Role of Selenium in Viral Infections with a Major Focus on SARS-CoV-2
Abstract
:1. Introduction
2. Selenoproteins and Functions
3. Viral Infections, Reactive Oxygen Species, and Selenium
4. Viral Infections and Selenium
4.1. Coxsackie Virus
4.2. Influenza
4.3. Human Immunodeficiency Virus (HIV)
4.4. Hepatitis B and C Viruses (HBV and HCV)
4.5. Poliovirus
4.6. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
5. Nutrition and Recommended Intakes and Supplementation of Selenium
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krause, R.M. The Origin of Plagues: Old and New. Science 1992, 257, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Piret, J.; Boivin, G. Pandemics Throughout History. Front. Microbiol. 2021, 11, 3594. [Google Scholar] [CrossRef] [PubMed]
- Parvez, M.K.; Parveen, S. Evolution and Emergence of Pathogenic Viruses: Past, Present, and Future. Intervirology 2017, 60, 1–7. [Google Scholar] [CrossRef]
- WHO Coronavirus (COVID-19) Dashboard. WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/ (accessed on 18 August 2021).
- Avery, J.C.; Hoffmann, P.R. Selenium, Selenoproteins, and Immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef] [Green Version]
- Guillin, O.M.; Vindry, C.; Ohlmann, T.; Chavatte, L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019, 11, 2101. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, S.; Dharmaraj, S. Selenium and Selenoproteins: It’s Role in Regulation of Inflammation. Inflammopharmacology 2020, 28, 1. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in Human Health and Disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef]
- Beck, M.A.; Levander, O.A.; Handy, J. Selenium Deficiency and Viral Infection. J. Nutr. 2003, 133, 1463S–1467S. [Google Scholar] [CrossRef]
- Sheridan, D.; Zhong, N.; Carlson, B.; Perella, C.; Hatfield, D.; Beck, M. Decreased Selenoprotein Expression Alters the Immune Response during Influenza Virus Infection in Mice. J. Nutr. 2007, 137, 1466–1471. [Google Scholar] [CrossRef]
- Stỳblo, M.; Walton, F.; Harmon, A.; Sheridan, P.; Beck, M. Activation of Superoxide Dismutase in Selenium-Deficient Mice Infected with Influenza Virus. J. Trace Elem. Med. Biol. 2007, 21, 52–62. [Google Scholar] [CrossRef]
- Beck, M.; Handy, J.; Levander, O. Host Nutritional Status: The Neglected Virulence Factor. Trends Microbiol. 2004, 12, 417–423. [Google Scholar] [CrossRef]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular Pathways and Physiological Roles. Physiol. Rev. 2014, 94, 739. [Google Scholar] [CrossRef] [Green Version]
- Beck, M. Selenium and Host Defence towards Viruses. Proc. Nutr. Soc. 1999, 58, 707–711. [Google Scholar] [CrossRef] [Green Version]
- Vindry, C.; Ohlmann, T.; Chavatte, L. Translation Regulation of Mammalian Selenoproteins. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 2480–2492. [Google Scholar] [CrossRef]
- Tobe, R.; Mihara, H. Delivery of Selenium to Selenophosphate Synthetase for Selenoprotein Biosynthesis. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 2433–2440. [Google Scholar] [CrossRef]
- Roman, M.; Jitaru, P.; Barbante, C. Selenium Biochemistry and Its Role for Human Health. Metallomics 2013, 6, 25–54. [Google Scholar] [CrossRef]
- Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of Mammalian Selenoproteomes. Science 2003, 300, 1439–1443. [Google Scholar] [CrossRef] [Green Version]
- Ha, H.Y.; Alfulaij, N.; Berry, M.J.; Seale, L.A. From Selenium Absorption to Selenoprotein Degradation. Biol. Trace Elem. Res. 2019, 192, 26. [Google Scholar] [CrossRef]
- Sreelatha, A.; Yee, S.S.; Lopez, V.A.; Park, B.C.; Kinch, L.N.; Pilch, S.; Servage, K.A.; Zhang, J.; Jiou, J.; Karasiewicz-Urbańska, M.; et al. Protein AMPylation by an Evolutionarily Conserved Pseudokinase. Cell 2018, 175, 809. [Google Scholar] [CrossRef] [Green Version]
- Pitts, M.W.; Hoffmann, P.R. Endoplasmic Reticulum-Resident Selenoproteins as Regulators of Calcium Signaling and Homeostasis. Cell Calcium 2018, 70, 76. [Google Scholar] [CrossRef]
- Burk, R.F.; Hill, K.E.; Motley, A.K. Selenoprotein Metabolism and Function: Evidence for More than One Function for Selenoprotein P. J. Nutr. 2003, 133, 1517S–1520S. [Google Scholar] [CrossRef]
- Schweizer, U.; Streckfuß, F.; Pelt, P.; Carlson, B.A.; Hatfield, D.L.; Köhrle, J.; Schomburg, L. Hepatically Derived Selenoprotein P Is a Key Factor for Kidney but Not for Brain Selenium Supply. Biochem. J. 2005, 386, 221. [Google Scholar] [CrossRef] [PubMed]
- Carlson, B.A.; Moustafa, M.E.; Sengupta, A.; Schweizer, U.; Shrimali, R.; Rao, M.; Zhong, N.; Wang, S.; Feigenbaum, L.; Byeong, J.L.; et al. Selective Restoration of the Selenoprotein Population in a Mouse Hepatocyte Selenoproteinless Background with Different Mutant Selenocysteine TRNAs Lacking Um34. J. Biol. Chem. 2007, 282, 32591–32602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burk, R.F.; Hill, K.E. Selenoprotein P-Expression, Functions, and Roles in Mammals. Biochim. Biophys. Acta 2009, 1790, 1441. [Google Scholar] [CrossRef] [Green Version]
- Lubos, E.; Kelly, N.; Oldebeken, S.; Leopold, J.; Zhang, Y.; Loscalzo, J.; Handy, D. Glutathione Peroxidase-1 Deficiency Augments Proinflammatory Cytokine-Induced Redox Signaling and Human Endothelial Cell Activation. J. Biol. Chem. 2011, 286, 35407–35417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, M.A.; Kolbeck, P.C.; Rohr, L.H.; Shi, Q.; Morris, V.C.; Levander, O.A. Benign Human Enterovirus Becomes Virulent in Selenium-Deficient Mice. J. Med. Virol. 1994, 43, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Mustacich, D.; Powis, G. Thioredoxin Reductase. Biochem. J. 2000, 346, 1. [Google Scholar] [CrossRef]
- Holmgren, A.; Lu, J. Thioredoxin and Thioredoxin Reductase: Current Research with Special Reference to Human Disease. Biochem. Biophys. Res. Commun. 2010, 396, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Tarrago, L.; Kaya, A.; Weerapana, E.; Marino, S.M.; Gladyshev, V.N. Methionine Sulfoxide Reductases Preferentially Reduce Unfolded Oxidized Proteins and Protect Cells from Oxidative Protein Unfolding. J. Biol. Chem. 2012, 287, 24448. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.C.; Lee, S.-G.; Choo, M.-K.; Kim, J.H.; Lee, H.M.; Kim, S.; Fomenko, D.E.; Kim, H.-Y.; Park, J.M.; Gladyshev, V.N. Selenoprotein MsrB1 Promotes Anti-Inflammatory Cytokine Gene Expression in Macrophages and Controls Immune Response in Vivo. Sci. Rep. 2017, 7, 5119. [Google Scholar] [CrossRef]
