NFAT5-Mediated Signalling Pathways in Viral Infection and Cardiovascular Dysfunction
Abstract
:1. Introduction
2. Signal Pathways in Hyperosmotic and Non-Hypertonic Conditions
3. miRNA/lncRNA-Regulated NFAT5 Expression and Signalling Pathways
4. Epigenetic Regulation of NFAT5
4.1. NFAT5 and DNA Methylation
4.2. NFAT5 and Histone Modification
5. NFAT5-Associated Activities and Signalling Pathways during Viral Infection
6. NFAT5 Signalling in Cardiovascular Dysfunction
6.1. Cardiomyocyte Cytotoxicity
6.2. Myocardial Infarction
6.3. Arterial Wall Stress
6.4. Atherosclerosis
7. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Lopez, P.; Seipelt, C.G.; Merkling, P.; Sturz, L.; Alvarez, J.; Dolle, A.; Zeidler, M.D.; Cerdan, S.; Ballesteros, P. N-2-(azol-1(2)-yl)ethyliminodiacetic acids: A novel series of Gd(III) chelators as T2 relaxation agents for magnetic resonance imaging. Bioorg. Med. Chem. 1999, 7, 517–527. [Google Scholar] [PubMed]
- Woo, S.K.; Kwon, H.M. Adaptation of kidney medulla to hypertonicity: Role of the transcription factor TonEBP. Int. Rev. Cytol. 2002, 215, 189–202. [Google Scholar]
- Aramburu, J.; Drews-Elger, K.; Estrada-Gelonch, A.; Minguillon, J.; Morancho, B.; Santiago, V.; Lopez-Rodriguez, C. Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. Biochem. Pharmacol. 2006, 72, 1597–1604. [Google Scholar] [CrossRef]
- Stroud, J.C.; Lopez-Rodriguez, C.; Rao, A.; Chen, L. Structure of a TonEBP-DNA complex reveals DNA encircled by a transcription factor. Nat. Struct. Biol. 2002, 9, 90–94. [Google Scholar]
- Miyakawa, H.; Woo, S.K.; Dahl, S.C.; Handler, J.S.; Kwon, H.M. Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proc. Natl. Acad. Sci. USA 1999, 96, 2538–2542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, E.H.; Guo, J.J.; Huang, A.L.; Liu, H.; Hu, C.D.; Chung, S.S.; Ko, B.C. Regulation of nucleocytoplasmic trafficking of transcription factor OREBP/TonEBP/NFAT5. J. Biol. Chem. 2006, 281, 23870–23879. [Google Scholar] [PubMed] [Green Version]
- Lee, S.D.; Colla, E.; Sheen, M.R.; Na, K.Y.; Kwon, H.M. Multiple domains of TonEBP cooperate to stimulate transcription in response to hypertonicity. J. Biol. Chem. 2003, 278, 47571–47577. [Google Scholar] [PubMed] [Green Version]
- Graef, I.A.; Gastier, J.M.; Francke, U.; Crabtree, G.R. Evolutionary relationships among Rel domains indicate functional diversification by recombination. Proc. Natl. Acad. Sci. USA 2001, 98, 5740–5745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, A.M.; Pegram, M.D.; Slamon, D.J.; Landaw, E.M. A model-based approach for assessing in vivo combination therapy interactions. Proc. Natl. Acad. Sci. USA 1999, 96, 13023–13028. [Google Scholar] [PubMed] [Green Version]
- Irarrazabal, C.E.; Williams, C.K.; Ely, M.A.; Birrer, M.J.; Garcia-Perez, A.; Burg, M.B.; Ferraris, J.D. Activator protein-1 contributes to high NaCl-induced increase in tonicity-responsive enhancer/osmotic response element-binding protein transactivating activity. J. Biol. Chem. 2008, 283, 2554–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherer, C.; Pfisterer, L.; Wagner, A.H.; Hodebeck, M.; Cattaruzza, M.; Hecker, M.; Korff, T. Arterial wall stress controls NFAT5 activity in vascular smooth muscle cells. J. Am. Heart Assoc. 2014, 3, e000626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burg, M.B.; Ferraris, J.D.; Dmitrieva, N.I. Cellular response to hyperosmotic stresses. Physiol. Rev. 2007, 87, 1441–1474. [Google Scholar] [CrossRef] [PubMed]
- Dobierzewska, A.; Palominos, M.; Irarrazabal, C.E.; Sanchez, M.; Lozano, M.; Perez-Sepulveda, A.; Monteiro, L.J.; Burmeister, Y.; Figueroa-Diesel, H.; Rice, G.E.; et al. NFAT5 Is Up-Regulated by Hypoxia: Possible Implications in Preeclampsia and Intrauterine Growth Restriction. Biol. Reprod. 2015, 93, 14. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X. How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5? World J. Nephrol. 2016, 5, 20–32. [Google Scholar] [CrossRef]
- Maouyo, D.; Kim, J.Y.; Lee, S.D.; Wu, Y.; Woo, S.K.; Kwon, H.M. Mouse TonEBP-NFAT5: Expression in early development and alternative splicing. Am. J. Physiol. Ren. Physiol. 2002, 282, F802–F809. [Google Scholar] [CrossRef]
