Perisomatic Inhibition and Its Relation to Epilepsy and to Synchrony Generation in the Human Neocortex
Abstract
:1. Introduction
2. Results
2.1. Light Microscopy of Perisomatic Inhibitory Cells
2.1.1. Parvalbumin-Positive Interneurons
2.1.2. CB1 Cannabinoid Receptor-Positive Inhibitory Cells
2.2. Electron Microscopy
2.2.1. Changes Related to Epilepsy
2.2.2. Changes in the Two Perisomatic Basket Cell Axonal Clouds
2.2.3. Differences between Regions Generating and Lacking SPA
2.3. Role of Perisomatic Inhibitory Cells in Synchrony Generation
2.3.1. Role of PV-Positive Cells
2.3.2. Role of CB1R-Positive Cells
3. Discussion
3.1. Changes in the Perisomatic Inhibition Related to Epilepsy
3.2. Cholinergic Input of Pyramidal Cells and Epilepsy
3.3. Perisomatic Inhibitory Interneurons and Synchrony Generation
4. Materials and Methods
4.1. Patients
4.2. Epileptic Patients
4.3. Non-Epileptic Patients
4.4. Tissue Preparation
4.5. Recordings
4.6. Data Analysis
4.7. Histology
4.8. Statistics
4.8.1. Histology
4.8.2. Electrophysiology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shadlen, M.N.; Newsome, W.T. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 1994, 4, 569–579. [Google Scholar] [CrossRef]
- Haider, B.; Duque, A.; Hasenstaub, A.R.; McCormick, D.A. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 2006, 26, 4535–4545. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, N.; Peyrache, A.; Telenczuk, B.; Le Van Quyen, M.; Halgren, E.; Cash, S.S.; Hatsopoulos, N.G.; Destexhe, A. Dynamic Balance of Excitation and Inhibition in Human and Monkey Neocortex. Sci. Rep. 2016, 6, 23176. [Google Scholar] [CrossRef]
- de Curtis, M.; Avanzini, G. Interictal spikes in focal epileptogenesis. Prog. Neurobiol. 2001, 63, 541–567. [Google Scholar] [CrossRef]
- McCormick, D.A.; Contreras, D. On the cellular and network bases of epileptic seizures. Annu. Rev. Physiol. 2001, 63, 815–846. [Google Scholar] [CrossRef]
- Avoli, M.; D’Antuono, M.; Louvel, J.; Kohling, R.; Biagini, G.; Pumain, R.; D’Arcangelo, G.; Tancredi, V. Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog. Neurobiol. 2002, 68, 167–207. [Google Scholar] [CrossRef]
- Trevelyan, A.J.; Muldoon, S.F.; Merricks, E.M.; Racca, C.; Staley, K.J. The role of inhibition in epileptic networks. J. Clin. Neurophysiol. 2015, 32, 227–234. [Google Scholar] [CrossRef]
- Levesque, M.; Biagini, G.; Avoli, M. Neurosteroids and Focal Epileptic Disorders. Int. J. Mol. Sci. 2020, 21, 9391. [Google Scholar] [CrossRef] [PubMed]
- Avoli, M.; Williamson, A. Functional and pharmacological properties of human neocortical neurons maintained in vitro. Prog. Neurobiol. 1996, 48, 519–554. [Google Scholar] [CrossRef]
- Avoli, M.; Louvel, J.; Pumain, R.; Köhling, R. Cellular and molecular mechanisms of epilepsy in the human brain. Prog. Neurobiol. 2005, 77, 166–200. [Google Scholar] [CrossRef]
- Florez, C.M.; McGinn, R.J.; Lukankin, V.; Marwa, I.; Sugumar, S.; Dian, J.; Hazrati, L.N.; Carlen, P.L.; Zhang, L.; Valiante, T.A. In vitro recordings of human neocortical oscillations. Cereb. Cortex 2015, 25, 578–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhling, R.; Lucke, A.; Straub, H.; Speckmann, E.J.; Tuxhorn, I.; Wolf, P.; Pannek, H.; Oppel, F. Spontaneous sharp waves in human neocortical slices excised from epileptic patients. Brain 1998, 121 Pt 6, 1073–1087. [Google Scholar] [CrossRef] [Green Version]
- Pallud, J.; Le Van Quyen, M.; Bielle, F.; Pellegrino, C.; Varlet, P.; Labussiere, M.; Cresto, N.; Dieme, M.J.; Baulac, M.; Duyckaerts, C.; et al. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci. Transl. Med. 2014, 6, 244ra89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molnár, G.; Oláh, S.; Komlósi, G.; Füle, M.; Szabadics, J.; Varga, C.; Barzó, P.; Tamás, G. Complex events initiated by individual spikes in the human cerebral cortex. PLoS Biol. 2008, 6, e222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tóth, K.; Hofer, K.T.; Kandrács, A.; Entz, L.; Bagó, A.; Erőss, L.; Jordán, Z.; Nagy, G.; Sólyom, A.; Fabó, D.; et al. Hyperexcitability of the network contributes to synchronization processes in the human epileptic neocortex. J. Physiol. 2018, 596, 317–342. [Google Scholar] [CrossRef]