- Colombo, G.; Meli, M.; Morra, G.; Gabizon, R.; Gasset, M. Methionine Sulfoxides on Prion Protein Helix-3 Switch on the α-Fold Destabilization Required for Conversion. PLoS ONE 2009, 4, e4296. [Google Scholar] [CrossRef] [Green Version]
- Marciel, M.P.; Hoffmann, P.R. Molecular Mechanisms by Which Selenoprotein K Regulates Immunity and Cancer. Biol. Trace Elem. Res. 2019, 192, 60. [Google Scholar] [CrossRef]
- Khomich, O.A.; Kochetkov, S.N.; Bartosch, B.; Ivanov, A.V. Redox Biology of Respiratory Viral Infections. Viruses 2018, 10, 392. [Google Scholar] [CrossRef] [Green Version]
- Molteni, C.G.; Principi, N.; Esposito, S. Reactive Oxygen and Nitrogen Species during Viral Infections. Free Radic. Res. 2014, 48, 1163–1169. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cell Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Locy, M.L.; Rogers, L.K.; Prigge, J.R.; Schmidt, E.E.; Arnér, E.S.J.; Tipple, T.E. Thioredoxin Reductase Inhibition Elicits Nrf2-Mediated Responses in Clara Cells: Implications for Oxidant-Induced Lung Injury. Antioxid. Redox Signal. 2012, 17, 1407. [Google Scholar] [CrossRef] [Green Version]
- Ammendolia, D.A.; Bement, W.M.; Brumell, J.H. Plasma Membrane Integrity: Implications for Health and Disease. BMC Biol. 2021, 19, 71. [Google Scholar] [CrossRef] [PubMed]
- Hardy, G.; Hardy, I.; Manzanares, W. Selenium Supplementation in the Critically Ill. Nutr. Clin. Pract. 2012, 27, 21–33. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Sies, H. Protection against Reactive Oxygen Species by Selenoproteins. Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 1478–1485. [Google Scholar] [CrossRef] [PubMed]
- Heyland, D.K.; Dhaliwal, R.; Suchner, U.; Berger, M.M. Antioxidant Nutrients: A Systematic Review of Trace Elements and Vitamins in the Critically Ill Patient. Intensive Care Med. 2004, 31, 327–337. [Google Scholar] [CrossRef]
- Beck, M.A.; Shi, Q.; Morris, V.C.; Levander, O.A. Rapid Genomic Evolution of a Non-Virulent Coxsackievirus B3 in Selenium-Deficient Mice Results in Selection of Identical Virulent Isolates. Nat. Med. 1995, 1, 433–436. [Google Scholar] [CrossRef] [PubMed]
- GQ, Y.; JS, C.; ZM, W.; KY, G.; LZ, Z.; XC, C.; XS, C. The Role of Selenium in Keshan Disease. Adv. Nutr. Res. 1984, 6, 203–231. [Google Scholar] [CrossRef]
- Xu, G.; Wang, S.; Gu, B.; Yang, Y.; Song, H.; Xue, W.; Liang, W.; Zhang, P. Further Investigation on the Role of Selenium Deficiency in the Aetiology and Pathogenesis of Keshan Disease. Biomed. Environ. Sci. 1997, 10, 316–326. [Google Scholar]
- Cheng, Y.Y.; Qian, P.C. The Effect of Selenium-Fortified Table Salt in the Prevention of Keshan Disease on a Population of 1.05 Million. Biomed. Environ. Sci. 1990, 3, 422–428. [Google Scholar] [PubMed]
- Wei-Han, Y. A Study of Nutritional and Bio-Geochemical Factors in the Occurrence and Development of Keshan Disease : The 6th Conference on Prevention for Rheumatic Fever and Rheumatic Heart Disease. JPN Circ. J. 1982, 46, 1201–1207. [Google Scholar] [CrossRef]
- Beck, M.A.; Williams-Toone, D.; Levander, O.A. Coxsackievirus B3-Resistant Mice Become Susceptible in Se/Vitamin E Deficiency. Free Radic. Biol. Med. 2003, 34, 1263–1270. [Google Scholar] [CrossRef]
- Beck, M.A.; Kolbeck, P.C.; Shi, Q.; Rohr, L.H.; Morris, V.C.; Levander, O.A. Increased Virulence of a Human Enterovirus (Coxsackievirus B3) in SeleniumDeficient Mice. J. Infect. Dis. 1994, 170, 351–357. [Google Scholar] [CrossRef]
- Beck, M.A.; Esworthy, R.S.; Ho, Y.-S.; Chu, F.-F. Glutathione Peroxidase Protects Mice from Viral-Induced Myocarditis. FASEB J. 1998, 12, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Jaspers, I.; Zhang, W.; Brighton, L.E.; Carson, J.L.; Styblo, M.; Beck, M.A. Selenium Deficiency Alters Epithelial Cell Morphology and Responses to Influenza. Free Radic. Biol. Med. 2007, 42, 1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, M.A.; Nelson, H.K.; Shi, Q.; Dael, P.; van Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A. Selenium Deficiency Increases the Pathology of an Influenza Virus Infection. FASEB J. 2001, 15, 1481–1483. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Beck, M.A. Selenium Deficiency Induced an Altered Immune Response and Increased Survival Following Influenza A/Puerto Rico/8/34 Infection. Exp. Biol. Med. 2017, 232, 412–419. [Google Scholar] [CrossRef]
- Ivory, K.; Prieto, E.; Spinks, C.; Armah, C.N.; Goldson, A.J.; Dainty, J.R.; Nicoletti, C. Selenium Supplementation Has Beneficial and Detrimental Effects on Immunity to Influenza Vaccine in Older Adults. Clin. Nutr. 2017, 36, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Lin, Z.; Guo, M.; Zhao, M.; Xia, Y.; Wang, C.; Xu, T.; Zhu, B. Inhibition of H1N1 Influenza Virus-Induced Apoptosis by Functionalized Selenium Nanoparticles with Amantadine through ROS-Mediated AKT Signaling Pathways. Int. J. Nanomed. 2018, 13, 2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Lin, Z.; Guo, M.; Xia, Y.; Zhao, M.; Wang, C.; Xu, T.; Chen, T.; Zhu, B. Inhibitory Activity of Selenium Nanoparticles Functionalized with Oseltamivir on H1N1 Influenza Virus. Int. Nanomed. 2017, 12, 5733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Chen, H.; Chen, D.; Zhao, M.; Lin, Z.; Guo, M.; Xu, T.; Chen, Y.; Hua, L.; Lin, T.; et al. The Inhibition of H1N1 Influenza Virus-Induced Apoptosis by Surface Decoration of Selenium Nanoparticles with β-Thujaplicin through Reactive Oxygen Species-Mediated AKT and P53 Signaling Pathways. ACS Omega 2020, 5, 30633. [Google Scholar] [CrossRef]
- Lin, Z.; Li, Y.; Gong, G.; Xia, Y.; Wang, C.; Chen, Y.; Hua, L.; Zhong, J.; Tang, Y.; Liu, X.; et al. Restriction of H1N1 Influenza Virus Infection by Selenium Nanoparticles Loaded with Ribavirin via Resisting Caspase-3 Apoptotic Pathway. Int. J. Nanomed. 2018, 13, 5787. [Google Scholar] [CrossRef] [Green Version]
- HIV/AIDS. Available online: https://www.who.int/data/gho/data/themes/hiv-aids (accessed on 25 August 2021).
