Renal Tissue miRNA Expression Profiles in ANCA-Associated Vasculitis—A Comparative Analysis
Abstract
:1. Introduction
2. Results
2.1. Characterization of AAV and Control Group Cases
2.2. Identification of AAV-Specific miRNAs
2.2.1. Expression of miRNAs in AAV, Patients with GN and CTRL Groups
2.2.2. Statistically Significant Difference in Expression
2.2.3. Characterization of AAV-Specific miRNAs
2.2.4. Target Prediction and Annotation of Selected miRNAs
3. Discussion
4. Materials and Methods
4.1. Selection of Patients and Controls
4.2. RNA Isolation
4.3. Reverse Transcription and Quality Control of Resulting cDNAs
4.4. Screening of miRNAs Expression by Quantitative Real-Time PCR (qPCR)
4.5. Statistical Analysis of miRNA Expression
4.6. Annotation of Best Candidate miRNAs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jennette, J.C.; Nachman, P.H. ANCA Glomerulonephritis and Vasculitis. Clin. J. Am. Soc. Nephrol. 2017, 12, 1680–1691. [Google Scholar] [CrossRef] [PubMed]
- Berden, A.E.; Ferrario, F.; Hagen, E.C.; Jayne, D.R.; Jennette, J.C.; Joh, K.; Neumann, I.; Noël, L.-H.; Pusey, C.D.; Waldherr, R.; et al. Histopathologic Classification of ANCA-Associated Glomerulonephritis. J. Am. Soc. Nephrol. 2010, 21, 1628–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brix, S.R.; Noriega, M.; Tennstedt, P.; Vettorazzi, E.; Busch, M.; Nitschke, M.; Jabs, W.J.; Özcan, F.; Wendt, R.; Hausberg, M.; et al. Development and Validation of a Renal Risk Score in ANCA-Associated Glomerulonephritis. Kidney Int. 2018, 94, 1177–1188. [Google Scholar] [CrossRef] [PubMed]
- Lally, L.; Spiera, R. Current Therapies for ANCA-Associated Vasculitis. Annu. Rev. Med. 2015, 66, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.E.; Yang, J.; Muthigi, A.; Hogan, S.L.; Hu, Y.; Starmer, J.; Henderson, C.D.; Poulton, C.J.; Brant, E.J.; Pendergraft, W.F.; et al. Gene-Specific DNA Methylation Changes Predict Remission in Patients with ANCA-Associated Vasculitis. J. Am. Soc. Nephrol. 2017, 28, 1175–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciavatta, D.J.; Yang, J.J.; Preston, G.A.; Badhwar, A.K.; Xiao, H.; Hewins, P.; Nester, C.M.; Pendergraft, W.F.; Magnuson, T.R.; Jennette, J.C.; et al. Epigenetic Basis for Aberrant Upregulation of Autoantigen Genes in Humans with ANCA Vasculitis. J. Clin. Investig. 2010, 120, 3209–3219. [Google Scholar] [CrossRef] [PubMed]
- Pauley, K.M.; Cha, S.; Chan, E.K.L. MicroRNA in Autoimmunity and Autoimmune Diseases. J. Autoimmun. 2009, 32, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Wang, X.; Chen, Y.; Wang, L.; Zhao, M.; Lu, Q. Dysregulation of MicroRNAs in Autoimmune Diseases: Pathogenesis, Biomarkers and Potential Therapeutic Targets. Cancer Lett. 2018, 428, 90–103. [Google Scholar] [CrossRef]
- Chau, B.N.; Xin, C.; Hartner, J.; Ren, S.; Castano, A.P.; Linn, G.; Li, J.; Tran, P.T.; Kaimal, V.; Huang, X.; et al. MicroRNA-21 Promotes Fibrosis of the Kidney by Silencing Metabolic Pathways. Sci. Transl. Med. 2012, 4, 121ra18. [Google Scholar] [CrossRef] [Green Version]