- Kandrács, A.; Hofer, K.T.; Tóth, K.; Tóth, E.Z.; Entz, L.; Bagó, A.G.; Erőss, L.; Jordán, Z.; Nagy, G.; Fabó, D.; et al. Presence of synchrony-generating hubs in the human epileptic neocortex. J. Physiol. 2019, 597, 5639–5670. [Google Scholar] [CrossRef] [PubMed]
- Kerekes, B.P.; Tóth, K.; Kaszás, A.; Chiovini, B.; Szadai, Z.; Szalay, G.; Pálfi, D.; Bagó, A.; Spitzer, K.; Rózsa, B.; et al. Combined two-photon imaging, electrophysiological and anatomical investigation of the human neocortex, in vitro. Neurophotonics 2014, 1, 011013. [Google Scholar] [CrossRef] [Green Version]
- Boldog, E.; Bakken, T.E.; Hodge, R.D.; Novotny, M.; Aevermann, B.D.; Baka, J.; Borde, S.; Close, J.L.; Diez-Fuertes, F.; Ding, S.L.; et al. Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nat. Neurosci. 2018, 21, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Szegedi, V.; Paizs, M.; Csákvári, E.; Molnár, G.; Barzó, P.; Tamás, G.; Lamsa, K. Plasticity in Single Axon Glutamatergic Connection to GABAergic Interneurons Regulates Complex Events in the Human Neocortex. PLoS Biol. 2016, 14, e2000237. [Google Scholar] [CrossRef]
- Miles, R.; Tóth, K.; Gulyás, A.I.; Hájos, N.; Freund, T.F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 1996, 16, 815–823. [Google Scholar] [CrossRef] [Green Version]
- Freund, T.F.; Katona, I. Perisomatic inhibition. Neuron 2007, 56, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Seress, L.; Gulyas, A.I.; Ferrer, I.; Tunon, T.; Soriano, E.; Freund, T.F. Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation. J. Comp. Neurol. 1993, 337, 208–230. [Google Scholar] [CrossRef]
- Freund, T.F.; Buzsáki, G. Interneurons of the hippocampus. Hippocampus 1996, 6, 347–470. [Google Scholar] [CrossRef]
- Freund, T.F. Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci. 2003, 26, 489–495. [Google Scholar] [CrossRef]
- Hájos, N.; Karlócai, M.R.; Németh, B.; Ulbert, I.; Monyer, H.; Szabó, G.; Erdélyi, F.; Freund, T.F.; Gulyás, A.I. Input-output features of anatomically identified CA3 neurons during hippocampal sharp wave/ripple oscillation in vitro. J. Neurosci. 2013, 33, 11677–11691. [Google Scholar] [CrossRef] [Green Version]
- Gulyas, A.I.; Freund, T.T. Generation of physiological and pathological high frequency oscillations: The role of perisomatic inhibition in sharp-wave ripple and interictal spike generation. Curr. Opin. Neurobiol. 2015, 31, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Menendez de la Prida, L.; Trevelyan, A.J. Cellular mechanisms of high frequency oscillations in epilepsy: On the diverse sources of pathological activities. Epilepsy Res. 2011, 97, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Maglóczky, Z.; Freund, T.F. Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci. 2005, 28, 334–340. [Google Scholar] [CrossRef]
- Ma, Y.; Prince, D.A. Functional alterations in GABAergic fast-spiking interneurons in chronically injured epileptogenic neocortex. Neurobiol. Dis. 2012, 47, 102–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levesque, M.; Chen, L.Y.; Etter, G.; Shiri, Z.; Wang, S.; Williams, S.; Avoli, M. Paradoxical effects of optogenetic stimulation in mesial temporal lobe epilepsy. Ann. Neurol. 2019, 86, 714–728. [Google Scholar] [CrossRef] [PubMed]
- Kohus, Z.; Kali, S.; Rovira-Esteban, L.; Schlingloff, D.; Papp, O.; Freund, T.F.; Hajos, N.; Gulyas, A.I. Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin. J. Physiol. 2016, 594, 3745–3774. [Google Scholar] [CrossRef]
- Szabó, G.G.; Holderith, N.; Gulyás, A.I.; Freund, T.F.; Hájos, N. Distinct synaptic properties of perisomatic inhibitory cell types and their different modulation by cholinergic receptor activation in the CA3 region of the mouse hippocampus. Eur. J. Neurosci. 2010, 31, 2234–2246. [Google Scholar] [CrossRef] [Green Version]
