk) | OR 4 | [35] |
|
Urinary leukotriene E4 | 6–15 years | >106 pg/mg | [36] | ||
Isoprostane | >10 years | (higher) | [37] | ||
Salivary metabolites | 7–16 years | - | [38] |
|
Gene | Gene Product | Association | References |
---|---|---|---|
GSDMB | Gasdermin B | Asthma exacerbation GSDMB expression Asthma susceptibility Asthma severity Antiviral pathways | [71,73,74,75,76] |
RAD50 | DNA repair enzyme | Asthma exacerbation Asthma susceptibility Th2 inflammation | [71,77,78] |
IL-33, IL1RL1 | IL-33/ILRL1 (ST2) pathway | Asthma exacerbation Eosinophilic asthma | [71,79,80] |
IL4RA | Interleukin-4 receptor | Asthma exacerbation Elevated mast cells, IgE levels | [81] |
FLJ22447 | Long non-coding RNA | Severe asthma exacerbation | [82,83] |
FCER2 | Low-affinity IgE receptor FcεRII(CD23) | Asthma exacerbation Poor ICS response | [84,85,86] |
ALOX5, LTAH4, LTC4S | Leukotrienes pathway | Asthma exacerbation in montelukast-treated | [86,87,88] |
ADRB2 | Adrenergic β2-receptor | Asthma exacerbation in SABA or LABA-treated | [89,90] |
CTNNA3, SEMA3D | Cathenin alpha 3 Semaphorin class 3 D | Asthma exacerbation Airway remodelling | [91,92] |
CHIT1, CHI3L1, CHIA | CHIT1, YKL-40, AMCase | Asthma exacerbation in adults Asthma susceptibility | [93,94,95] |
CDHR3 | Cadherin-related family member 3 | Asthma exacerbation CDHR3 expression HRV-C infection | [71,96,97] |
TGF-β | Transforming growth factor-β | Asthma exacerbation modified by HDM exposure Airway hyperresponsiveness | [98] |
IL-9 | Interleukine-9 | Asthma exacerbation Associated with HDM exposure | [76] |
CRTAM | Class-I MHC-restricted T cell associated molecule | Asthma exacerbation in low vitamin D levels | [99,100] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
di Palmo, E.; Cantarelli, E.; Catelli, A.; Ricci, G.; Gallucci, M.; Miniaci, A.; Pession, A. The Predictive Role of Biomarkers and Genetics in Childhood Asthma Exacerbations. Int. J. Mol. Sci. 2021, 22, 4651. https://doi.org/10.3390/ijms22094651
di Palmo E, Cantarelli E, Catelli A, Ricci G, Gallucci M, Miniaci A, Pession A. The Predictive Role of Biomarkers and Genetics in Childhood Asthma Exacerbations. International Journal of Molecular Sciences. 2021; 22(9):4651. https://doi.org/10.3390/ijms22094651
Chicago/Turabian Styledi Palmo, Emanuela, Erika Cantarelli, Arianna Catelli, Giampaolo Ricci, Marcella Gallucci, Angela Miniaci, and Andrea Pession. 2021. "The Predictive Role of Biomarkers and Genetics in Childhood Asthma Exacerbations" International Journal of Molecular Sciences 22, no. 9: 4651. https://doi.org/10.3390/ijms22094651
APA Styledi Palmo, E., Cantarelli, E., Catelli, A., Ricci, G., Gallucci, M., Miniaci, A., & Pession, A. (2021). The Predictive Role of Biomarkers and Genetics in Childhood Asthma Exacerbations. International Journal of Molecular Sciences, 22(9), 4651. https://doi.org/10.3390/ijms22094651