- Alsaleh, G.; François, A.; Philippe, L.; Gong, Y.-Z.; Bahram, S.; Cetin, S.; Pfeffer, S.; Gottenberg, J.-E.; Wachsmann, D.; Georgel, P.; et al. MiR-30a-3p Negatively Regulates BAFF Synthesis in Systemic Sclerosis and Rheumatoid Arthritis Fibroblasts. PLoS ONE 2014, 9, e111266. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, C.; Fan, Y.; Zeng, C.; Chen, Z.; Qin, W.; Zhang, C.; Zhang, W.; Wang, X.; Zhu, X.; et al. Downregulation of MicroRNA-30 Facilitates Podocyte Injury and Is Prevented by Glucocorticoids. J. Am. Soc. Nephrol. JASN 2014, 25, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Costa-Reis, P.; Russo, P.A.; Zhang, Z.; Colonna, L.; Maurer, K.; Gallucci, S.; Schulz, S.W.; Kiani, A.N.; Petri, M.; Sullivan, K.E. The Role of MicroRNAs and Human Epidermal Growth Factor Receptor 2 in Proliferative Lupus Nephritis. Arthritis Rheumatol. 2015, 67, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Whyte, C.S.; Bishop, E.T.; Rückerl, D.; Gaspar-Pereira, S.; Barker, R.N.; Allen, J.E.; Rees, A.J.; Wilson, H.M. Suppressor of Cytokine Signaling (SOCS)1 Is a Key Determinant of Differential Macrophage Activation and Function. J. Leukoc. Biol. 2011, 90, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Shakerian, L.; Ghorbani, S.; Talebi, F.; Noorbakhsh, F. MicroRNA-150 Targets PU.1 and Regulates Macrophage Differentiation and Function in Experimental Autoimmune Encephalomyelitis. J. Neuroimmunol. 2018, 323, 167–174. [Google Scholar] [CrossRef]
- Jiang, M.; Dai, J.; Yin, M.; Jiang, C.; Ren, M.; Tian, L. LncRNA MEG8 Sponging MiR-181a-5p Contributes to M1 Macrophage Polarization by Regulating SHP2 Expression in Henoch-Schonlein Purpura Rats. Ann. Med. 2021, 53, 1576–1588. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Liu, X.; Cheng, Q. MicroRNA-204-5p Suppresses IL6-Mediated Inflammatory Response and Chemokine Generation in HK-2 Renal Tubular Epithelial Cells by Targeting IL6R. Biochem. Cell Biol. 2018, 97, 109–117. [Google Scholar] [CrossRef]
- Pang, B.; Zhen, Y.; Hu, C.; Ma, Z.; Lin, S.; Yi, H. Myeloid-Derived Suppressor Cells Shift Th17/Treg Ratio and Promote Systemic Lupus Erythematosus Progression through Arginase-1/MiR-322-5p/TGF-β Pathway. Clin. Sci. 2020, 134, 2209–2222. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, J.; Wang, X.; Zhai, F.; Cheng, X. MiR-582-5p Is Upregulated in Patients with Active Tuberculosis and Inhibits Apoptosis of Monocytes by Targeting FOXO1. PLoS ONE 2013, 8, e78381. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.C.; Khan, S.Q.; Kaneda, M.M.; Pathria, P.; Shepard, R.; Louis, T.L.; Anand, S.; Woo, G.; Leem, C.; Faridi, M.H.; et al. Integrin CD11b Activation Drives Anti-Tumor Innate Immunity. Nat. Commun. 2018, 9, 5379. [Google Scholar] [CrossRef]
- Baek, D.; Villén, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The Impact of MicroRNAs on Protein Output. Nature 2008, 455, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Holden, N.J.; Williams, J.M.; Morgan, M.D.; Challa, A.; Gordon, J.; Pepper, R.J.; Salama, A.D.; Harper, L.; Savage, C.O.S. ANCA-Stimulated Neutrophils Release BLyS and Promote B Cell Survival: A Clinically Relevant Cellular Process. Ann. Rheum. Dis. 2011, 70, 2229–2233. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zheng, C.; Wang, X.; Yun, S.; Zhao, Y.; Liu, L.; Lu, Y.; Ye, Y.; Zhu, X.; Zhang, C.; et al. MicroRNA-30 Family Members Regulate Calcium/Calcineurin Signaling in Podocytes. J. Clin. Investig. 2015, 125, 4091–4106. [Google Scholar] [CrossRef] [Green Version]