- Klausberger, T.; Somogyi, P. Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science 2008, 321, 53–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klausberger, T.; Marton, L.F.; O’Neill, J.; Huck, J.H.; Dalezios, Y.; Fuentealba, P.; Suen, W.Y.; Papp, E.; Kaneko, T.; Watanabe, M.; et al. Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J. Neurosci. 2005, 25, 9782–9793. [Google Scholar] [CrossRef] [PubMed]
- Karlócai, M.R.; Kohus, Z.; Káli, S.; Ulbert, I.; Szabó, G.; Máté, Z.; Freund, T.F.; Gulyás, A.I. Physiological sharp wave-ripples and interictal events in vitro: What’s the difference? Brain 2014, 137 Pt 2, 463–485. [Google Scholar] [CrossRef] [Green Version]
- van Brederode, J.F.; Helliesen, M.K.; Hendrickson, A.E. Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat. Neuroscience 1991, 44, 157–171. [Google Scholar] [CrossRef]
- DeFelipe, J.; Garcia Sola, R.; Marco, P.; del Rio, M.R.; Pulido, P.; Ramon y Cajal, S. Selective changes in the microorganization of the human epileptogenic neocortex revealed by parvalbumin immunoreactivity. Cereb. Cortex 1993, 3, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, M.R.; DeFelipe, J. A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temporal neocortex. J. Comp. Neurol. 1994, 342, 389–408. [Google Scholar] [CrossRef]
- Zamecnik, J.; Krsek, P.; Druga, R.; Marusic, P.; Benes, V.; Tichy, M.; Komarek, V. Densities of parvalbumin-immunoreactive neurons in non-malformed hippocampal sclerosis-temporal neocortex and in cortical dysplasias. Brain Res. Bull. 2006, 68, 474–481. [Google Scholar] [CrossRef]
- Marco, P.; DeFelipe, J. Altered synaptic circuitry in the human temporal neocortex removed from epileptic patients. Exp. Brain Res. 1997, 114, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Marco, P.; Sola, R.G.; Cayal, S.R.Y.; DeFelipe, J. Loss of inhibitory synapses on the soma and axon intial segment of pyramidal cells in human epileptic peritumoral neocortex: Implications for epilepsy. Brain Res. Bull. 1997, 44, 47–66. [Google Scholar] [CrossRef]
- Wittner, L.; Maglóczky, Z. Synaptic Reorganization of the Perisomatic Inhibitory Network in Hippocampi of Temporal Lobe Epileptic Patients. BioMed Res. Int. 2017, 2017, 7154295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittner, L.; Erőss, L.; Czirják, S.; Halász, P.; Freund, T.F.; Maglóczky, Z. Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus. Brain 2005, 128 Pt 1, 138–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittner, L.; Huberfeld, G.; Clémenceau, S.; Erőss, L.; Dezamis, E.; Entz, L.; Ulbert, I.; Baulac, M.; Freund, T.F.; Maglóczky, Z.; et al. The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro. Brain 2009, 132 Pt 11, 3032–3046. [Google Scholar] [CrossRef] [PubMed]
- Wittner, L.; Maglóczky, Z.; Borhegyi, Z.; Halász, P.; Tóth, S.; Erőss, L.; Szabó, Z.; Freund, T.F. Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus. Neuroscience 2001, 108, 587–600. [Google Scholar] [CrossRef]
- Eggan, S.M.; Lewis, D.A. Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: A regional and laminar analysis. Cereb. Cortex 2007, 17, 175–191. [Google Scholar] [CrossRef]
- Katona, I.; Urban, G.M.; Wallace, M.; Ledent, C.; Jung, K.M.; Piomelli, D.; Mackie, K.; Freund, T.F. Molecular composition of the endocannabinoid system at glutamatergic synapses. J. Neurosci. 2006, 26, 5628–5637. [Google Scholar] [CrossRef]
- Marsicano, G.; Lutz, B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 1999, 11, 4213–4225. [Google Scholar] [CrossRef]
- Zurolo, E.; Iyer, A.M.; Spliet, W.G.; van Rijen, P.C.; Troost, D.; Gorter, J.A.; Aronica, E. CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies. Neuroscience 2010, 170, 28–41. [Google Scholar] [CrossRef]
