Multiple Immunostainings with Different Epitope Retrievals—The FOLGAS Protocol
Abstract
:1. Introduction
2. Results
2.1. FOLGAS Enables the Combination of Different Epitope Retrievals with Maintained Tissue Quality throughout the Different Retrievals
2.2. Subsequent Retrieval Steps Provide Maintained Signal Visibility but May Alter Signal Intensity
2.3. When Combined with a DAB Based Masking of the Metal Labeling, the FOLGAS Protocol Could Be Successfully Transferred in a Pilot Cytometry by Time of Flight (CyTOF) Imaging Experiment
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamashita, S. Heat-Induced Antigen Retrieval: Mechanisms and Application to Histochemistry. Prog. Histochem. Cytochem. 2007, 41, 141–200. [Google Scholar] [CrossRef] [PubMed]
- Pirici, D.; Mogoanta, L.; Kumar-Singh, S.; Pirici, I.; Margaritescu, C.; Simionescu, C.; Stanescu, R. Antibody Elution Method for Multiple Immunohistochemistry on Primary Antibodies Raised in the Same Species and of the Same Subtype. J. Histochem. Cytochem. 2009, 57, 567–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Soontornniyomkij, V.; Ji, B.; Zhou, X. System-Wide Immunohistochemical Analysis of Protein Co-Localization. PLoS ONE 2012, 7, e32043. [Google Scholar] [CrossRef]
- Bolognesi, M.M.; Manzoni, M.; Scalia, C.R.; Zannella, S.; Bosisio, F.M.; Faretta, M.; Cattoretti, G. Multiplex Staining by Sequential Immunostaining and Antibody Removal on Routine Tissue Sections. J. Histochem. Cytochem. 2017, 65, 431–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, H.Y.; Mu, W.; Nikolic-Paterson, D.J.; Atkins, R.C. A Novel, Simple, Reliable, and Sensitive Method for Multiple Immunoenzyme Staining: Use of Microwave Oven Heating to Block Antibody Crossreactivity and Retrieve Antigens. J. Histochem. Cytochem. Off. J. Histochem. Soc. 1995, 43, 97–102. [Google Scholar] [CrossRef]
- Tornehave, D.; Hougaard, D.M.; Larsson, L.-I.; Tornehave, D. Microwaving for Double Indirect Immunofluorescence with Primary Antibodies from the Same Species and for Staining of Mouse Tissues with Mouse Monoclonal Antibodies. Histochem. Cell Biol. 2000, 113, 19–23. [Google Scholar] [CrossRef]
- Osman, T.A.; Øijordsbakken, G.; Costea, D.E.; Johannessen, A.C. Successful Triple Immunoenzymatic Method Employing Primary Antibodies from Same Species and Same Immunoglobulin Subclass. Eur. J. Histochem. 2013, 57, e22. [Google Scholar] [CrossRef] [Green Version]
- Hunyady, B.; Krempels, K.; Harta, G.; Mezey, E. Immunohistochemical Signal Amplification by Catalyzed Reporter Deposition and Its Application in Double Immunostaining. J. Histochem. Cytochem. Off. J. Histochem. Soc. 1996, 44, 1353–1362. [Google Scholar] [CrossRef]
- Tóth, Z.E.; Mezey, É. Simultaneous Visualization of Multiple Antigens with Tyramide Signal Amplification Using Antibodies from the Same Species. J. Histochem. Cytochem. 2007, 55, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Nakata, T.; Suzuki, N. Chromogen-Based Immunohistochemical Method for Elucidation of the Coexpression of Two Antigens Using Antibodies from the Same Species. J. Histochem. Cytochem. 2012, 60, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Remark, R.; Merghoub, T.; Grabe, N.; Litjens, G.; Damotte, D.; Wolchok, J.D.; Merad, M.; Gnjatic, S. In-Depth Tissue Profiling Using Multiplexed Immunohistochemical Consecutive Staining on Single Slide. Sci. Immunol. 2016, 1, aaf6925. [Google Scholar] [CrossRef] [PubMed]