- Trama, J.; Lu, Q.; Hawley, R.G.; Ho, S.N. The NFAT-related protein NFATL1 (TonEBP/NFAT5) is induced upon T cell activation in a calcineurin-dependent manner. J. Immunol. 2000, 165, 4884–4894. [Google Scholar] [CrossRef] [Green Version]
- GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef]
- GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020, 369, 1318–1330. [Google Scholar] [CrossRef]
- Lee, H.H.; An, S.M.; Ye, B.J.; Lee, J.H.; Yoo, E.J.; Jeong, G.W.; Kang, H.J.; Alfadda, A.A.; Lim, S.W.; Park, J.; et al. TonEBP/NFAT5 promotes obesity and insulin resistance by epigenetic suppression of white adipose tissue beiging. Nat. Commun. 2019, 10, 3536. [Google Scholar] [CrossRef]
- Aramburu, J.; Lopez-Rodriguez, C. Regulation of Inflammatory Functions of Macrophages and T Lymphocytes by NFAT5. Front. Immunol. 2019, 10, 535. [Google Scholar] [CrossRef]
- Lee, N.; Kim, D.; Kim, W.U. Role of NFAT5 in the Immune System and Pathogenesis of Autoimmune Diseases. Front. Immunol. 2019, 10, 270. [Google Scholar] [CrossRef]
- Zhou, X.; Gallazzini, M.; Burg, M.B.; Ferraris, J.D. Contribution of SHP-1 protein tyrosine phosphatase to osmotic regulation of the transcription factor TonEBP/OREBP. Proc. Natl. Acad. Sci. USA 2010, 107, 7072–7077. [Google Scholar] [CrossRef] [Green Version]
- Irarrazabal, C.E.; Gallazzini, M.; Schnetz, M.P.; Kunin, M.; Simons, B.L.; Williams, C.K.; Burg, M.B.; Ferraris, J.D. Phospholipase C-gamma1 is involved in signaling the activation by high NaCl of the osmoprotective transcription factor TonEBP/OREBP. Proc. Natl. Acad. Sci. USA 2010, 107, 906–911. [Google Scholar] [CrossRef] [Green Version]
- Gallazzini, M.; Yu, M.J.; Gunaratne, R.; Burg, M.B.; Ferraris, J.D. c-Abl mediates high NaCl-induced phosphorylation and activation of the transcription factor TonEBP/OREBP. FASEB J. 2010, 24, 4325–4335. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Wong, C.C.; Tong, E.H.; Chung, S.S.; Yates, J.R., 3rd; Yin, Y.; Ko, B.C. Phosphorylation by casein kinase 1 regulates tonicity-induced osmotic response element-binding protein/tonicity enhancer-binding protein nucleocytoplasmic trafficking. J. Biol. Chem. 2008, 283, 17624–17634. [Google Scholar] [CrossRef] [Green Version]
- Irarrazabal, C.E.; Liu, J.C.; Burg, M.B.; Ferraris, J.D. ATM, a DNA damage-inducible kinase, contributes to activation by high NaCl of the transcription factor TonEBP/OREBP. Proc. Natl. Acad. Sci. USA 2004, 101, 8809–8814. [Google Scholar] [CrossRef] [Green Version]
- Burg, M.B.; Kwon, E.D.; Kultz, D. Regulation of gene expression by hypertonicity. Annu. Rev. Physiol. 1997, 59, 437–455. [Google Scholar] [CrossRef]
- Buxade, M.; Lunazzi, G.; Minguillon, J.; Iborra, S.; Berga-Bolanos, R.; Del Val, M.; Aramburu, J.; Lopez-Rodriguez, C. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. J. Exp. Med. 2012, 209, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.Y.; Lee, H.H.; Lee, J.H.; Ye, B.J.; Yoo, E.J.; Kang, H.J.; Jung, G.W.; An, S.M.; Lee-Kwon, W.; Chiong, M.; et al. TonEBP suppresses IL-10-mediated immunomodulation. Sci. Rep. 2016, 6, 25726. [Google Scholar] [CrossRef] [Green Version]
- Kuper, C.; Beck, F.X.; Neuhofer, W. NFAT5 contributes to osmolality-induced MCP-1 expression in mesothelial cells. Mediat. Inflamm. 2012, 2012, 513015. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, T.; Oshiro, T.; Urita, T.; Yoshida, Y.; Ooshiro, M.; Okazumi, S.; Katoh, R.; Sasai, D.; Hiruta, N. Sporadic gastric carcinoid tumor successfully treated by two-stage laparoscopic surgery: A case report. World J. Gastrointest. Surg. 2010, 2, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Kino, T.; Segars, J.H.; Chrousos, G.P. The Guanine Nucleotide Exchange Factor Brx: A Link between Osmotic Stress, Inflammation and Organ Physiology and Pathophysiology. Expert Rev. Endocrinol. Metab. 2010, 5, 603–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kino, T.; Takatori, H.; Manoli, I.; Wang, Y.; Tiulpakov, A.; Blackman, M.R.; Su, Y.A.; Chrousos, G.P.; DeCherney, A.H.; Segars, J.H. Brx mediates the response of lymphocytes to osmotic stress through the activation of NFAT5. Sci. Signal. 2009, 2, ra5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelkar, N.; Standen, C.L.; Davis, R.J. Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol. Cell Biol. 2005, 25, 2733–2743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Kim, M.; Im, Y.S.; Choi, W.; Byeon, S.H.; Lee, H.K. NFAT5 induction and its role in hyperosmolar stressed human limbal epithelial cells. Invest. Ophthalmol. Vis. Sci. 2008, 49, 1827–1835. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, C.; Antos, C.L.; Shelton, J.M.; Richardson, J.A.; Lin, F.; Novobrantseva, T.I.; Bronson, R.T.; Igarashi, P.; Rao, A.; Olson, E.N. Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. Proc. Natl. Acad. Sci. USA 2004, 101, 2392–2397. [Google Scholar] [CrossRef] [Green Version]
- Tanos, T.; Marinissen, M.J.; Leskow, F.C.; Hochbaum, D.; Martinetto, H.; Gutkind, J.S.; Coso, O.A. Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP-1 response to UV light. J. Biol. Chem. 2005, 280, 18842–18852. [Google Scholar] [CrossRef] [Green Version]
- Favale, N.O.; Casali, C.I.; Lepera, L.G.; Pescio, L.G.; Fernandez-Tome, M.C. Hypertonic induction of COX2 expression requires TonEBP/NFAT5 in renal epithelial cells. Biochem. Biophys. Res. Commun. 2009, 381, 301–305. [Google Scholar] [CrossRef]
- Ko, B.C.; Lam, A.K.; Kapus, A.; Fan, L.; Chung, S.K.; Chung, S.S. Fyn and p38 signaling are both required for maximal hypertonic activation of the osmotic response element-binding protein/tonicity-responsive enhancer-binding protein (OREBP/TonEBP). J. Biol. Chem. 2002, 277, 46085–46092. [Google Scholar] [CrossRef] [Green Version]
- Ortells, M.C.; Morancho, B.; Drews-Elger, K.; Viollet, B.; Laderoute, K.R.; Lopez-Rodriguez, C.; Aramburu, J. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Res. 2012, 40, 4368–4384. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ferraris, J.D.; Klein, J.D.; Sands, J.M.; Burg, M.B.; Zhou, X. PKC-alpha contributes to high NaCl-induced activation of NFAT5 (TonEBP/OREBP) through MAPK ERK1/2. Am. J. Physiol. Renal Physiol. 2015, 308, F140–F148. [Google Scholar] [CrossRef] [Green Version]
- Gallazzini, M.; Heussler, G.E.; Kunin, M.; Izumi, Y.; Burg, M.B.; Ferraris, J.D. High NaCl-induced activation of CDK5 increases phosphorylation of the osmoprotective transcription factor TonEBP/OREBP at threonine 135, which contributes to its rapid nuclear localization. Mol. Biol. Cell 2011, 22, 703–714. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, H.; Burg, M.B.; Ferraris, J.D. Inhibitory phosphorylation of GSK-3beta by AKT, PKA, and PI3K contributes to high NaCl-induced activation of the transcription factor NFAT5 (TonEBP/OREBP). Am. J. Physiol. Renal Physiol. 2013, 304, F908–F917. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Zhang, X.; Xue, R.; Yang, H.; Zhou, Y.; Kong, X.; Zhao, P.; Li, J.; Yang, J.; Zhu, Y.; et al. AMPK potentiates hypertonicity-induced apoptosis by suppressing NFkappaB/COX-2 in medullary interstitial cells. J. Am. Soc. Nephrol. 2011, 22, 1897–1911. [Google Scholar] [CrossRef]
- Aramburu, J.; Lopez-Rodriguez, C. Brx shines a light on the route from hyperosmolarity to NFAT5. Sci. Signal 2009, 2, pe20. [Google Scholar] [CrossRef]
- Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell. Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef]
- Yao, R.W.; Wang, Y.; Chen, L.L. Cellular functions of long noncoding RNAs. Nat. Cell. Biol. 2019, 21, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Liu, Y.; Liu, M.; Wei, J.; Zhang, Y.; Hou, J.; Huang, W.; Wang, T.; Li, X.; He, Y.; et al. Sfmbt2 10th intron-hosted miR-466(a/e)-3p are important epigenetic regulators of Nfat5 signaling, osmoregulation and urine concentration in mice. Biochim. Biophys. Acta 2014, 1839, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Xin, Y.; Cai, H.; Lu, T.; Zhang, Y.; Yang, Y.; Cui, Y. miR-20b Inhibits T Cell Proliferation and Activation via NFAT Signaling Pathway in Thymoma-Associated Myasthenia Gravis. Biomed. Res. Int. 2016, 2016, 9595718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Liu, H.; Wang, T.; Zhang, T.; Kuang, J.; Luo, Y.; Chung, S.S.; Yuan, L.; Yang, J.Y. Tonicity-responsive microRNAs contribute to the maximal induction of osmoregulatory transcription factor OREBP in response to high-NaCl hypertonicity. Nucleic Acids Res. 2011, 39, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.W.; Zhang, Y.; Li, S.; Shi, Z.Y.; Zhao, J.; He, Q.L. LncRNA TTN-AS1 promotes the progression of oral squamous cell carcinoma via miR-411-3p/NFAT5 axis. Cancer Cell. Int. 2020, 20, 415. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Niu, H.; Ma, Y.; Qu, B.; He, M.; Yu, K.; Wang, E.; Zhang, L.; Gu, J.; Liu, G. LncRNA CCAT1 Protects Astrocytes Against OGD/R-Induced Damage by Targeting the miR-218/NFAT5-Signaling Axis. Cell. Mol. Neurobiol. 2020, 40, 1383–1393. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.Q.; Liu, H.; Sun, H.L.; Xiang, J.B.; Wang, X.X.; Jiang, C.X.; Ma, L.; Cao, Z.G. MiR-361-3p/Nfat5 Signaling Axis Controls Cementoblast Differentiation. J. Dent. Res. 2019, 98, 1131–1139. [Google Scholar] [PubMed]
- Tao, H.; Xiong, Q.; Ji, Z.; Zhang, F.; Liu, Y.; Chen, M. NFAT5 is Regulated by p53/miR-27a Signal Axis and Promotes Mouse Ovarian Granulosa Cells Proliferation. Int. J. Biol. Sci. 2019, 15, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Ge, G.; Yang, D.; Tan, Y.; Chen, Y.; Jiang, D.; Jiang, A.; Li, Q.; Liu, Y.; Zhong, Z.; Li, X.; et al. miR-10b-5p Regulates C2C12 Myoblasts Proliferation and Differentiation. Biosci. Biotechnol. Biochem. 2019, 83, 291–299. [Google Scholar] [PubMed]
- Li, W.; Kong, L.B.; Li, J.T.; Guo, Z.Y.; Xue, Q.; Yang, T.; Meng, Y.L.; Jin, B.Q.; Wen, W.H.; Yang, A.G. MiR-568 inhibits the activation and function of CD4(+) T cells and Treg cells by targeting NFAT5. Int. Immunol. 2014, 26, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Serr, I.; Scherm, M.G.; Zahm, A.M.; Schug, J.; Flynn, V.K.; Hippich, M.; Kalin, S.; Becker, M.; Achenbach, P.; Nikolaev, A.; et al. A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes. Sci. Transl. Med. 2018, 10, 422. [Google Scholar] [CrossRef] [Green Version]
- Kastle, M.; Bartel, S.; Geillinger-Kastle, K.; Irmler, M.; Beckers, J.; Ryffel, B.; Eickelberg, O.; Krauss-Etschmann, S. microRNA cluster 106a~363 is involved in T helper 17 cell differentiation. Immunology 2017, 152, 402–413. [Google Scholar] [CrossRef]
- Ying, W.; Tseng, A.; Chang, R.C.; Morin, A.; Brehm, T.; Triff, K.; Nair, V.; Zhuang, G.; Song, H.; Kanameni, S.; et al. MicroRNA-223 is a crucial mediator of PPARgamma-regulated alternative macrophage activation. J. Clin. Invest. 2015, 125, 4149–4159. [Google Scholar]
- Yang, W.; Li, Q.; Su, B.; Yu, M. MicroRNA-148b promotes proliferation of hair follicle cells by targeting NFAT5. Front. Agr. Sci. Eng. 2016, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Hinske, L.C.; Heyn, J.; Hubner, M.; Rink, J.; Hirschberger, S.; Kreth, S. Intronic miRNA-641 controls its host Gene’s pathway PI3K/AKT and this relationship is dysfunctional in glioblastoma multiforme. Biochem. Biophys. Res. Commun. 2017, 489, 477–483. [Google Scholar]
- Yu, H.; Zheng, J.; Liu, X.; Xue, Y.; Shen, S.; Zhao, L.; Li, Z.; Liu, Y. Transcription Factor NFAT5 Promotes Glioblastoma Cell-driven Angiogenesis via SBF2-AS1/miR-338-3p-Mediated EGFL7 Expression Change. Front. Mol. Neurosci. 2017, 10, 301. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Li, C.; Guo, T.; Chen, J.; Wang, H.T.; Wang, Y.T.; Xiao, Y.S.; Li, J.; Liu, P.; Liu, Z.S.; et al. Upregulation of DARS2 by HBV promotes hepatocarcinogenesis through the miR-30e-5p/MAPK/NFAT5 pathway. J. Exp. Clin. Cancer Res. 2017, 36, 148. [Google Scholar]
- Wang, R.; Li, Q.; He, Y.; Yang, Y.; Ma, Q.; Li, C. miR-29c-3p inhibits microglial NLRP3 inflammasome activation by targeting NFAT5 in Parkinson’s disease. Genes Cells 2020, 25, 364–374. [Google Scholar] [CrossRef]
- Chautard, E.; Ouedraogo, Z.G.; Biau, J.; Verrelle, P. Role of Akt in human malignant glioma: From oncogenesis to tumor aggressiveness. J. Neurooncol. 2014, 117, 205–215. [Google Scholar] [CrossRef]
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016, 17, 487–500. [Google Scholar] [CrossRef]
- Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 2019, 571, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Robertson, K.D. DNA methylation and human disease. Nat. Rev. Genet. 2005, 6, 597–610. [Google Scholar]
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21. [Google Scholar]