- Ludányi, A.; Erőss, L.; Czirják, S.; Vajda, J.; Halász, P.; Watanabe, M.; Palkovits, M.; Maglóczky, Z.; Freund, T.F.; Katona, I. Downregulation of the CB1 cannabinoid receptor and related molecular elements of the endocannabinoid system in epileptic human hippocampus. J. Neurosci. 2008, 28, 2976–2990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maglóczky, Z.; Tóth, K.; Karlócai, R.; Nagy, S.; Erőss, L.; Czirják, S.; Vajda, J.; Rásonyi, G.; Kelemen, A.; Juhos, V.; et al. Dynamic changes of CB1-receptor expression in hippocampi of epileptic mice and humans. Epilepsia 2010, 51 (Suppl. 3), 115–120. [Google Scholar] [CrossRef] [Green Version]
- Alkondon, M.; Albuquerque, E.X. The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog. Brain Res. 2004, 145, 109–120. [Google Scholar] [PubMed]
- Fabian-Fine, R.; Skehel, P.; Errington, M.L.; Davies, H.A.; Sher, E.; Stewart, M.G.; Fine, A. Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J. Neurosci. 2001, 21, 7993–8003. [Google Scholar] [CrossRef] [PubMed]
- Obermayer, J.; Verhoog, M.B.; Luchicchi, A.; Mansvelder, H.D. Cholinergic Modulation of Cortical Microcircuits Is Layer-Specific: Evidence from Rodent, Monkey and Human Brain. Front. Neural Circuits 2017, 11, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulledge, A.T.; Stuart, G.J. Cholinergic inhibition of neocortical pyramidal neurons. J. Neurosci. 2005, 25, 10308–10320. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Hill, C.; Gulledge, A.T. A unifying hypothesis for M1 muscarinic receptor signalling in pyramidal neurons. J. Physiol. 2017, 595, 1711–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krnjevic, K.; Pumain, R.; Renaud, L. The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. 1971, 215, 247–268. [Google Scholar] [CrossRef]
- Lawrence, J.J. Cholinergic control of GABA release: Emerging parallels between neocortex and hippocampus. Trends Neurosci. 2008, 31, 317–327. [Google Scholar] [CrossRef]
- Salgado, H.; Bellay, T.; Nichols, J.A.; Bose, M.; Martinolich, L.; Perrotti, L.; Atzori, M. Muscarinic M2 and M1 receptors reduce GABA release by Ca2+ channel modulation through activation of PI3K/Ca2+ -independent and PLC/Ca2+ -dependent PKC. J. Neurophysiol. 2007, 98, 952–965. [Google Scholar] [CrossRef]
- Disney, A.A.; Reynolds, J.H. Expression of m1-type muscarinic acetylcholine receptors by parvalbumin-immunoreactive neurons in the primary visual cortex: A comparative study of rat, guinea pig, ferret, macaque, and human. J. Comp. Neurol. 2014, 522, 986–1003. [Google Scholar] [CrossRef] [Green Version]
- Fukudome, Y.; Ohno-Shosaku, T.; Matsui, M.; Omori, Y.; Fukaya, M.; Tsubokawa, H.; Taketo, M.M.; Watanabe, M.; Manabe, T.; Kano, M. Two distinct classes of muscarinic action on hippocampal inhibitory synapses: M2-mediated direct suppression and M1/M3-mediated indirect suppression through endocannabinoid signalling. Eur. J. Neurosci. 2004, 19, 2682–2692. [Google Scholar] [CrossRef]
- Hájos, N.; Katona, I.; Naiem, S.S.; MacKie, K.; Ledent, C.; Mody, I.; Freund, T.F. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci. 2000, 12, 3239–3249. [Google Scholar] [CrossRef]
- Katona, I.; Sperlágh, B.; Sík, A.; Kőfalvi, A.; Vizi, E.S.; Mackie, K.; Freund, T.F. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 1999, 19, 4544–4558. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, F.E.; Knop, T.; Urbanski, M.J.; Freiman, I.; Freiman, T.M.; Feuerstein, T.J.; Zentner, J.; Szabo, B. Exogenous and endogenous cannabinoids suppress inhibitory neurotransmission in the human neocortex. Neuropsychopharmacology 2012, 37, 1104–1114. [Google Scholar] [CrossRef] [Green Version]
- Mackie, K. Signaling via CNS cannabinoid receptors. Mol. Cell Endocrinol. 2008, 286 (Suppl. 1), S60–S65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freund, T.F.; Katona, I.; Piomelli, D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 2003, 83, 1017–1066. [Google Scholar] [CrossRef] [PubMed]