- Baum, M.K. Role of Micronutrients in HIV-Infected Intravenous Drug Users. J. Acquir. Immune Defic. Syndr. 2000, 25 (Suppl. S1), S49–S52. [Google Scholar] [CrossRef] [PubMed]
- Campa, A.; Shor-Posner, G.; Indacochea, F.; Zhang, G.; Lai, H.; Asthana, D.; Scott, G.B.; Baum, M.K. Mortality Risk in Selenium-Deficient HIV-Positive Children. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1999, 20, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Osuna-Padilla, I.A.; Briceño, O.; Aguilar-Vargas, A.; Rodríguez-Moguel, N.C.; Villazon-De la Rosa, A.; Pinto-Cardoso, S.; Flores-Murrieta, F.J.; Perichart-Perera, O.; Tolentino-Dolores, M.; Vargas-Infante, Y.; et al. Zinc and Selenium Indicators and Their Relation to Immunologic and Metabolic Parameters in Male Patients with Human Immunodeficiency Virus. Nutrition 2020, 70, 110585. [Google Scholar] [CrossRef]
- Shivakoti, R.; Gupte, N.; Yang, W.T.; Mwelase, N.; Kanyama, C.; Tang, A.M.; Pillay, S.; Samaneka, W.; Riviere, C.; Berendes, S.; et al. Pre-Antiretroviral Therapy Serum Selenium Concentrations Predict WHO Stages 3, 4 or Death but Not Virologic Failure Post-Antiretroviral Therapy. Nutrients 2014, 6, 5061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloch, M.; John, M.; Smith, D.; Rasmussen, T.A.; Wright, E. Managing HIV-Associated Inflammation and Ageing in the Era of Modern ART. HIV Med. 2020, 21, 2–16. [Google Scholar] [CrossRef]
- Hurst, R.; Siyame, E.W.P.; Young, S.D.; Chilimba, A.D.C.; Joy, E.J.M.; Black, C.R.; Ander, E.L.; Watts, M.J.; Chilima, B.; Gondwe, J.; et al. Soil-Type Influences Human Selenium Status and Underlies Widespread Selenium Deficiency Risks in Malawi. Sci. Rep. 2013, 3, 1425. [Google Scholar] [CrossRef] [Green Version]
- Stone, C.A.; Kawai, K.; Kupka, R.; Fawzi, W.W. Role of Selenium in HIV Infection. Nutr. Rev. 2010, 68, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Kupka, R.; Msamanga, G.I.; Spiegelman, D.; Rifai, N.; Hunter, D.J.; Fawzi, W.W. Selenium Levels in Relation to Morbidity and Mortality among Children Born to HIV-Infected Mothers. Eur. J. Clin. Nutr. 2005, 59, 1250–1258. [Google Scholar] [CrossRef] [Green Version]
- Baum, M.K.; Shor-Posner, G.; Lai, S.; Zhang, G.; Lai, H.; Fletcher, M.A.; Sauberlich, H.; Page, J.B. High Risk of HIV-Related Mortality Is Associated with Selenium Deficiency. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1997, 15, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Constans, J.; Pellegrin, J.L.; Sergeant, C.; Simonoff, M.; Pellegrin, I.; Fleury, H.; Leng, B.; Conri, C. Serum Selenium Predicts Outcome in HIV Infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1995, 10, 392. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.M.; Carlson, B.A.; Grimm, T.A.; Kutza, J.; Berry, M.J.; Arreola, R.; Fields, K.H.; Shanmugam, I.; Jeang, K.T.; Oroszlan, S.; et al. Rhesus Monkey Simian Immunodeficiency Virus Infection as a Model for Assessing the Role of Selenium in AIDS. J. Acquir. Immune Defic. Syndr. 2002, 31, 453–463. [Google Scholar] [CrossRef]
- Repetto, M.; Reides, C.; Gomez Carretero, M.L.; Costa, M.; Griemberg, G.; Llesuy, S. Oxidative Stress in Blood of HIV Infected Patients. Clin. Chim. Acta 1996, 255, 107–117. [Google Scholar] [CrossRef]
- Suresh, D.R.; Annam, V.; Pratibha, K.; Prasad, B.V.M. Total Antioxidant Capacity a Novel Early Bio-Chemical Marker of Oxidative Stress in HIV Infected Individuals. J. Biomed. Sci. 2009, 16, 61. [Google Scholar] [CrossRef] [Green Version]
- Ogunro, P.S.; Ogungbamigbe, T.O.; Elemie, P.O.; Egbewale, B.E.; Adewole, T.A. Plasma Selenium Concentration and Glutathione Peroxidase Activity in HIV-1/AIDS Infected Patients: A Correlation with the Disease Progression. Niger. Postgrad. Med. J. 2006, 13, 1–5. [Google Scholar] [PubMed]
- Pace, G.W.; Leaf, C.D. The Role of Oxidative Stress in HIV Disease. Free Radic. Biol. Med. 1995, 19, 523–528. [Google Scholar] [CrossRef]
- Yano, S.; Colon, M.; Yano, N. An Increase of Acidic Isoform of Catalase in Red Blood Cells from HIV(+) Population. Mol. Cell. Biochem. 1996, 165, 77–81. [Google Scholar] [CrossRef]
- Gil, L.; Martínez, G.; González, I.; Tarinas, A.; Álvarez, A.; Giuliani, A.; Molina, R.; Tápanes, R.; Pérez, J.; León, O.S. Contribution to Characterization of Oxidative Stress in HIV/AIDS Patients. Pharmacol. Res. 2003, 47, 217–224. [Google Scholar] [CrossRef]
- Papadopulos-Eleopulos, E. Reappraisal of Aids—Is the Oxidation Induced by the Risk Factors the Primary Cause? Med. Hypotheses 1988, 25, 151–162. [Google Scholar] [CrossRef]
- Papadopulos-Eleopulos, E.; Hedland-Thomas, B.; Causer, D.A.; Dufty, A.N.P. An Alternative Explanation for the Radiosensitization of AIDS Patients. Int. J. Radiat. Oncol. Biol. Phys. 1989, 17, 695–697. [Google Scholar] [CrossRef]
- Buhl, R.; Holroyd, K.J.; Mastrangeli, A.; Cantin, A.M.; Jaffe, H.A.; Wells, F.B.; Saltini, C.; Crystal, R.G. Systemic Glutathione Deficiency In Symptom-Free Hiv-Seropositive Individuals. Lancet 1989, 334, 1294–1298. [Google Scholar] [CrossRef]
- Skurnick, J.; Bogden, J.; Baker, H.; Kemp, F.; Sheffet, A.; Quattrone, G.; Louria, D. Micronutrient Profiles in HIV-1-Infected Heterosexual Adults. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1996, 12, 75–83. [Google Scholar] [CrossRef]