- Zou, R.; Wang, S.-X.; Liu, G.; Yu, F.; Chen, M.; Zhao, M.-H. Podocyte Detachment Is Associated with Renal Prognosis in ANCA-Associated Glomerulonephritis: A Retrospective Cohort Study. Medicine 2016, 95, e3294. [Google Scholar] [CrossRef]
- Anglicheau, D.; Sharma, V.K.; Ding, R.; Hummel, A.; Snopkowski, C.; Dadhania, D.; Seshan, S.V.; Suthanthiran, M. MicroRNA Expression Profiles Predictive of Human Renal Allograft Status. Proc. Natl. Acad. Sci. USA 2009, 106, 5330–5335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunini, F.; Page, T.H.; Gallieni, M.; Pusey, C.D. The Role of Monocytes in ANCA-Associated Vasculitides. Autoimmun. Rev. 2016, 15, 1046–1053. [Google Scholar] [CrossRef]
- Li, J.; Yu, Y.-F.; Liu, C.-H.; Wang, C.-M. Significance of M2 Macrophages in Glomerulonephritis with Crescents. Pathol.-Res. Pract. 2017, 213, 1215–1220. [Google Scholar] [CrossRef]
- Bitton, L.; Vandenbussche, C.; Wayolle, N.; Gibier, J.B.; Cordonnier, C.; Verine, J.; Humez, S.; Bataille, P.; Lenain, R.; Ramdane, N.; et al. Tubulointerstitial Damage and Interstitial Immune Cell Phenotypes Are Useful Predictors for Renal Survival and Relapse in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. J. Nephrol. 2020, 33, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Sica, A.; Mantovani, A. Macrophage Plasticity and Polarization: In Vivo Veritas. J. Clin. Investig. 2012, 122, 787–795. [Google Scholar] [CrossRef]
- Gordon, S.; Martinez, F.O. Alternative Activation of Macrophages: Mechanism and Functions. Immunity 2010, 32, 593–604. [Google Scholar] [CrossRef] [Green Version]
- Youn, Y.-J.; Shrestha, S.; Lee, Y.-B.; Kim, J.-K.; Lee, J.H.; Hur, K.; Mali, N.M.; Nam, S.-W.; Kim, S.-H.; Lee, S.; et al. Neutrophil-Derived Trail Is a Proinflammatory Subtype of Neutrophil-Derived Extracellular Vesicles. Theranostics 2021, 11, 2770–2787. [Google Scholar] [CrossRef]
- Pawluczyk, I.Z.A.; Didangelos, A.; Barbour, S.J.; Er, L.; Becker, J.U.; Martin, R.; Taylor, S.; Bhachu, J.S.; Lyons, E.G.; Jenkins, R.H.; et al. Differential Expression of MicroRNA MiR-150-5p in IgA Nephropathy as a Potential Mediator and Marker of Disease Progression. Kidney Int. 2021, 99, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Vegting, Y.; Vogt, L.; Anders, H.J.; de Winther, M.P.J.; Bemelman, F.J.; Hilhorst, M.L. Monocytes and Macrophages in ANCA-Associated Vasculitis. Autoimmun. Rev. 2021, 20, 102911. [Google Scholar] [CrossRef]
- Fernando, M.R.; Reyes, J.L.; Iannuzzi, J.; Leung, G.; McKay, D.M. The Pro-Inflammatory Cytokine, Interleukin-6, Enhances the Polarization of Alternatively Activated Macrophages. PLoS ONE 2014, 9, e94188. [Google Scholar] [CrossRef]