- Qin, X.; Wang, Y.; Li, J.; Xiao, Y.; Liu, Z. NFAT5 inhibits invasion and promotes apoptosis in hepatocellular carcinoma associated with osmolality. Neoplasma 2017, 64, 502–510. [Google Scholar] [CrossRef]
- Moazedi-Fuerst, F.C.; Hofner, M.; Gruber, G.; Weinhaeusel, A.; Stradner, M.H.; Angerer, H.; Peischler, D.; Lohberger, B.; Glehr, M.; Leithner, A.; et al. Epigenetic differences in human cartilage between mild and severe OA. J. Orthop. Res. 2014, 32, 1636–1645. [Google Scholar] [CrossRef]
- Provencal, N.; Suderman, M.J.; Caramaschi, D.; Wang, D.; Hallett, M.; Vitaro, F.; Tremblay, R.E.; Szyf, M. Differential DNA methylation regions in cytokine and transcription factor genomic loci associate with childhood physical aggression. PLoS ONE 2013, 8, e71691. [Google Scholar] [CrossRef] [Green Version]
- Johansen, M.L.; Stetson, L.C.; Vadmal, V.; Waite, K.; Berens, M.E.; Connor, J.R.; Lathia, J.; Rubin, J.B.; Barnholtz-Sloan, J.S. Gliomas display distinct sex-based differential methylation patterns based on molecular subtype. Neurooncol. Adv. 2020, 2, vdaa002. [Google Scholar] [CrossRef]
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell. Res. 2011, 21, 381–395. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, H.H.; Ye, B.J.; Lee-Kwon, W.; Choi, S.Y.; Kwon, H.M. TonEBP suppresses adipogenesis and insulin sensitivity by blocking epigenetic transition of PPARgamma2. Sci. Rep. 2015, 5, 10937. [Google Scholar] [CrossRef] [Green Version]
- Tong, E.H.; Guo, J.J.; Xu, S.X.; Mak, K.; Chung, S.K.; Chung, S.S.; Huang, A.L.; Ko, B.C. Inducible nucleosome depletion at OREBP-binding-sites by hypertonic stress. PLoS ONE 2009, 4, e8435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, X.; Qu, B.; Li, Y.M.; Yang, L.B.; Fan, K.X.; Zheng, H.; Huang, H.D.; Gu, J.W.; Kuang, Y.Q.; Ma, Y. NFAT5 protects astrocytes against oxygen-glucose-serum deprivation/restoration damage via the SIRT1/Nrf2 pathway. J. Mol. Neurosci 2017, 61, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.A.; Bentley, K.; Peeters, A.; Churchill, M.J.; Deacon, N.J. A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res. 2000, 28, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, S.; Tsytsykova, A.V.; Lee, S.K.; Rajsbaum, R.; Falvo, J.V.; Lieberman, J.; Shankar, P.; Goldfeld, A.E. NFAT5 regulates HIV-1 in primary monocytes via a highly conserved long terminal repeat site. PLoS Pathog. 2006, 2, e130. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, S.; Jasenosky, L.D.; Chow, N.; Goldfeld, A.E. Regulation of Mycobacterium tuberculosis-dependent HIV-1 transcription reveals a new role for NFAT5 in the toll-like receptor pathway. PLoS Pathog. 2012, 8, e1002620. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.S.; Shin, K.S.; Oh, S.H.; Kang, S.M.; Won, S.J.; Hwang, S.B. Nonstructural 5A protein of hepatitis C virus regulates heat shock protein 72 for its own propagation. J. Viral Hepat. 2012, 19, 353–363. [Google Scholar] [CrossRef]
- Qiu, Y.; Ye, X.; Zhang, H.M.; Hanson, P.; Zhao, G.; Tong, L.; Xie, R.; Yang, D. Cleavage of osmosensitive transcriptional factor NFAT5 by Coxsackieviral protease 2A promotes viral replication. PLoS Pathog. 2017, 13, e1006744. [Google Scholar] [CrossRef]
- Huerga Encabo, H.; Traveset, L.; Argilaguet, J.; Angulo, A.; Nistal-Villan, E.; Jaiswal, R.; Escalante, C.R.; Gekas, C.; Meyerhans, A.; Aramburu, J.; et al. The transcription factor NFAT5 limits infection-induced type I interferon responses. J. Exp. Med. 2020, 217, 3. [Google Scholar] [CrossRef]
- Zhang, W.C.; Du, L.J.; Zheng, X.J.; Chen, X.Q.; Shi, C.; Chen, B.Y.; Sun, X.N.; Li, C.; Zhang, Y.Y.; Liu, Y.; et al. Elevated sodium chloride drives type I interferon signaling in macrophages and increases antiviral resistance. J. Biol. Chem. 2018, 293, 1030–1039. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Han, Y.Y.; Chen, K.; Zhang, Y.; Liu, X.; Li, S.; Wang, K.Q.; Ge, J.B.; Liu, W.; Zuo, J. TonEBP modulates the protective effect of taurine in ischemia-induced cytotoxicity in cardiomyocytes. Cell. Death Dis. 2015, 6, e2025. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zheng, N.Z.; Yuan, Q.; Xu, K.; Yang, F.; Gu, L.; Zheng, G.Y.; Luo, G.J.; Fan, C.; Ji, G.J.; et al. NFAT5-mediated CACNA1C expression is critical for cardiac electrophysiological development and maturation. J. Mol. Med. 2016, 94, 993–1002. [Google Scholar] [CrossRef]