- Bymaster, F.P.; Carter, P.A.; Yamada, M.; Gomeza, J.; Wess, J.; Hamilton, S.E.; Nathanson, N.M.; McKinzie, D.L.; Felder, C.C. Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity. Eur. J. Neurosci. 2003, 17, 1403–1410. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Loose, M.D.; Qi, M.; Levey, A.I.; Hille, B.; McKnight, G.S.; Idzerda, R.L.; Nathanson, N.M. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc. Natl. Acad. Sci. USA 1997, 94, 13311–13316. [Google Scholar] [CrossRef] [Green Version]
- Gigout, S.; Wierschke, S.; Lehmann, T.N.; Horn, P.; Dehnicke, C.; Deisz, R.A. Muscarinic acetylcholine receptor-mediated effects in slices from human epileptogenic cortex. Neuroscience 2012, 223, 399–411. [Google Scholar] [CrossRef]
- Auerbach, J.M.; Segal, M. Muscarinic receptors mediating depression and long-term potentiation in rat hippocampus. J. Physiol. 1996, 492 Pt 2, 479–493. [Google Scholar] [CrossRef] [Green Version]
- Gigout, S.; Jones, G.A.; Wierschke, S.; Davies, C.H.; Watson, J.M.; Deisz, R.A. Distinct muscarinic acetylcholine receptor subtypes mediate pre- and postsynaptic effects in rat neocortex. BMC Neurosci. 2012, 13, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maglóczky, Z. Sprouting in human temporal lobe epilepsy: Excitatory pathways and axons of interneurons. Epilepsy Res. 2010, 89, 52–59. [Google Scholar] [CrossRef]
- Wittner, L.; Erőss, L.; Szabó, Z.; Tóth, S.; Czirják, S.; Halász, P.; Freund, T.F.; Maglóczky, Z. Synaptic reorganization of calbindin-positive neurons in the human hippocampal CA1 region in temporal lobe epilepsy. Neuroscience 2002, 115, 961–978. [Google Scholar] [CrossRef]
- Freund, T.F.; Gulyas, A.I. Inhibitory control of GABAergic interneurons in the hippocampus. Can. J. Physiol. Pharmacol. 1997, 75, 479–487. [Google Scholar] [CrossRef]
- Gulledge, A.T.; Bucci, D.J.; Zhang, S.S.; Matsui, M.; Yeh, H.H. M1 receptors mediate cholinergic modulation of excitability in neocortical pyramidal neurons. J. Neurosci. 2009, 29, 9888–9902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, R.B.; Reyes, A.D.; Aoki, C. Nicotinic and muscarinic reduction of unitary excitatory postsynaptic potentials in sensory cortex; dual intracellular recording in vitro. J. Neurophysiol. 2006, 95, 2155–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajos, N.; Papp, E.C.; Acsady, L.; Levey, A.I.; Freund, T.F. Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus. Neuroscience 1998, 82, 355–376. [Google Scholar] [CrossRef]
- Chaudhuri, J.D.; Hiltunen, M.; Nykanen, M.; Yla-Herttuala, S.; Soininen, H.; Miettinen, R. Localization of M2 muscarinic receptor protein in parvalbumin and calretinin containing cells of the adult rat entorhinal cortex using two complementary methods. Neuroscience 2005, 131, 557–566. [Google Scholar] [CrossRef]
- Palomero-Gallagher, N.; Schleicher, A.; Bidmon, H.J.; Pannek, H.W.; Hans, V.; Gorji, A.; Speckmann, E.J.; Zilles, K. Multireceptor analysis in human neocortex reveals complex alterations of receptor ligand binding in focal epilepsies. Epilepsia 2012, 53, 1987–1997. [Google Scholar] [CrossRef]
- de Lanerolle, N.C.; Sloviter, R.S.; Kim, J.H.; Robbins, R.J.; Spencer, D.D. Evidence for hippocampal interneuron loss in human temporal lobe epilepsy. Epilepsia 1988, 29, 674. [Google Scholar]
- Schwartzkroin, P.A. Cellular electrophysiology of human epilepsy. Epilepsy Res. 1994, 17, 185–192. [Google Scholar] [CrossRef]
- Sloviter, R.S. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The "dormant basket cell" hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1991, 1, 41–66. [Google Scholar] [CrossRef] [PubMed]
- Bekenstein, J.W.; Lothman, E.W. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. Science 1993, 259, 97–100. [Google Scholar] [CrossRef]
- Bernard, C.; Esclapez, M.; Hirsch, J.C.; Ben-Ari, Y. Interneurones are not so dormant in temporal lobe epilepsy: A critical reappraisal of the dormant basket cell hypothesis. Epilepsy Res. 1998, 32, 93–103. [Google Scholar] [CrossRef]