- Nogueira, E.; Hamour, S.; Sawant, D.; Henderson, S.; Mansfield, N.; Chavele, K.-M.; Pusey, C.D.; Salama, A.D. Serum IL-17 and IL-23 Levels and Autoantigen-Specific Th17 Cells Are Elevated in Patients with ANCA-Associated Vasculitis. Nephrol. Dial. Transplant. 2010, 25, 2209–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Free, M.E.; Bunch, D.O.; McGregor, J.A.; Jones, B.E.; Berg, E.A.; Hogan, S.L.; Hu, Y.; Preston, G.A.; Jennette, J.C.; Falk, R.J.; et al. Patients with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis Have Defective Treg Cell Function Exacerbated by the Presence of a Suppression-Resistant Effector Cell Population. Arthritis Rheum. 2013, 65, 1922–1933. [Google Scholar] [CrossRef] [Green Version]
- Flint, S.M.; McKinney, E.F.; Smith, K.G.C. Emerging Concepts in the Pathogenesis of Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Curr. Opin. Rheumatol. 2015, 27, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Sakai, R.; Kondo, T.; Kurasawa, T.; Nishi, E.; Okuyama, A.; Chino, K.; Shibata, A.; Okada, Y.; Takei, H.; Nagasawa, H.; et al. Current Clinical Evidence of Tocilizumab for the Treatment of ANCA-Associated Vasculitis: A Prospective Case Series for Microscopic Polyangiitis in a Combination with Corticosteroids and Literature Review. Clin. Rheumatol. 2017, 36, 2383–2392. [Google Scholar] [CrossRef]
- Berti, A.; Cavalli, G.; Campochiaro, C.; Guglielmi, B.; Baldissera, E.; Cappio, S.; Sabbadini, M.G.; Doglioni, C.; Dagna, L. Interleukin-6 in ANCA-Associated Vasculitis: Rationale for Successful Treatment with Tocilizumab. Semin. Arthritis Rheum. 2015, 45, 48–54. [Google Scholar] [CrossRef]
- Kassan, M.; Vikram, A.; Li, Q.; Kim, Y.-R.; Kumar, S.; Gabani, M.; Liu, J.; Jacobs, J.S.; Irani, K. MicroRNA-204 Promotes Vascular Endoplasmic Reticulum Stress and Endothelial Dysfunction by Targeting Sirtuin1. Sci. Rep. 2017, 7, 9308. [Google Scholar] [CrossRef]
- Filer, A.D.; Gardner-Medwin, J.M.; Thambyrajah, J.; Raza, K.; Carruthers, D.M.; Stevens, R.J.; Liu, L.; Lowe, S.E.; Townend, J.N.; Bacon, P.A. Diffuse Endothelial Dysfunction Is Common to ANCA Associated Systemic Vasculitis and Polyarteritis Nodosa. Ann. Rheum. Dis. 2003, 62, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Loboda, A.; Sobczak, M.; Jozkowicz, A.; Dulak, J. TGF-β 1/Smads and MiR-21 in Renal Fibrosis and Inflammation. Mediat. Inflamm. 2016, 2016, 8319283. [Google Scholar] [CrossRef] [Green Version]
- Bruno, D.; Cerasuolo, P.G.; di Mario, C.; Bosello, S.L.; Gigante, L.; Musto, A.; Vischini, G.; Costanzi, S.; Alivernini, S.; Tolusso, B.; et al. AB1234 Micro-RNA 155 and Mir-34A: Possible biomarkers of inflammatory burden and disease activity in anca-associated vasculitis with renal involvement. Ann. Rheum. Dis. 2020, 79, 1908. [Google Scholar] [CrossRef]
- Scullion, K.M.; Vliegenthart, B.A.D.; Farrah, T.E.; Dhaun, N.; Dear, J.W. MicroRNA-126 Is a Marker of Vascular Dysfunction in Human ANCA Vasculitis. FASEB J. 2019, 33, 713–714. [Google Scholar] [CrossRef]
- Skoglund, C.; Carlsen, A.L.; Weiner, M.; Kurz, T.; Hellmark, T.; Eriksson, P.; Heegaard, N.H.H.; Segelmark, M. Circulating MicroRNA Expression Pattern Separates Patients with Anti-Neutrophil Cytoplasmic Antibody Associated Vasculitis from Healthy Controls. Clin. Exp. Rheumatol. 2015, 33, 64–71. [Google Scholar]