- Delmas-Beauvieux, M.C.; Peuchant, E.; Couchouron, A.; Constans, J.; Sergeant, C.; Simonoff, M.; Pellegrin, J.L.; Leng, B.; Conri, C.; Clerc, M. The Enzymatic Antioxidant System in Blood and Glutathione Status in Human Immunodeficiency Virus (HIV)-Infected Patients: Effects of Supplementation with Selenium or Beta-Carotene. Am. J. Clin. Nutr. 1996, 64, 101–107. [Google Scholar] [CrossRef] [Green Version]
- McDermid, J.M.; Lalonde, R.G.; Gray-Donald, K.; Baruchel, S.; Kubow, S. Associations between Dietary Antioxidant Intake and Oxidative Stress in HIV-Seropositive and HIV-Seronegative Men and Women. J. Acquir. Immune Defic. Syndr. 2002, 29, 158–164. [Google Scholar] [CrossRef]
- Shiau, S.; Webber, A.; Strehlau, R.; Patel, F.; Coovadia, A.; Kozakowski, S.; Brodlie, S.; Yin, M.T.; Kuhn, L.; Arpadi, S.M. Dietary Inadequacies in HIV-Infected and Uninfected School-Aged Children in Johannesburg, South Africa HHS Public Access. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 332–337. [Google Scholar] [CrossRef]
- Anyabolu, H.C.; Adejuyigbe, E.A.; Adeodu, O.O. Serum Micronutrient Status of Haart-Naïve, HIV Infected Children in South Western Nigeria: A Case Controlled Study. AIDS Res. Treat 2014, 2014, 351043. [Google Scholar] [CrossRef] [Green Version]
- Ubesie, A.C.; Ibe, B.C.; Emodi, I.J.; Iloh, K.K. Serum Selenium Status of HIV-Infected Children on Care and Treatment in Enugu, Nigeria. SAJCH 2017, 11, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Bologna, R.; Indacochea, F.; Shor-Posner, G.; Mantero-Atienza, E.; Grazziutti, M.; Sotomayor, M.C.; Fletcher, M.A.; Cabrejos, C.; Scott, G.B.; Baum, M.K. Selenium and Immunity in HIV-1 Infected Pediatric Patients. J. Nutr. Immunol. 1994, 3, 41–49. [Google Scholar] [CrossRef]
- Allavena, C.; Dousset, B.; May, T.; Dubois, F.; Canton, P.; Belleville, F. Relationship of Trace Element, Immunological Markers, and HIV1 Infection Progression. Biol. Trace Elem. Res. 1995, 47, 133–138. [Google Scholar] [CrossRef]
- Look, M.; Rockstroh, J.; Rao, G.; Kreuzer, K.-A.; Barton, S.; Lemoch, H.; Sudhop, T.; Hoch, J.; Stockinger, K.; Spengler, U.; et al. Serum Selenium, Plasma Glutathione (GSH) and Erythrocyte Glutathione Peroxidase (GSH-Px)-Levels in Asymptomatic versus Symptomatic Human Immunodeficiency Virus-1 (HIV-1)-Infection. Eur. J. Clin. Nutr. 1997, 51, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Burbano, X.; Miguez-Burbano, M.J.; McCollister, K.; Zhang, G.; Rodriguez, A.; Ruiz, P.; Lecusay, R.; Shor-Posner, G. Impact of a Selenium Chemoprevention Clinical Trial on Hospital Admissions of HIV-Infected Participants. HIV Clin. Trials 2002, 3, 483–491. [Google Scholar] [CrossRef]
- Hurwitz, B.E.; Klaus, J.R.; Llabre, M.M.; Gonzalez, A.; Lawrence, P.J.; Maher, K.J.; Greeson, J.M.; Baum, M.K.; Shor-Posner, G.; Skyler, J.S.; et al. Suppression of Human Immunodeficiency Virus Type 1 Viral Load with Selenium Supplementation: A Randomized Controlled Trial. Arch. Intern. Med. 2007, 167, 148–154. [Google Scholar] [CrossRef]
- Kupka, R.; Mugusi, F.; Aboud, S.; Hertzmark, E.; Spiegelman, D.; Fawzi, W.W. Effect of Selenium Supplements on Hemoglobin Concentration and Morbidity among HIV-1-Infected Tanzanian Women. Clin. Infect. Dis. 2009, 48, 1475–1478. [Google Scholar] [CrossRef] [Green Version]
- Kupka, R.; Mugusi, F.; Aboud, S.; Msamanga, G.I.; Finkelstein, J.L.; Spiegelman, D.; Fawzi, W.W. Randomized, Double-Blind, Placebo-Controlled Trial of Selenium Supplements among HIV-Infected Pregnant Women in Tanzania: Effects on Maternal and Child Outcomes. Am. J. Clin. Nutr. 2008, 87, 1802–1808. [Google Scholar] [CrossRef]
- Baum, M.K.; Campa, A.; Lai, S.; Sales Martinez, S.; Tsalaile, L.; Burns, P.; Farahani, M.; Li, Y.; van Widenfelt, E.; Page, J.B.; et al. Effect of Micronutrient Supplementation on Disease Progression in Asymptomatic, Antiretroviral-Naive, HIV-Infected Adults in Botswana: A Randomized Clinical Trial. JAMA 2013, 310, 2154–2163. [Google Scholar] [CrossRef] [Green Version]
- Kamwesiga, J.; Mutabazi, V.; Kayumba, J.; Tayari, J.C.K.; Uwimbabazi, J.C.; Batanage, G.; Uwera, G.; Baziruwiha, M.; Ntizimira, C.; Murebwayire, A.; et al. Effect of Selenium Supplementation on CD4R T-Cell Recovery, Viral Suppression and Morbidity of HIV-Infected Patients in Rwanda: A Randomized Controlled Trial. AIDS 2015, 29, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Muzembo, B.A.; Ngatu, N.R.; Januka, K.; Huang, H.L.; Nattadech, C.; Suzuki, T.; Wada, K.; Ikeda, S. Selenium Supplementation in HIV-Infected Individuals: A Systematic Review of Randomized Controlled Trials. Clin. Nutr. ESPEN 2019, 34, 1–7. [Google Scholar] [CrossRef]
- Visser, M.E.; Durao, S.; Sinclair, D.; Irlam, J.H.; Siegfried, N. Micronutrient Supplementation in Adults with HIV Infection. Cochrane Database Syst. Rev. 2017, 2017, CD003650. [Google Scholar] [CrossRef] [Green Version]
- Global Hepatitis Report. 2017. Available online: https://www.who.int/publications/i/item/global-hepatitis-report-2017 (accessed on 16 August 2021).