- Lein, E.S.; Zhao, X.; Gage, F.H. Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J. Neurosci. 2004, 24, 3879–3889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuste, R.; Hawrylycz, M.; Aalling, N.; Aguilar-Valles, A.; Arendt, D.; Armananzas, R.; Ascoli, G.A.; Bielza, C.; Bokharaie, V.; Bergmann, T.B.; et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 2020, 23, 1456–1468. [Google Scholar] [CrossRef]
- Mercer, A.; Thomson, A.M. Cornu Ammonis Regions-Antecedents of Cortical Layers? Front. Neuroanat. 2017, 11, 83. [Google Scholar] [CrossRef] [Green Version]
- Curia, G.; Lucchi, C.; Vinet, J.; Gualtieri, F.; Marinelli, C.; Torsello, A.; Costantino, L.; Biagini, G. Pathophysiogenesis of mesial temporal lobe epilepsy: Is prevention of damage antiepileptogenic? Curr. Med. Chem. 2014, 21, 663–688. [Google Scholar] [CrossRef] [Green Version]
- Hofer, K.T.; Kandrács, A.; Ulbert, I.; Pál, I.; Szabó, C.; Héja, L.; Wittner, L. The hippocampal CA3 region can generate two distinct types of sharp wave-ripple complexes, in vitro. Hippocampus 2015, 25, 169–186. [Google Scholar] [CrossRef] [Green Version]
- Schlingloff, D.; Kali, S.; Freund, T.F.; Hajos, N.; Gulyas, A.I. Mechanisms of sharp wave initiation and ripple generation. J. Neurosci. 2014, 34, 11385–11398. [Google Scholar] [CrossRef] [Green Version]
- Holderith, N.; Lőrincz, A.; Katona, G.; Rózsa, B.; Kulik, A.; Watanabe, M.; Nusser, Z. Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat. Neurosci. 2012, 15, 988–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Stage of Epilepsy | Gender | Age | Duration of Epilepsy | Histology/Diagnosis | Resected Cortical Region | Experiment | Seizure Onset Zone | Distance from Tumor | Anatomy of Obtained Tissue |
---|---|---|---|---|---|---|---|---|---|
NoEpi | M | 81 | glioblastoma multiforme grade IV | temporal | EM | close | infiltrated/normal | ||
NoEpi | M | 32 | anaplastic astrocytoma grade III | temporal | pharm | close | infiltrated | ||
NoEpi | F | 63 | lung carcinoma metastasis | occipital | pharm | close | normal | ||
NoEpi | M | 64 | lung adenocarcinoma metastasis | frontal | pharm | close | compressed neocortex | ||
NoEpi | M | 67 | diffuse large B cell lymphoma | frontal | pharm | close | normal | ||
NoEpi | F | 78 | glioblastoma grade IV | temporal | EM, pharm | distant | normal | ||
NoEpi | F | 65 | glioblastoma multiforme | temporal | EM, pharm | close | normal | ||
NoEpi | F | 52 | glioblastoma grade IV | parietal | distant | infiltrated | |||
NoEpi | F | 36 | anaplastic ependymoma grade III | parietal | pharm | distant | normal | ||
NoEpi | F | 55 | glioblastoma multiforme | frontal | pharm | distant | normal | ||
NoEpi | F | 59 | breast carcinoma metastasis | frontal | close | infiltrated | |||
NoEpi | F | 68 | glioblastoma multiforme grade IV | temporal | EM | close | normal | ||
NoEpi | F | 67 | glioblastoma multiforme grade IV | parietal | close | normal | |||
ResEpi | M | 39 | 35 years | hippocampal sclerosis | temporal | EM | no | - | normal |
ResEpi | F | 53 | 40 years | hippocampal sclerosis | temporal | EM | no | - | normal |
ResEpi | M | 35 | 34 years | focal cortical dysplasia + hippocampal sclerosis | temporal | EM | no | - | normal |
ResEpi | M | 32 | 23 years | focal cortical dysplasia IIb with balloon cells | temporal | EM | no | - | normal |
ResEpi | F | 41 | 9 years | hippocampal and cortical gliosis, microglia activation | temporal | EM | no | - | dysgenetic |
ResEpi | F | 34 | 3 years | cortical gliosis | temporal | pharm | yes | - | normal |
ResEpi | M | 37 | 19 years | cortical gliosis, microglia activation | temporal | pharm | no | - | normal |
ResEpi | M | 32 | 19 years | ganglioglioma grade I | temporal | yes | close | normal | |
ResEpi | M | 30 | 6 years | hippocampal sclerosis, reactive astrocytosis, microglia activation | temporal | pharm | no | - | normal |
ResEpi | F | 28 | 27 years | diffuse glioneural tumor grade I | temporal | EM, pharm | no | distant | normal |
ResEpi | F | 48 | 10 months | diffuse astrocytoma grade II | temporal | pharm | yes | close | normal |
ResEpi | M | 45 | 43 years | stroke induced lesion | frontal | pharm | yes | distant | dysgenetic |