- Scullion, K.M.; Vliegenthart, A.D.B.; Rivoli, L.; Oosthuyzen, W.; Farrah, T.E.; Czopek, A.; Webb, D.J.; Hunter, R.W.; Bailey, M.A.; Dhaun, N.; et al. Circulating Argonaute-Bound MicroRNA-126 Reports Vascular Dysfunction and Treatment Response in Acute and Chronic Kidney Disease. iScience 2021, 24, 101937. [Google Scholar] [CrossRef] [PubMed]
- Krebs, C.F.; Kapffer, S.; Paust, H.J.; Schmidt, T.; Bennstein, S.B.; Peters, A.; Stege, G.; Brix, S.R.; Meyer-Schwesinger, C.; Müller, R.U.; et al. MicroRNA-155 Drives TH17 Immune Response and Tissue Injury in Experimental Crescentic GN. J. Am. Soc. Nephrol. 2013, 24, 1955–1965. [Google Scholar] [CrossRef] [Green Version]
- Kurz, T.; Weiner, M.; Skoglund, C.; Basnet, S.; Eriksson, P.; Segelmark, M. A Myelopoiesis Gene Signature during Remission in Anti-Neutrophil Cytoplasm Antibody-Associated Vasculitis Does Not Predict Relapses but Seems to Reflect Ongoing Prednisolone Therapy. Clin. Exp. Immunol. 2014, 175, 215–226. [Google Scholar] [CrossRef]
- Faraldi, M.; Gomarasca, M.; Sansoni, V.; Perego, S.; Banfi, G.; Lombardi, G. Normalization Strategies Differently Affect Circulating MiRNA Profile Associated with the Training Status. Sci. Rep. 2019, 9, 1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor, K.L.; Denby, L. MicroRNAs as Non-Invasive Biomarkers of Renal Disease. Nephrol. Dial. Transplant. 2021, 36, 428–429. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.A.; Davis, S.J.; Liu, P.; Pan, X.; Williams, A.M.; Iczkowski, K.A.; Gallagher, S.T.; Bishop, K.; Regner, K.R.; Liu, Y.; et al. Tissue-Specific MicroRNA Expression Patterns in Four Types of Kidney Disease. J. Am. Soc. Nephrol. 2017, 28, 2985–2992. [Google Scholar] [CrossRef] [PubMed]
- D’haene, B.; Mestdagh, P.; Hellemans, J.; Vandesompele, J. MiRNA Expression Profiling: From Reference Genes to Global Mean Normalization. Methods Mol. Biol. 2012, 822, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Liu, C.-J.; Fu, X.; Xia, M.; Zhang, Q.; Gu, Z.; Guo, A.-Y. MiRNASNP-v3: A Comprehensive Database for SNPs and Disease-Related Variations in MiRNAs and MiRNA Targets. Nucleic Acids Res. 2021, 49, D1276–D1281. [Google Scholar] [CrossRef]
- Karagkouni, D.; Paraskevopoulou, M.D.; Chatzopoulos, S.; Vlachos, I.S.; Tastsoglou, S.; Kanellos, I.; Papadimitriou, D.; Kavakiotis, I.; Maniou, S.; Skoufos, G.; et al. DIANA-TarBase v8: A Decade-Long Collection of Experimentally Supported MiRNA-Gene Interactions. Nucleic Acids Res. 2018, 46, D239–D245. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-Y.; Lin, Y.-C.-D.; Li, J.; Huang, K.-Y.; Shrestha, S.; Hong, H.-C.; Tang, Y.; Chen, Y.-G.; Jin, C.-N.; Yu, Y.; et al. MiRTarBase 2020: Updates to the Experimentally Validated MicroRNA-Target Interaction Database. Nucleic Acids Res. 2020, 48, D148–D154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting Effective MicroRNA Target Sites in Mammalian MRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef]
- McGeary, S.E.; Lin, K.S.; Shi, C.Y.; Pham, T.M.; Bisaria, N.; Kelley, G.M.; Bartel, D.P. The Biochemical Basis of MicroRNA Targeting Efficacy. Science 2019, 366. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics Enrichment Tools: Paths toward the Comprehensive Functional Analysis of Large Gene Lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