- Wieland, S.F.; Chisari, F.V. Stealth and Cunning: Hepatitis B and Hepatitis C Viruses. J. Virol. 2005, 79, 9369. [Google Scholar] [CrossRef] [Green Version]
- Tsukuda, S.; Watashi, K. Hepatitis B Virus Biology and Life Cycle. Antiviral Res. 2020, 182, 104925. [Google Scholar] [CrossRef] [PubMed]
- Lauring, A.S.; Frydman, J.; Andino, R. The Role of Mutational Robustness in RNA Virus. Nat. Rev. Microbiol. 2013, 11, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.S.; Dilawar, S.; Ali, I.; Rauf, N. The Possible Role of Selenium Concentration in Hepatitis B and C Patients. Saudi J. Gastroenterol. 2012, 18, 106. [Google Scholar] [CrossRef]
- Rauf, N.; Tahir, S.S.; Dilawar, S.; Ahmad, I.; Parvez, S. Serum Selenium Concentration in Liver Cirrhotic Patients Suffering from Hepatitis B and C in Pakistan. Biol. Trace Elem. Res. 2011, 145, 144–150. [Google Scholar] [CrossRef]
- Himoto, T.; Yoneyama, H.; Kurokohchi, K.; Inukai, M.; Masugata, H.; Goda, F.; Haba, R.; Watababe, S.; Kubota, S.; Senda, S.; et al. Selenium Deficiency Is Associated with Insulin Resistance in Patients with Hepatitis C Virus–Related Chronic Liver Disease. Nutr. Res. 2011, 31, 829–835. [Google Scholar] [CrossRef]
- Abediankenari, S.; Ghasemi, M.; Nasehi, M.M.; Abedi, S.; Hosseini, V. Determination of Trace Elements in Patients with Chronic Hepatitis B. Acta Med. Iran. 2011, 49, 667–669. [Google Scholar]
- Ko, W.S.; Guo, C.-H.; Yeh, M.-S.; Lin, L.Y.; Hsu, G.S.W.; Chen, P.C.; Luo, M.C.; Lin, C.Y. Blood Micronutrient, Oxidative Stress, and Viral Load in Patients with Chronic Hepatitis C. World J. Gastroenterol. 2005, 11, 4697. [Google Scholar] [CrossRef]
- Bettinger, D.; Schultheiss, M.; Hennecke, N.; Panther, E.; Knüppel, E.; Blum, H.E.; Thimme, R.; Spangenberg, H.C. Selenium Levels in Patients with Hepatitis C Virus-Related Chronic Hepatitis, Liver Cirrhosis, and Hepatocellular Carcinoma: A Pilot Study. Hepatology 2013, 57, 2543–2544. [Google Scholar] [CrossRef]
- Reshi, M.L.; Su, Y.-C.; Hong, J.R. RNA Viruses: ROS-Mediated Cell Death. Int. J. Cell Biol. 2014, 2014, 467452. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.Y. Relevance of Reactive Oxygen Species in Liver Disease Observed in Transgenic Mice Expressing the Hepatitis B Virus X Protein. Lab. Anim. Res. 2020, 36, 6. [Google Scholar] [CrossRef]
- Yuan, K.; Lei, Y.; Chen, H.-N.; Chen, Y.; Zhang, T.; Li, K.; Xie, N.; Wang, K.; Feng, X.; Pu, Q.; et al. HBV-Induced ROS Accumulation Promotes Hepatocarcinogenesis through Snail-Mediated Epigenetic Silencing of SOCS3. Cell Death Differ. 2016, 23, 616. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Pemberton, P.W.; Smith, A.; McMahon, R.F.T.; Burrows, P.C.; Aboutwerat, A.; Warnes, T.W. Oxidative Stress in Chronic Hepatitis C: Not Just a Feature of Late Stage Disease. J. Hepatol. 2002, 36, 805–811. [Google Scholar] [CrossRef]
- Su, L.J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid. Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-Mediated Cellular Signaling. Oxid. Med. Cell. Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef] [Green Version]
- Ohl, K.; Tenbrock, K. Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression. Front. Immunol. 2018, 9, 2499. [Google Scholar] [CrossRef] [Green Version]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razzaq, Z.; Malik, A. Viral Load Is Associated with Abnormal Serum Levels of Micronutrients and Glutathione and Glutathione-Dependent Enzymes in Genotype 3 HCV Patients. BBA Clin. 2014, 2, 72. [Google Scholar] [CrossRef] [Green Version]
- Kundu, D.; Roy, A.; Mandal, T.; Bandyopadhyay, U.; Ghosh, E.; Ray, D. Oxidative Stress in Alcoholic and Viral Hepatitis. N. Am. J. Med. Sci. 2012, 4, 412. [Google Scholar] [CrossRef] [PubMed]
- Morbitzer, M.; Herget, T. Expression of Gastrointestinal Glutathione Peroxidase Is Inversely Correlated to the Presence of Hepatitis C Virus Subgenomic RNA in Human Liver Cells. J. Biol. Chem. 2005, 280, 8831–8841. [Google Scholar] [CrossRef] [Green Version]
- Dionisio, N.; Garcia-Mediavilla, M.; Sanchez-Campos, S.; Majano, P.L.; Benedicto, I.; Rosado, J.A.; Salido, G.M.; Gonzalez-Gallego, J. Hepatitis C Virus NS5A and Core Proteins Induce Oxidative Stress-Mediated Calcium Signalling Alterations in Hepatocytes. J. Hepatol. 2009, 50, 872–882. [Google Scholar] [CrossRef]
- Brault, C.; Lévy, P.; Duponchel, S.; Michelet, M.; Sallé, A.; Pécheur, E.-I.; Plissonnier, M.-L.; Parent, R.; Véricel, E.; Ivanov, A.V.; et al. Glutathione Peroxidase 4 Is Reversibly Induced by HCV to Control Lipid Peroxidation and to Increase Virion Infectivity. Gut 2016, 65, 144–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Cox, A.G.; Taylor, E.W. Hepatitis C Virus Encodes a Selenium-Dependent Glutathione Peroxidase Gene. Med. Klin 1999, 94, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Kiełczykowska, M.; Kocot, J.; Paździor, M.; Musik, I. Selenium—A Fascinating Antioxidant of Protective Properties. Adv. Clin. Exp. Med. 2018, 27, 245–255. [Google Scholar] [CrossRef]
- Bentley-Hewitt, K.L.; Chen, R.K.-Y.; Lill, R.E.; Hedderley, D.I.; Herath, T.D.; Matich, A.J.; McKenzie, M.J. Consumption of Selenium-Enriched Broccoli Increases Cytokine Production in Human Peripheral Blood Mononuclear Cells Stimulated Ex Vivo, a Preliminary Human Intervention Study. Mol. Nutr. Food Res. 2014, 58, 2350–2357. [Google Scholar] [CrossRef]