- Ito, T.; Fujio, Y.; Takahashi, K.; Azuma, J. Degradation of NFAT5, a transcriptional regulator of osmotic stress-related genes, is a critical event for doxorubicin-induced cytotoxicity in cardiac myocytes. J. Biol. Chem. 2007, 282, 1152–1160. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhao, Y.; Kalita, M.; Li, X.; Jamaluddin, M.; Tian, B.; Edeh, C.B.; Wiktorowicz, J.E.; Kudlicki, A.; Brasier, A.R. Systematic Determination of Human Cyclin Dependent Kinase (CDK)-9 Interactome Identifies Novel Functions in RNA Splicing Mediated by the DEAD Box (DDX)-5/17 RNA Helicases. Mol. Cell Proteom. 2015, 14, 2701–2721. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.J.; Zhang, J.; Xiao, M.; Wang, S.; Wang, B.J.; Guo, Y.; Tang, Y.; Gu, J. Molecular mechanisms of doxorubicin-induced cardiotoxicity: Novel roles of sirtuin 1-mediated signaling pathways. Cell Mol. Life Sci. 2021, 78, 3105–3125. [Google Scholar] [CrossRef]
- Navarro, P.; Chiong, M.; Volkwein, K.; Moraga, F.; Ocaranza, M.P.; Jalil, J.E.; Lim, S.W.; Kim, J.A.; Kwon, H.M.; Lavandero, S. Osmotically-induced genes are controlled by the transcription factor TonEBP in cultured cardiomyocytes. Biochem. Biophys. Res. Commun. 2008, 372, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Ni, S.H.; Sun, S.N.; Zhou, Z.; Li, Y.; Huang, Y.S.; Li, H.; Wang, J.J.; Xiao, W.; Xian, S.X.; Yang, Z.Q.; et al. Arctigenin alleviates myocardial infarction injury through inhibition of the NFAT5-related inflammatory phenotype of cardiac macrophages/monocytes in mice. Lab. Invest. 2020, 100, 527–541. [Google Scholar] [CrossRef]
- Hodebeck, M.; Scherer, C.; Wagner, A.H.; Hecker, M.; Korff, T. TonEBP/NFAT5 regulates ACTBL2 expression in biomechanically activated vascular smooth muscle cells. Front. Physiol. 2014, 5, 467. [Google Scholar]
- Arnold, C.; Feldner, A.; Zappe, M.; Komljenovic, D.; De La Torre, C.; Ruzicka, P.; Hecker, M.; Neuhofer, W.; Korff, T. Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice. FASEB J. 2019, 33, 3364–3377. [Google Scholar] [CrossRef]
- Halterman, J.A.; Kwon, H.M.; Zargham, R.; Bortz, P.D.; Wamhoff, B.R. Nuclear factor of activated T cells 5 regulates vascular smooth muscle cell phenotypic modulation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2287–2296. [Google Scholar] [CrossRef] [Green Version]
- Halterman, J.A.; Kwon, H.M.; Leitinger, N.; Wamhoff, B.R. NFAT5 expression in bone marrow-derived cells enhances atherosclerosis and drives macrophage migration. Front. Physiol. 2012, 3, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.C.; Pan, M.; Zhu, L.P.; Sun, Q.; Zhou, Z.S.; Li, C.C.; Zhang, G.G. NFAT5 promotes arteriogenesis via MCP-1-dependent monocyte recruitment. J. Cell Mol. Med. 2020, 24, 2052–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, P.; Zha, S.; Shen, X.; Zhao, Y.; Li, L.; Yang, L.; Lei, M.; Liu, W. NFAT5 mediates hypertonic stress-induced atherosclerosis via activating NLRP3 inflammasome in endothelium. Cell Commun. Signal 2019, 17, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machnik, A.; Neuhofer, W.; Jantsch, J.; Dahlmann, A.; Tammela, T.; Machura, K.; Park, J.K.; Beck, F.X.; Muller, D.N.; Derer, W.; et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 2009, 15, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.; Nordstrom, I.; Dreja, K.; Malmqvist, U.; Hellstrand, P. Stretch-dependent modulation of contractility and growth in smooth muscle of rat portal vein. Circ. Res. 2000, 87, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Anwar, M.A.; Shalhoub, J.; Lim, C.S.; Gohel, M.S.; Davies, A.H. The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J. Vasc. Res. 2012, 49, 463–478. [Google Scholar] [CrossRef]
- Giles, T.D.; Berk, B.C.; Black, H.R.; Cohn, J.N.; Kostis, J.B.; Izzo, J.L., Jr.; Weber, M.A. Expanding the definition and classification of hypertension. J. Clin. Hypertens. 2005, 7, 505–512. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, C.; Aramburu, J.; Rakeman, A.S.; Rao, A. NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proc. Natl. Acad. Sci. USA 1999, 96, 7214–7219. [Google Scholar] [CrossRef] [Green Version]