- Gendusa, R.; Scalia, C.R.; Buscone, S.; Cattoretti, G. Elution of High-Affinity (>10−9 KD) Antibodies from Tissue Sections: Clues to the Molecular Mechanism and Use in Sequential Immunostaining. J. Histochem. Cytochem. Off. J. Histochem. Soc. 2014, 62, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Morris, T.J.; Stanley, E.F. A Simple Method for Immunocytochemical Staining with Multiple Rabbit Polyclonal Antibodies. J. Neurosci. Methods 2003, 127, 149–155. [Google Scholar] [CrossRef]
- Brouns, I.; Van, N.L.; Van Genechten, J.; Majewski, M.; Scheuermann, D.W.; Timmermans, J.-P.; Adriaensen, D. Triple Immunofluorescence Staining with Antibodies Raised in the Same Species to Study the Complex Innervation Pattern of Intrapulmonary Chemoreceptors. J. Histochem. Cytochem. 2002, 50, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Bandura, D.R.; Baranov, V.I.; Ornatsky, O.I.; Antonov, A.; Kinach, R.; Lou, X.; Pavlov, S.; Vorobiev, S.; Dick, J.E.; Tanner, S.D. Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Anal. Chem. 2009, 81, 6813–6822. [Google Scholar] [CrossRef]
- Giesen, C.; Wang, H.A.O.; Schapiro, D.; Zivanovic, N.; Jacobs, A.; Hattendorf, B.; Schüffler, P.J.; Grolimund, D.; Buhmann, J.M.; Brandt, S.; et al. Highly Multiplexed Imaging of Tumor Tissues with Subcellular Resolution by Mass Cytometry. Nat. Methods 2014, 11, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Ijsselsteijn, M.E.; van der Breggen, R.; Sarasqueta, A.F.; Koning, F.; de Miranda, N.F.C.C. A 40-Marker Panel for High Dimensional Characterization of Cancer Immune Microenvironments by Imaging Mass Cytometry. Front. Immunol. 2019, 10, 2534. [Google Scholar] [CrossRef]
- Wang, B.L.; Larsson, L.I. Simultaneous Demonstration of Multiple Antigens by Indirect Immunofluorescence or Immunogold Staining. Novel Light and Electron Microscopical Double and Triple Staining Method Employing Primary Antibodies from the Same Species. Histochemistry 1985, 83, 47–56. [Google Scholar] [CrossRef]
- Pardoll, D.M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nature reviews. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigneron, N. Human Tumor Antigens and Cancer Immunotherapy. BioMed Res. Res. Int. 2015, 2015, 948501. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Xu, C. Immune Checkpoint Signaling and Cancer Immunotherapy. Cell Res. 2020, 30, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Schildhaus, H.-U. Der Prädiktive Wert Der PD-L1-Diagnostik. Der Pathol. 2018, 39, 498–519. [Google Scholar] [CrossRef] [PubMed]
- Warren, C.; McDonald, D.; Capaldi, R.; Deehan, D.; Taylor, R.W.; Filby, A.; Turnbull, D.M.; Lawless, C.; Vincent, A.E. Decoding Mitochondrial Heterogeneity in Single Muscle Fibres by Imaging Mass Cytometry. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
Antibody Target | Clone | Species | Dilution | Provider | Retrieval |
---|---|---|---|---|---|
ADA2 (=CECR1) | Polyclonal | Rabbit | 1:80 | Prestige Sigma (HPA007888) | 20 min TRIS pH 6.1 |