- Yu Yu, S.; Zhu, Y.J.; Li, W.G. Protective Role of Selenium against Hepatitis B Virus and Primary Liver Cancer in Qidong. Biol. Trace Elem. Res. 1997, 56, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Janbakhsh, A.; Mansouri, F.; Vaziri, S.; Sayad, B.; Afsharian, M.; Rahimi, M.; Shahebrahimi, K.; Salari, F. Effect of Selenium on Immune Response against Hepatitis B Vaccine with Accelerated Method in Insulin-Dependent Diabetes Mellitus Patients. Caspian J. Intern. Med. 2013, 4, 603. [Google Scholar]
- Berkson, B.M. A Conservative Triple Antioxidant Approach to the Treatment of Hepatitis C. Med. Klin. 1999, 94, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Groenbaek, K.; Friis, H.; Hansen, M.; Ring-Larsen, H.; Krarup, H.B. The Effect of Antioxidant Supplementation on Hepatitis C Viral Load, Transaminases and Oxidative Status: A Randomized Trial among Chronic Hepatitis C Virus-Infected Patients. Eur. J. Gastroenterol. Hepatol. 2006, 18, 985–989. [Google Scholar] [CrossRef]
- Tang, C.; Li, S.; Zhang, K.; Li, J.; Han, Y.; Zhan, T.; Zhao, Q.; Guo, X.; Zhang, J. Selenium Deficiency-Induced Redox Imbalance Leads to Metabolic Reprogramming and Inflammation in the Liver. Redox Biol. 2020, 36, 101519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, D.; Zhang, J.; Bao, J.; Tang, C.; Zhang, Z. The Role of Necroptosis and Apoptosis through the Oxidative Stress Pathway in the Liver of Selenium-Deficient Swine. Metallomics 2020, 12, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Burk, R.F.; Hill, K.E.; Nakayama, A.; Mostert, V.; Levander, X.A.; Motley, A.K.; Freeman, M.L.; Austin, L.M. Selenium Deficiency Activates Mouse Liver Nrf2-ARE but Vitamin E Deficiency Does Not. Free Radic. Biol. Med. 2008, 44, 1617. [Google Scholar] [CrossRef] [Green Version]
- Irmak, M.; Ince, G.; Ozturk, M.; Cetin-Atalay, R. Acquired Tolerance of Hepatocellular Carcinoma Cells to Selenium Deficiency: A Selective Survival Mechanism? Cancer Res. 2003, 63, 6707–6715. [Google Scholar]
- Burrill, C.P.; Westesson, O.; Schulte, M.B.; Strings, V.R.; Segal, M.; Andino, R. Global RNA Structure Analysis of Poliovirus Identifies a Conserved RNA Structure Involved in Viral Replication and Infectivity. J. Virol. 2013, 87, 11670–11683. [Google Scholar] [CrossRef] [Green Version]
- Steinbrenner, H.; Al-Quraishy, S.; Dkhil, M.A.; Wunderlich, F.; Sies, H. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections. Adv. Nutr. 2015, 6, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broome, C.S.; McArdle, F.; Kyle, J.A.M.; Andrews, F.; Lowe, N.M.; Hart, C.A.; Arthur, J.R.; Jackson, M.J. An Increase in Selenium Intake Improves Immune Function and Poliovirus Handling in Adults with Marginal Selenium Status. Am. J. Clin. Nutr. 2004, 80, 154–162. [Google Scholar] [CrossRef]
- Hoffmann, P.R.; Berry, M.J. The Influence of Selenium on Immune Responses. Mol. Nutr. Food Res. 2008, 52, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054. [Google Scholar] [CrossRef]
- Dai, M.; Liu, D.; Liu, M.; Zhou, F.; Li, G.; Chen, Z.; Zhang, Z.; You, H.; Wu, M.; Zheng, Q.; et al. Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A Multicenter Study during the COVID-19 Outbreak. Cancer Discov. 2020, 10, 783. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Li, W.; Xie, J.; Hou, Y.; You, C. Cytokine Storm Induced by SARS-CoV-2. Clin. Chim. Acta 2020, 509, 280. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; Collaboration, H.A.S. UK COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet 2020, 395, 1033. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, K.; Wei, H.; Chen, W.; Wang, W.; Jia, L.; Liu, Q.; Zhang, J.; Shan, T.; Peng, Z.; et al. Dynamic Relationship between D-dimer and COVID-19 Severity. Br. J. Haematol. 2020, 190, e24–e27. [Google Scholar] [CrossRef]
- Valenza, M.; Steardo, L., Jr.; Steardo, L.; Verkhratsky, A.; Scuderi, C. Systemic Inflammation and Astrocyte Reactivity in the Neuropsychiatric Sequelae of COVID-19: Focus on Autism Spectrum Disorders. Front. Cell. Neurosci. 2021, 15, 748136. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Kang, H.; Li, S.; Zhao, X. Understanding the Neurotropic Characteristics of SARS-CoV-2: From Neurological Manifestations of COVID-19 to Potential Neurotropic Mechanisms. J. Neurol. 2020, 267, 1. [Google Scholar] [CrossRef]
- Nemoto, W.; Yamagata, R.; Nakagawasai, O.; Nakagawa, K.; Hung, W.Y.; Fujita, M.; Tadano, T.; Tan-No, K. Effect of Spinal Angiotensin-Converting Enzyme 2 Activation on the Formalin-Induced Nociceptive Response in Mice. Eur. J. Pharmacol. 2020, 872, 172950. [Google Scholar] [CrossRef]
- Satarker, S.; Nampoothiri, M. Involvement of the Nervous System in COVID-19: The Bell Should Toll in the Brain. Life Sci. 2020, 262, 118568. [Google Scholar] [CrossRef]
- Merad, M.; Martin, J.C. Pathological Inflammation in Patients with COVID-19: A Key Role for Monocytes and Macrophages. Nat. Rev. Immunol. 2020, 20, 1. [Google Scholar] [CrossRef]
- Erickson, M.A.; Rhea, E.M.; Knopp, R.C.; Banks, W.A. Interactions of SARS-CoV-2 with the Blood–Brain Barrier. Int. J. Mol. Sci. 2021, 22, 2681. [Google Scholar] [CrossRef]
- Hiffler, L.; Rakotoambinina, B. Selenium and RNA Virus Interactions: Potential Implications for SARS-CoV-2 Infection (COVID-19). Front. Nutr. 2020, 7, 164. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, X.; Ma, J.; Mu, Y.; Wang, Y.; Yang, S.; Wu, Y.; Wu, F.; Zhou, Y. Selenium (Se) Plays a Key Role in the Biological Effects of Some Viruses: Implications for COVID-19. Environ. Res. 2021, 196, 110984. [Google Scholar] [CrossRef]