- Alberdi, M.; Iglesias, M.; Tejedor, S.; Merino, R.; Lopez-Rodriguez, C.; Aramburu, J. Context-dependent regulation of Th17-associated genes and IFNgamma expression by the transcription factor NFAT5. Immunol. Cell. Biol. 2017, 95, 56–67. [Google Scholar] [CrossRef]
Cell Type/Disease | miRNA/lncRNA | Consequence | Reference |
---|---|---|---|
Adipocytes | miR-30b | miR-30b negatively regulates NFAT5. Upregulation of NFAT5 expression by knockdown of miR-30b contributes to the development of obesity and insulin resistance. | [19] |
Renal medulla | -miR-466a-3p -miR-200b & miR-717 | miR-466a-3p, miR-200b and miR-717 downregulate NFAT5 expression during osmotic response. High level of miR-466a-3p is associated with polydipsia, polyuria and disturbed ion balance. | [49,51] |
HEK293 cells and human thymoma tissue | miR-20b | miR-20b contributes to the suppression of thymoma and thymoma-associated myasthenia gravis and inhibits T-cell activation and proliferation. The tumor suppressive function of miR-20b is via inhibiting NFAT5 expression. | [50] |
Oral squamous cell carcinoma | miR-411-3p/lncRNA TTN-AS1 | The lncRNA Titin antisense RNA 1 (TTN-AS1) acts as a miR-411 sponge, thereby inhibiting the miR-411 which is a negative regulator of NFAT5. Overexpression of NFAT5 restores cell growth in TTN-AS1 depleted cells. | [52] |
Astrocytes | miR-218/lncRNA CCAT1 | miR-218 targets NFAT5. The lncRNA colon cancer-associated transcript-1 (CCAT1) acts as a miR-218 sponge, thereby activating NFAT5 expression, which is crucial for controlling apoptosis and inflammation. | [53] |
Cementoblasts | miR0361-3p | Overexpression of miR-361-3p suppresses cemantoblast differentiation through directly targeting NFAT5. | [54] |
Mouse Ovarian granulosa | miR-27a | NFAT5 promotes cell proliferation through activating the Wnt signaling pathway. miR-27a directly inhibits NFAT5 expression. However, p53 negatively regulates miR-27a. Hence p53/miR-27a/NFAT5 pathway regulates mouse granulosa cell proliferation. | [55] |
Myoblasts | miR-10b-5p | Knockdown of NFAT5 represses myoblast differentiation. miR-10b-5p regulates C2C12 myoblast differentiation and proliferation by directly targeting NFAT5 and repressing its activity. | [56] |
T cells | -miR-106a, miR-18b and miR-363-3p -miR-181a -miR-568 | A miRNA cluster of miR-106a, miR-18b and miR-363-3p is involved in the differentiation and function of T helper cells through directly inhibiting NFAT5. miR-568 affects the activation and function of CD4+ T cells and Tregs through targeting NFAT5. miR-181a enhances NFAT5 activation axis and is involved in regulating T-cell induction and autoimmunity linked to type 1 diabetes. | [57,58,59] |
Macrophage | miR-223 | PPARγ/miR-223 regulatory axis controls macrophage polarization through targeting downstream target genes such as NFAT5 and RASA1. | [60] |
Sheep Wool follicle | miR-148b | miR-148b positively regulates proliferation of hair follicles through activating Wnt/β-catenin signalling pathway and inhibiting NFAT5. | [61] |
Human primary glioblastoma | miR-641 | miR-641 is tumor suppressive and negatively regulates the PI3K/Akt pathway via directly targeting several kinases and indirectly targeting NFAT5. miR-641 is downregulated in glioblastoma. | [62] |
Glioblastoma cell & glioma samples | miR-338-3p/lncRNA SBF2-AS1 | NFAT5 upregulates SBF2-AS1, which can sponge miR-338-3p, a negative regulator of EGFL7. Thus, NFAT5 promotes glioblastoma cell-driven angiogenesis via the SBF2-AS1/miR-338-3p/EGFL7 signaling pathway. | [63] |
Hepatoma | miR-30e-5p | miR-30e-5p targets MAP4K4 to inactive MAPK and thereby suppresses NFAT5, which leads to promotion of HCC tumorigenesis via the oncogene DADS2 expression. | [64] |
Microglia | miR-29c-3p | miR-29c-3p suppresses inflammasome activation via targeting NFAT5, impairing inflammatory response in Parkinson’s disease. | [65] |
Virus | Cell Type/Disease | Altered NFAT5 Expression and Consequences | Reference |
---|---|---|---|
HIV | HeLa-CD4 cells, THP-1 cells, human MDMs/AIDS | HIV infection itself does not cause any changes in NFAT5 mRNA levels. NFAT5 binds to the long terminal repeat enhancer region conserved in HIV-1, HIV-2 and multiple SIVs to promote viral propagation. | [80] |