AAV Histological Classification + | % Normal Glomeruli | % Active Glomerular Lesions * | % Global Glomerular Sclerosis | % IF/TA | ARRS Group | |
---|---|---|---|---|---|---|
AAV | F: 5/26 (19%) C: 15/26 (58%) M: 6/26 (23%) S: 0/26 (0%) | 24 (0–90, 36) | 54 (7–86, 45) | 8 (0–36, 11) | 10 (0–30, 6) | Low: 9/26 (35%) Medium: 12/26 (46%) High: 5/26 (19%) |
MPO | F: 3/13 (24%) C: 5/13 (38%) M: 5/13 (38%) S: 0/13 (0%) | 31 (0–90, 31) | 30 (7–67, 43) | 13 (0–36, 13) | 10 (0–30, 15) | Low: 5/13 (38%) Medium: 6/13 (46%) High: 2/13 (16%) |
PR3 | F: 2/13 (15%) C: 10/13 (77%) M: 1/13 (8%) S: 0/13 (0%) | 16 (8–59, 27) | 71 (25–86, 29) | 5 (0–15, 9) | 10 (0–15, 5) | Low: 4/13 (31%) Medium: 6/13 (46%) High: 3/13 (23%) |
M:F Ratio | Age + | eGFR Normal | eGFR if <90 mL/min * | DP Normal | DP if >150 mg * | |
---|---|---|---|---|---|---|
AAV | 14:12 | 62.3 (17.6) | 1/26 | 20 (39) | 1/26 | 2.0 (2.16) |
MPO | 4:9 | 67.8 (15.2) | 0/13 | 20 (29) | 0/13 | 2.4 (3.8) |
PR3 | 10:3 | 56.7 (18.6) | 1/13 | 22 (48) | 1/13 | 2.0 (1.9) |
CONTROL | 11:15 | 43.9 (17.3) | 13/26 | 26 (53) | 7/26 | 1.9 (1.7) |
CTRL | 6:4 | 49 (19.0) | 9/10 | N/A | 7/10 | N/A |
GN | 5:11 | 40.7 (16.0) | 4/16 | 26 (40) | 0/16 | 2.0 (1.7) |
p-Value | 0.579 a | <0.001 b | 0.001 a | 0.406 c | 0.05 a | 0.228 c |
MicroRNA | Chromosomal Location a | MicroRNA Family | Clustered a | Same Chromosomal Region/Intronic a | No. of SNPs in miRNAs | Known Function b | References |
---|---|---|---|---|---|---|---|
hsa-miR-21-3p | 17q23.1 | no | no | VMP1, LOC1148227848 | 7 | TGF-β/Smad3 signaling (fibrosis) | [9] |
hsa-miR-24-2-5p | 19p13.12 | miR-24 | miR-23a, miR-27a | MIR23AHG | 4 | / | / |
hsa-miR-30a-3p | 6q13 | miR-30 | miR-30c/e | no | 14 | BAFF Notch1, p53 signaling (podocyte injury) | [10,11] |
hsa-miR-30b-5p | 8q24.22 | miR-30 | miR-30d | LOC102723694 | 1 | IFN-α signaling (mesangial proliferation in LN) Notch1, p53 signaling (podocyte injury) | [11,12] |
hsa-miR-30c-5p | 1: 1p34.2 2: 6q13 | miR-30 | 1: miR-30e 2: no | 1: NFYC 2: no | 1: 3 2: 7 | Notch1, p53 signaling (podocyte injury) | / |
hsa-miR-96-5p | 7q32.2 | no | miR-182, miR-183 | no | 7 | / | / |
hsa-miR-130b-5p | 22q11.21 | miR-130b | miR-301b | LOC107985532 | 6 | / | / |
hsa-miR-142-5p | 17q22 | no | miR-4736 | LOC111822952 (opposite direction) | 4 | SOCS1/STAT6 signaling (macrophage polarization) | [13] |
hsa-miR-150-5p | 19q13.33 | no | no | no | 6 | PU.1 transcription factor (macrophage polarization) | [14] |
hsa-miR-181a-5p | 1: 1q32.1 2: 9q33.3 | no | 1: miR-181b-1 2: miR-181b-2 | 1: MIR181A1HG 2: MIR1812HG, NR6A1 | 1: 2 2: 7 | SHP2/STAT3 signaling (macrophage polarization) | [15] |
hsa-miR-204-5p | 9q21.12 | miR-204/211 | no | TRPM3 | 4 | IL-6 receptor (chemokine generation in renal tubular epithelium) | [16] |
hsa-miR-376a-5p | 1, 2: 14q32.31 | miR-376 | 1, 2: miR-300, miR-376b, miR-376c, miR-381, miR-487b, miR-495, miR-539, miR-543, miR-544a, miR-654, miR-655, miR-889, miR-1185-1, miR-1185-2 | no | 5 | / | / |
hsa-miR-508-3p | Xq27.3 | miR-606 | miR-506, miR-507 | LOC105373347 (opposite direction) | 2 | / | / |