- Samir, D. Oxidative Stress Associated with SARS-CoV-2 (COVID-19) Increases the Severity of the Lung Disease—A Systematic Review. J. Infect. Dis. Epidemiol. 2020, 6, 121. [Google Scholar] [CrossRef]
- Mahmoodpoor, A.; Hamishehkar, H.; Shadvar, K.; Ostadi, Z.; Sanaie, S.; Saghaleini, S.H.; Nader, N.D. The Effect of Intravenous Selenium on Oxidative Stress in Critically Ill Patients with Acute Respiratory Distress Syndrome. Immunol. Investig. 2019, 48, 147–159. [Google Scholar] [CrossRef]
- Wang, F.; Nie, J.; Wang, H.; Zhao, Q.; Xiong, Y.; Deng, L.; Song, S.; Ma, Z.; Mo, P.; Zhang, Y. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J. Infect. Dis. 2020, 221, 1762–1769. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Rose, A.H.; Hoffmann, P.R. The Role of Selenium in Inflammation and Immunity: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2012, 16, 705. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, F.K.W.; Hashimoto, A.C.; Shafer, L.A.; Dow, S.; Berry, M.J.; Hoffmann, P.R. Dietary Selenium Modulates Activation and Differentiation of CD4+ T Cells in Mice through a Mechanism Involving Cellular Free Thiols. J. Nutr. 2010, 140, 1155. [Google Scholar] [CrossRef]
- Zhang, J.; Taylor, E.W.; Bennett, K.; Saad, R.; Rayman, M.P. Association between Regional Selenium Status and Reported Outcome of COVID-19 Cases in China. Am. J. Clin. Nutr. 2020, 111, 1297–1299. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Zhang, A.R.; Lu, Q.B.; Zhang, X.A.; Zhang, Z.J.; Guan, X.G.; Che, T.L.; Yang, Y.; Li, H.; Liu, W.; et al. Association between Fatality Rate of COVID-19 and Selenium Deficiency in China. BMC Infect. Dis. 2021, 21, 452. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, S.Y.; Geng, J.; Zhu, P.Y.; Liang, R.N.; Yuan, M.Z.; Wang, B.; Jin, Y.F.; Zhang, R.G.; Zhang, W.D.; et al. Preliminary Analysis on COVID-19 Case Spectrum and Spread Intensity in Different Provinces in China except Hubei Province. Zhonghua Liu Xing Bing Xue Za Zhi 2020, 41, 1601–1605. [Google Scholar] [CrossRef]
- Zeng, H.-L.; Zhang, B.; Wang, X.; Yang, Q.; Cheng, L. Urinary Trace Elements in Association with Disease Severity and Outcome in Patients with COVID-19. Environ. Res. 2021, 194, 110670. [Google Scholar] [CrossRef]
- Im, J.H.; Je, Y.S.; Baek, J.; Chung, M.-H.; Kwon, H.Y.; Lee, J.-S. Nutritional Status of Patients with COVID-19. Int. J. Infect. Dis. 2020, 100, 390. [Google Scholar] [CrossRef]
- Majeed, M.; Nagabhushanam, K.; Gowda, S.; Mundkur, L. An Exploratory Study of Selenium Status in Healthy Individuals and in Patients with COVID-19 in a South Indian Population: The Case for Adequate Selenium Status. Nutrition 2021, 82, 111053. [Google Scholar] [CrossRef] [PubMed]
- Younesian, O.; Khodabakhshi, B.; Abdolahi, N.; Norouzi, A.; Behnampour, N.; Hosseinzadeh, S.; Alarzi, S.S.H.; Joshaghani, H. Decreased Serum Selenium Levels of COVID-19 Patients in Comparison with Healthy Individuals. Biol. Trace Elem. Res. 2021, 1–6. [Google Scholar] [CrossRef]
- Skalny, A.; Timashev, P.S.; Aschner, M.; Aaseth, J.; Chernova, L.N.; Belyaev, V.E.; Grabeklis, A.R.; Notova, S.V.; Lobinski, R.; Tsatsakis, A.; et al. Serum Zinc, Copper, and Other Biometals Are Associated with COVID-19 Severity Markers. Metabolites 2021, 11, 244. [Google Scholar] [CrossRef]
- Moghaddam, A.; Heller, R.A.; Sun, Q.; Seelig, J.; Cherkezov, A.; Seibert, L.; Hackler, J.; Seemann, P.; Diegmann, J.; Pilz, M.; et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients 2020, 12, 2098. [Google Scholar] [CrossRef] [PubMed]
- Pincemail, J.; Cavalier, E.; Charlier, C.; Cheramy–Bien, J.-P.; Brevers, E.; Courtois, A.; Fadeur, M.; Meziane, S.; Goff, C.L.; Misset, B.; et al. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants 2021, 10, 257. [Google Scholar] [CrossRef]
- Polonikov, A. Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious and Death in COVID-19 Patients. ACS Infect. Dis. 2020, 6, 1558–1562. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, R.I.; Freeman, P.R.; Bruzzese, J. Efficacy of Glutathione Therapy in Relieving Dyspnea Associated with COVID-19 Pneumonia: A Report of 2 Cases. Respir. Med. Case Rep. 2020, 30, 101063. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Lipinski, B. Selenium Supplementation in the Prevention of Coronavirus Infections (COVID-19). Med. Hypotheses 2020, 143, 109878. [Google Scholar] [CrossRef]
- Berggren, M.; Gallegos, A.; Gasdaska, J.; Powis, G. Cellular Thioredoxin Reductase Activity Is Regulated by Selenium. Anticancer Res. 1997, 17, 3377–3380. [Google Scholar]
- Broman, L.M.; Bernardson, A.; Bursell, K.; Wernerman, J.; Fläring, U.; Tjäder, I. Serum Selenium in Critically Ill Patients: Profile and Supplementation in a Depleted Region. Acta Anaesthesiol. Scand. 2020, 64, 803–809. [Google Scholar] [CrossRef]
- Baker, R.D.; Baker, S.S.; Rao, R. Selenium Deficiency in Tissue Culture: Implications for Oxidative Metabolism. J. Pediatr. Gastroenterol. Nutr. 1998, 27, 387–392. [Google Scholar] [CrossRef]
- Kanth Manne, B.; Denorme, F.; Middleton, E.A.; Portier, I.; Rowley, J.W.; Stubben, C.; Petrey, A.C.; Tolley, N.D.; Guo, L.; Cody, M.; et al. Platelet Gene Expression and Function in Patients with COVID-19. Blood 2020, 136, 1317. [Google Scholar] [CrossRef] [PubMed]
- Ersöz, G.; Yakaryilmaz, A.; Turan, B. Effect of Sodium Selenite Treatment on Platelet Aggregation of Streptozotocin-Induced Diabetic Rats. Thromb Res. 2003, 111, 363–367. [Google Scholar] [CrossRef]