NoEpi | ResEpi | |||||
---|---|---|---|---|---|---|
Total | SPA | No SPA | Total | SPA | No SPA | |
Overall synaptic coverage | 1.07 [0.62–1.50] n = 123 cells | 1.07 [0.80–1.46] n = 57 cells | 1.07 [0.55–1.52] n = 66 cells | 1.12 [0.64–1.67] n = 156 cells | 1.03 [0.56–1.51] n = 81 cells | 1.23 [0.69–1.70] n = 75 cells |
PV+ synaptic coverage | 1.07 [0.58–1.52] n = 62 cells | 0.52 [0.36–0.75] n = 26 cells | 0.52 [0.00–0.90] n = 36 cells | 1.18 [0.57–1.70] n = 78 cells | 0.34 [0.00–0.68] n = 42 cells | 0.35 [0.00–0.67] n = 36 cells |
% of PV+ synaptic coverage | 46.75 [0.00–58.41] | 45.74 [0.00–52.86] | 52.48 [0.00–75.41] | 30.18 [0.00–54.44] | 27.24 [0.00–53.68] | 32.72 [0.00–58.29] |
CB1R+ synaptic coverage | 1.04 [0.68–1.46] n = 61 cells | 0.42 [0.00–0.63] n = 31 cells | 0.37 [0.00–0.68] n = 30 cells | 1.05 [0.65–1.62] n = 78 cells | 0.38 [0.00–0.58] n = 39 cells | 0.62 [0.30–0.80] n = 39 cells |
% of CB1R+ synaptic coverage | 42.82 [0.00–57.28] | 48.35 [0.00–59.98] | 34.75 [0.00–51.16] | 44.66 [22.23–62.72] | 44.18 [0.00–63.62] | 47.76 [31.33–58.73] |
Average length of synaptic active zones (µm) | 0.229 [0.201–0.260] n = 325 boutons | 0.225 [0.198–0.255] n = 129 boutons | 0.230 [0.201–0.267] n = 196 boutons | 0.244 [0.211–0.270] n = 333 boutons | 0.249 [0.213–0.274] n = 188 boutons | 0.237 [0.207–0.266] n = 145 boutons |
Average length of synaptic active zones of PV+ terminals | 0.228 [0.200–0.256] n = 60 boutons | 0.231 [0.203–0.253] ** n = 25 boutons | 0.228 [0.196–0.263] n = 35 boutons | 0.255 [0.228–0.275] n = 65 boutons | 0.260 [0.243–0.276] ** n = 36 boutons | 0.244 [0.217–0.275] n = 29 boutons |
Average length of synaptic active zones of PV− terminals | 0.228 [0.194–0.257] n = 77 boutons | 0.234 [0.201–0.258] n = 40 boutons | 0.212 [0.179–0.249] n = 37 boutons | 0.241 [0.212–0.262] n = 129 boutons | 0.240 [0.209–0.259] n = 73 boutons | 0.242 [0.213–0.264] n = 56 boutons |
Average length of synaptic active zones of CB1R+ terminals | 0.229 [0.196–0.264] n = 77 boutons | 0.216 [0.193–0.255] n = 26 boutons | 0.241 [0.198–0.277] n = 51 boutons | 0.226 [0.193–0.282] n = 61 boutons | 0.237 [0.154–0.291] n = 34 boutons | 0.226 [0.195–0.253] n = 27 boutons |
Average length of synaptic active zones of CB1R− terminals | 0.230 [0.208–0.263] n = 109 boutons | 0.219 [0.199–0.245] * n = 36 boutons | 0.241 [0.211–0.276] n = 73 boutons | 0.248 [0.212–0.273] n = 78 boutons | 0.254 [0.233–0.276] * n = 45 boutons | 0.226 [0.190–0.259] n = 33 boutons |
Average number of PV+ synapses/100 µm soma perimeter | 2.19 [0.00–3.51] n = 62 cells | 2.23 [1.36–3.51] ** n = 26 cells | 2.17 [0.00–3.48] n = 36 cells | 0.25 [0.00–2.06] n = 78 cells | 0.23 [0.00–1.90] ** n = 42 cells | 1.00 [0.00–2.14] n = 36 cells |
Average of PV− synapses/100 µm soma perimeter | 2.49 [1.71–4.09] n = 62 cells | 2.87 [2.12–4.41] * n = 26 cells | 2.17 [0.00–2.76] n = 36 cells | 2.13 [0.30–3.81] n = 78 cells | 2.15 [0.24–3.81] * n = 42 cells | 2.09 [1.21–3.56] n = 36 cells |
Average of CB1R+ synapses/100 µm soma perimeter | 2.07 [0.00–2.80] n = 61 cells | 2.21 [0.00–3.04] n = 31 cells | 1.87 [0.00–2.47] n = 30 cells | 2.02 [0.00–3.20] n = 77 cells | 1.87 [0.00–2.63] n = 38 cells | 2.09 [1.41–3.64] n = 39 cells |
Average number of CB1R− synapses/100 µm soma perimeter | 2.62 [2.03–4.23] n = 61 cells | 2.47 [1.89–3.95] n = 31 cells | 3.62 [2.07–4.42] n = 30 cells | 2.65 [1.80–4.53] n = 77 cells | 2.55 [1.31–4.95] n = 38 cells | 2.82 [1.94–4.53] n = 39 cells |
Frequency (Hz) | NoEpi | ResEpi | |||||||
---|---|---|---|---|---|---|---|---|---|
Physiological Solution | Pharmacological Agent | Changes Compared to Physiological Solution (%) | Physiological Solution | Pharmacological Agent | Changes Compared to Physiological Solution (%) | ||||
Carbachol | n = 12 | 1.37 [0.74–1.76] | 1.24 [0.59–1.57] | 80 [72–95] | * | n = 8 | 0.88 [0.67–1.84] | 0.10 [0.02–0.37] * | 9 [3–27] |