HIV/MTb | Human PBMCs, human MDMs/AIDS | MTb and HIV co-infection upregulates NFAT5 expression via the MyD88-dependent signalling pathway. NFAT5 promotes MTb-stimulated HIV-1 replication by binding to the viral promoter of HIV-1 subtypes B, C and E to form a complex regulatory signal network. | [81] |
HBV | HCC tissues from patients, hepatocytes/HCC | HBV inhibits NFAT5 expression through the miR-30e-5p/MAPK4K signalling axis. NFAT5 serves as an HCC tumour suppressor by downregulating the expression of the oncogene DARS2. | [64] |
HCV | NS5A stable cell lines/HCC | Overexpression of HCV NS5A upregulates NFAT5, which benefits HCV replication via an increase in heat shock protein 72. | [82] |
CVB3 | HeLa cells, SV40 immortalized human cardiomyocytes/myocarditis | NFAT5 is upregulated early after infection, which inhibits CVB3 replication through the induction of iNOS production, and is then cleaved by viral proteases, which benefits viral pathogenesis. | [83] |
LCMV | NFAT5-deficient mouse model | NFAT5 supresses the production of IFN-1 via binding to the promoter region of the Ifnb1 gene and limiting the recruitment of IRF3. IFN-1 production and viral clearance were enhanced upon LCMV infection in NFAT5-deficient mice. | [84] |
VSV/MCMV | Macrophages, dendritic cells | Nfat5 mRNA accumulates and reaches a maximal expression at 24 h in macrophages infected with VSV or MCMV. IFN-1 responses are repressed in VSV- and MCMV-infected macrophages and dendritic cells. | [84] |
Cardiovascular Dysfunction | Cell Type or Model | Altered NFAT5 Expression and Consequences | Reference |
---|---|---|---|
Dox-induced cytotoxicity | Cardiomyocytes | Dox promotes NFAT5 degradation, leading to downregulated TauT expression and cardiomyocyte injury. | [88,89,90] |
Myocardial infarction | Cultured cardiomyocytes, cardiac macrophages | Hypertonicity upregulates NFAT5 to induce downstream target gene expression; NFAT is involved in activating macrophages to exacerbate postinfarction damage. | [91,92] |
Arterial wall stress | VSMC, mice | Biomechanical stretching upregulates NFAT5 to influence downstream target genes, such as tenascin-C and κ-actin, in arterial remodelling and VSMC migration. | [11,93,94] |
Atherosclerosis | VSMC, mice | NFAT5 converts VSMC to the contractile and migratory phenotypes after ANG II and PDGF-BB stimulation, respectively. | [95] |
Macrophages | NFAT5 is involved in macrophage chemotactic migration by M-CSF stimulation. | [96] | |
Human umbilical vein endothelial cells, rat | NFAT5 promotes arteriogenesis and angiogenesis by MCP-1 monocyte recruitment. | [97] | |
Mouse, human umbilical vein endothelial cells and monocytes | NLRP3 inflammasome activation by NFAT5 increases IL-1b expression to facilitate inflammation in endothelial cells and recruit monocytes. | [98] | |
Macrophages | VEGF-C upregulation is protective against salt-induced hypertension and stimulates eNOS to protect blood pressure homeostasis. VEGF-C upregulation stimulates intimal neovascularization and enhances atherosclerotic lesion progression. | [95,99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Aghakeshmiri, S.; Chen, Y.T.; Zhang, H.M.; Yip, F.; Yang, D. NFAT5-Mediated Signalling Pathways in Viral Infection and Cardiovascular Dysfunction. Int. J. Mol. Sci. 2021, 22, 4872. https://doi.org/10.3390/ijms22094872
Zhao G, Aghakeshmiri S, Chen YT, Zhang HM, Yip F, Yang D. NFAT5-Mediated Signalling Pathways in Viral Infection and Cardiovascular Dysfunction. International Journal of Molecular Sciences. 2021; 22(9):4872. https://doi.org/10.3390/ijms22094872
Chicago/Turabian StyleZhao, Guangze, Sana Aghakeshmiri, Yankuan T. Chen, Huifang M. Zhang, Fione Yip, and Decheng Yang. 2021. "NFAT5-Mediated Signalling Pathways in Viral Infection and Cardiovascular Dysfunction" International Journal of Molecular Sciences 22, no. 9: 4872. https://doi.org/10.3390/ijms22094872
APA StyleZhao, G., Aghakeshmiri, S., Chen, Y. T., Zhang, H. M., Yip, F., & Yang, D. (2021). NFAT5-Mediated Signalling Pathways in Viral Infection and Cardiovascular Dysfunction. International Journal of Molecular Sciences, 22(9), 4872. https://doi.org/10.3390/ijms22094872