Bcl6 | PG-B6p | Mouse | RTU | Dako (GA62561-2) | 2 min HPC 15 min TRIS pH 9 |
CD163 | EDHu-1 | Mouse | 1:500 | BioRad (MCA1853) | 2 min HPC |
CD68 | KP1 | Mouse | 1:1000 | Biolegend (916104) | 30 min TRIS pH 6.1 |
CD68 | PG-M1 | Mouse | RTU | Dako (GA61361-2) | 20 min TRIS pH 6.1 |
CD8 | C8/144B | Mouse | RTU | Dako (GA62361-2) | 2 min HPC |
FoxP3 | 236A/E7 | Mouse | 1:100 | Thermo Fisher eBioscience (14-4777-82) | 5 min HPC 20 min TRIS pH 6.1 |
KLRG1 | 13F12F2 | Mouse | 1:160 | Gift from H. Pircher (hybridoma supernatant) | Prot K |
LAMP1 (=CD107a) | eBioH4A3 | Mouse | 1:100 | Thermo Fisher (14-1079-80) | 15 min TRIS pH 9 |
PAX5 | DAK-Pax5 | Mouse | RTU | Dako (IR65061-2) | 20 min TRIS pH 6.1 |
PD-1 | Polyclonal | Goat | 1:100 | R&D Systems (AF1086) | 5 min HPC |
RBPJ | Polyclonal | Rabbit | 1:50 | Thermo Fisher (PA5-35187) | 2 min HPC |
Target Antibody | Chromogen/Fluorophore | Species/Enzyme | Dilution | Provider |
---|---|---|---|---|
Mouse + Rabbit | None, biotinylated | Goat | RTU | Dako (K5005) |
Mouse | Alexa555 | Donkey | 1:200 | Abcam (ab150106) |
Rabbit | Alexa488 | Goat | 1:200 | Life technologies (A-11008) |
Mouse | None, biotinylated | Goat | 1:200 | Abcam (ab6788) |
Red | AP | - | Dako (K5005) | |
Brown | HRP | - | Dako (K8010) | |
Blue | AP | - | Abcam (ab178453) | |
Fluorophore | ||||
Light blue | 1:200 | Interchim (Streptavidin—Fluoprobes 390A; FP-BM7700) | ||
Green | 1:200 | Thermo Fisher (Streptavidin AlexaFluor 488 Conjugate; S11223) | ||
Gold/orange | 1:200 | Thermo Fisher (Streptavidin AlexaFluor 555 Conjugate; S21381) | ||
Blue | - | Vectorlabs (Vectashield Antifade Mounting Medium with DAPI; H-1200-10) | ||
Metal | ||||
159Tb (conjugated to CD68 clone KP1) | - | Fluidigm (SKU 201300) | ||
170Er (conjugated to CD163 clone EDHu-1) | - | Fluidigm (SKU 201300) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Schoenfeld, A.; Bronsert, P.; Poc, M.; Fuller, A.; Filby, A.; Kraft, S.; Kurowski, K.; Sörensen, K.; Huber, J.; Pfeiffer, J.; et al. Multiple Immunostainings with Different Epitope Retrievals—The FOLGAS Protocol. Int. J. Mol. Sci. 2022, 23, 223. https://doi.org/10.3390/ijms23010223
von Schoenfeld A, Bronsert P, Poc M, Fuller A, Filby A, Kraft S, Kurowski K, Sörensen K, Huber J, Pfeiffer J, et al. Multiple Immunostainings with Different Epitope Retrievals—The FOLGAS Protocol. International Journal of Molecular Sciences. 2022; 23(1):223. https://doi.org/10.3390/ijms23010223
Chicago/Turabian Stylevon Schoenfeld, Anna, Peter Bronsert, Michael Poc, Andrew Fuller, Andrew Filby, Stefan Kraft, Konrad Kurowski, Kristin Sörensen, Julia Huber, Jens Pfeiffer, and et al. 2022. "Multiple Immunostainings with Different Epitope Retrievals—The FOLGAS Protocol" International Journal of Molecular Sciences 23, no. 1: 223. https://doi.org/10.3390/ijms23010223
APA Stylevon Schoenfeld, A., Bronsert, P., Poc, M., Fuller, A., Filby, A., Kraft, S., Kurowski, K., Sörensen, K., Huber, J., Pfeiffer, J., Proietti, M., Stehl, V., Werner, M., & Seidl, M. (2022). Multiple Immunostainings with Different Epitope Retrievals—The FOLGAS Protocol. International Journal of Molecular Sciences, 23(1), 223. https://doi.org/10.3390/ijms23010223