AF-DX 116 | n = 3 | 0.98 [0.85–0.99] | 0.97 [0.77–1.02] | 99 [88–102] | n = 4 | 1.28 [0.99–1.56] | 1.33 [1.15–1.48] | 102 [99–107] | |
AF-DX 116 + Carbachol | n = 6 | 0.99 [0.78–1.45] | 0.82 [0.72–1.19] | 78 [75–87] | n = 4 | 1.28 [0.99–1.56] | 0.90 [0.87–1.07] | 83 [71–96] | |
AM-251 | n = 3 | 1.02 [0.61–1.21] | 1.07 [0.63–1.18] | 92 [91–99] | n = 5 | 0.94 [0.81–1.71] | 0.97 [0.93–1.49] | 96 [94–115] | |
AM-251 + Carbachol | n = 5 | 1.40 [1.23–1.51] | 1.47 [1.03–1.50] | 88 [84–97] | n = 5 | 0.94 [0.81–1.71] | 0.83 [0.02–0.94] | 88 [2–93] |
LFPg Amplitude (µV) | NoEpi | ResEpi | |||||||
---|---|---|---|---|---|---|---|---|---|
Physiological Solution | Pharmacological Agent | Changes Compared to Physiological Solution (%) | Physiological Solution | Pharmacological Agent | Changes Compared to Physiological Solution (%) | ||||
Carbachol | n = 12 | 36.30 [25.01–46.44] | 23.42 [20.00–31.01] ** | 68 [63–77] | n = 8 | 66.01 [36.46–106.49] | 18.10 [12.20–31.21] ** | 37 [25–45] | |
AF-DX 116 | n = 3 | 38.67 [27.55–38.75] | 34.88 [25.06–41.60] * | 93 [91–109] | ** | n = 4 | 79.43 [60.50–95.75] | 79.70 [59.51–96.74] * | 99 [99–100] |
AF-DX 116 + Carbachol | n = 6 | 38.75 [38.08–62.72] | 34.28 [28.52–39.61] ** | 92 [75–96] | ** | n = 4 | 79.43 [60.50–95.75] | 63.87 [53.55–76.51] *** | 87 [83–91] |
AM-251 | n = 3 | 35.48 [29.46–41.67] | 29.71 [28.06–41.98] * | 113 [98–113] | * | n = 5 | 55.66 [46.00–89.09] | 63.13 [46.15–88.51] * | 100 [99–100] |
AM-251 + Carbachol | n = 5 | 39.80 [27.18–46.92] | 22.81 [22.34–34.12] ** | 68 [64–95] | * | n = 5 | 55.66 [46.00–89.09] | 22.78 [11.18–33.91] *** | 38 [34–50] |
MUA Amplitude (µV) | NoEpi | ResEpi | |||||||
---|---|---|---|---|---|---|---|---|---|
Physiological Solution | Pharmacological Agent | Changes Compared to Physiological Solution (%) | Physiological Solution | Pharmacological Agent | Changes Compared to Physiological Solution (%) | ||||
Carbachol | n = 12 | 0.67 [0.56–1.10] | 0.67 [0.46–0.85] | 81 [57–107] | n = 8 | 3.12 [1.82–5.36] | 1.21 [0.41–3.03] | 43 [22–85] | |
AF-DX 116 | n = 3 | 0.98 [0.83–1.10] | 0.94 [0.81–1.22] | 97 [97–110] | * | n = 4 | 3.89 [3.73–4.41] | 4.89 [4.20–5.57] | 113 [102–127] |
AF-DX 116 + Carbachol | n = 6 | 1.10 [0.76–1.41] | 0.75 [0.69–0.95] | 88 [80–97] | * | n = 4 | 3.89 [3.73–4.41] | 4.93 [4.21–5.31] | 111 [86–135] |
AM-251 | n = 3 | 0.87 [0.66–1.04] | 1.24 [0.90–1.99] | 124 [114–219] | n = 5 | 4.07 [2.84–5.20] | 3.73 [2.89–4.13] | 92 [88–102] | |
AM-251 + Carbachol | n = 5 | 0.87 [0.73–1.20] | 1.32 [1.27–1.49] | 139 [122–155] | n = 5 | 4.07 [2.84–5.20] | 2.50 [1.50–4.04] | 65 [64–88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, E.Z.; Szabó, F.G.; Kandrács, Á.; Molnár, N.O.; Nagy, G.; Bagó, A.G.; Erőss, L.; Fabó, D.; Hajnal, B.; Rácz, B.; et al. Perisomatic Inhibition and Its Relation to Epilepsy and to Synchrony Generation in the Human Neocortex. Int. J. Mol. Sci. 2022, 23, 202. https://doi.org/10.3390/ijms23010202
Tóth EZ, Szabó FG, Kandrács Á, Molnár NO, Nagy G, Bagó AG, Erőss L, Fabó D, Hajnal B, Rácz B, et al. Perisomatic Inhibition and Its Relation to Epilepsy and to Synchrony Generation in the Human Neocortex. International Journal of Molecular Sciences. 2022; 23(1):202. https://doi.org/10.3390/ijms23010202
Chicago/Turabian StyleTóth, Estilla Zsófia, Felicia Gyöngyvér Szabó, Ágnes Kandrács, Noémi Orsolya Molnár, Gábor Nagy, Attila G. Bagó, Loránd Erőss, Dániel Fabó, Boglárka Hajnal, Bence Rácz, and et al. 2022. "Perisomatic Inhibition and Its Relation to Epilepsy and to Synchrony Generation in the Human Neocortex" International Journal of Molecular Sciences 23, no. 1: 202. https://doi.org/10.3390/ijms23010202
APA StyleTóth, E. Z., Szabó, F. G., Kandrács, Á., Molnár, N. O., Nagy, G., Bagó, A. G., Erőss, L., Fabó, D., Hajnal, B., Rácz, B., Wittner, L., Ulbert, I., & Tóth, K. (2022). Perisomatic Inhibition and Its Relation to Epilepsy and to Synchrony Generation in the Human Neocortex. International Journal of Molecular Sciences, 23(1), 202. https://doi.org/10.3390/ijms23010202