hsa-miR-542-5p | Xq36.3 | no | miR-424, miR-450a-1, miR-450a-2, miR-450b, miR-503 | no | 13 | TGF-β signaling (Th17 and Treg differentiation) | [17] |
hsa-miR-582-5p | 5q12.1 | no | no | PDE4D | 7 | FOXO1 (monocyte apoptosis) | [18] |
hsa-miR-769-5p | 19q13.32 | no | no | PGLYRP1 (opposite direction) | 4 | / | / |
hsa-let-7a-5p | 1: 9q22.32 2: 11q24.1 3: 22q13.31 | let-7 | 1: let-7f-1, let-7d 2: miR-100, miR-10526 3: let-7b, miR-4763 | 1: MIRLET7A1HG, LINC02603 (opposite direction) 2: MIR100HG 3: MIRLET7BHG | 1: 2 2: 4 3: 1 | CD11b signaling (macrophage polarization) | [19] |
MicroRNA | miRTarBase | TarBase | |||
---|---|---|---|---|---|
No | Strong Evidence Method | No. of Low Throughput Experiments | KEGG Pathways (Number, AAV Related) | ||
hsa-miR-24-2-5p | SPRY2, BCL2 | 265 | SPRY | 1 | 6, none involved in kidney disease |
hsa-miR-96-5p | / | 902 | CTDSP1, FOXO1, SCAB1, CTNND1, CDH1, SNAI2, ZEB1 | 10 | 27, EMT related (adherents function, ECM-receptor interaction, focal adhesion) |
hsa-miR-130b-5p | / | 1058 | PTEN, SMAD4, TGFBR2, TP63, ZBTB4 | 3 | 12, fibrosis related (TGFB signaling) |
hsa-miR-376a-5p | / | 970 | ALK7 | 1 | 6, fibrosis and immune response related (NF-kB signaling) |
MicroRNA | Prediction Method | Number of Predicted Targets | DAVID Tissue Expression of Predicted Targets | DAVID KEGG Pathways of Predicted Targets |
---|---|---|---|---|
hsa-miR-508-3p | TargetScan | 2474 | Endothelial cells (n = 12) | Focal adhesion (n = 36); NF-κB (n = 20), TCR (n = 19) and BCR signaling (n = 13) |
miRDB | 417 | Renal cell carcinoma (n = 6) | Renal cell carcinoma (n = 5) | |
TargetMiner | 458 | Fetal kidney (n = 16) | FoxO signaling (n = 9); focal adhesion (n = 11); inflammatory mediator (n = 6) | |
hsa-miR-769-5p | TargetScan | 3669 | Kidney epithelium (n = 12) | TGFB (n = 29) and TNF (n = 12) signaling |
miRDB | 297 | / | TGFB signaling (n = 5) | |
TargetMiner | 493 | Fetal kidney (n = 12), T-cell (n = 15), lymphocyte (n = 6) | TGFB signaling (n = 6); FoxO signaling (n = 10); focal adhesion (n = 12); renal cell carcinoma (n = 5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bošnjak, M.; Večerić-Haler, Ž.; Boštjančič, E.; Kojc, N. Renal Tissue miRNA Expression Profiles in ANCA-Associated Vasculitis—A Comparative Analysis. Int. J. Mol. Sci. 2022, 23, 105. https://doi.org/10.3390/ijms23010105
Bošnjak M, Večerić-Haler Ž, Boštjančič E, Kojc N. Renal Tissue miRNA Expression Profiles in ANCA-Associated Vasculitis—A Comparative Analysis. International Journal of Molecular Sciences. 2022; 23(1):105. https://doi.org/10.3390/ijms23010105
Chicago/Turabian StyleBošnjak, Matic, Željka Večerić-Haler, Emanuela Boštjančič, and Nika Kojc. 2022. "Renal Tissue miRNA Expression Profiles in ANCA-Associated Vasculitis—A Comparative Analysis" International Journal of Molecular Sciences 23, no. 1: 105. https://doi.org/10.3390/ijms23010105
APA StyleBošnjak, M., Večerić-Haler, Ž., Boštjančič, E., & Kojc, N. (2022). Renal Tissue miRNA Expression Profiles in ANCA-Associated Vasculitis—A Comparative Analysis. International Journal of Molecular Sciences, 23(1), 105. https://doi.org/10.3390/ijms23010105