- Varlamova, E.G.; Turovsky, E.A.; Blinova, E.V. Therapeutic Potential and Main Methods of Obtaining Selenium Nanoparticles. Int. J. Mol. Sci. 2021, 22, 10808. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, J.; Hou, J.; Chen, C. Free Radical Scavenging Efficiency of Nano-Se in Vitro. Free Radic. Biol. Med. 2003, 35, 805–813. [Google Scholar] [CrossRef]
- Khurana, A.; Tekula, S.; Saifi, M.A.; Venkatesh, P.; Godugu, C. Therapeutic Applications of Selenium Nanoparticles. Biomed. Pharmacother. 2019, 111, 802–812. [Google Scholar] [CrossRef]
- Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Peng, Q.; Baron, M.; Melcova, M.; Opatrilova, R.; Zidkova, J.; et al. Nano-Selenium and Its Nanomedicine Applications: A Critical Review. Int. J. Nanomedicine 2018, 13, 2107. [Google Scholar] [CrossRef] [Green Version]
- Turovsky, E.A.; Varlamova, E.G. Mechanism of Ca2+-Dependent pro-Apoptotic Action of Selenium Nanoparticles, Mediated by Activation of Cx43 Hemichannels. Biology 2021, 10, 743. [Google Scholar] [CrossRef]
- He, L.; Zhao, J.; Wang, L.; Liu, Q.; Fan, Y.; Li, B.; Yu, Y.L.; Chen, C.; Li, Y.F. Using Nano-Selenium to Combat Coronavirus Disease 2019 (COVID-19)? Nano Today 2021, 36, 101037. [Google Scholar] [CrossRef]
- Qiao, Q.; Liu, X.; Yang, T.; Cui, K.; Kong, L.; Yang, C.; Zhang, Z. Nanomedicine for Acute Respiratory Distress Syndrome: The Latest Application, Targeting Strategy, and Rational Design. Acta Pharm. Sin. B 2021, 11, 3060. [Google Scholar] [CrossRef]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2 and Discovery of Its Inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Azad, G.K.; Tomar, R.S. Ebselen, a Promising Antioxidant Drug: Mechanisms of Action and Targets of Biological Pathways. Mol. Biol. Rep. 2014, 41, 4865–4879. [Google Scholar] [CrossRef]
- Gabriele, M.; Pucci, L. Diet Bioactive Compounds: Implications for Oxidative Stress and Inflammation in the Vascular System. Endocr. Metab. Immune Disord. Drug Targets 2017, 17, 264–275. [Google Scholar] [CrossRef]
- Hajat, C.; Stein, E. The Global Burden of Multiple Chronic Conditions: A Narrative Review. Prev. Med. Rep. 2018, 12, 284. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Peng, F.; Xu, B.; Zhao, J.; Liu, H.; Peng, J.; Li, Q.; Jiang, C.; Zhou, Y.; Liu, S.; et al. Risk Factors of Critical & Mortal COVID-19 Cases: A Systematic Literature Review and Meta-Analysis. J. Infect. 2020, 81, e16. [Google Scholar] [CrossRef]
- Neuhouser, M.L. The Importance of Healthy Dietary Patterns in Chronic Disease Prevention. Nutr. Res. 2019, 70, 3. [Google Scholar] [CrossRef] [PubMed]
- Zabetakis, I.; Lordan, R.; Norton, C.; Tsoupras, A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients 2020, 12, 1466. [Google Scholar] [CrossRef]
- Semba, R.D.; Tang, A.M. Micronutrients and the Pathogenesis of Human Immunodeficiency Virus Infection. Br. J. Nutr. 1999, 81, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Pecora, F.; Persico, F.; Argentiero, A.; Neglia, C.; Esposito, S. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients 2020, 12, 3198. [Google Scholar] [CrossRef]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef] [Green Version]
- Pecoraro, L.; Martini, L.; Salvottini, C.; Carbonare, L.D.; Piacentini, G.; Pietrobelli, A. The Potential Role of Zinc, Magnesium and Selenium against COVID-19: A Pragmatic Review. Child. Adolesc. Obes. 2021, 4, 127–130. [Google Scholar] [CrossRef]
- Shakoor, H.; Feehan, J.; al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Apostolopoulos, V.; Stojanovska, L. Immune-Boosting Role of Vitamins D, C, E, Zinc, Selenium and Omega-3 Fatty Acids: Could They Help against COVID-19? Maturitas 2021, 143, 1. [Google Scholar] [CrossRef]
- Cámara, M.; Sánchez-Mata, M.C.; Fernández-Ruiz, V.; Cámara, R.M.; Cebadera, E.; Domínguez, L. A Review of the Role of Micronutrients and Bioactive Compounds on Immune System Supporting to Fight against the COVID-19 Disease. Foods 2021, 10, 1088. [Google Scholar] [CrossRef]
- FAO/WHO. Human Vitamin and Mineral Requirments. In Chapter 15, Selenium. 2002. Available online: https://www.fao.org/3/Y2809E/y2809e0l.htm (accessed on 19 December 2021).
- Harthill, M. Review: Micronutrient Selenium Deficiency Influences Evolution of Some Viral Infectious Diseases. Biol. Trace Elem. Res. 2011, 143, 1325. [Google Scholar] [CrossRef]
- Waegeneers, N.; Thiry, C.; de Temmerman, L.; Ruttens, A. Predicted Dietary Intake of Selenium by the General Adult Population in Belgium. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2013, 30, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Sunde, R. Selenium. In Modern Nutrition in Health and Disease; Ross, A., Caballero, B., Cousins, R., Tucker, K., Ziegler, T., Eds.; Lippincott Williams & Williams: Philadelphia, PA, USA, 2012; pp. 225–237. [Google Scholar]
- Chun, O.K.; Floegel, A.; Chung, S.-J.; Chung, C.E.; Song, W.O.; Koo, S.I. Estimation of Antioxidant Intakes from Diet and Supplements in U.S. Adults. J. Nutr. 2010, 140, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- World Health Organization and Food and Agriculture Organization. Food as a Source of Nutrients. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed. World Health Organization and Food and Agriculture Organization of the United Nations. 2004. Available online: https://www.who.int/publications/i/item/9241546123 (accessed on 21 December 2021).
- Scientific Opinion on Dietary Reference Values for Selenium. EFSA J. 2014, 12, 3846. [CrossRef]
- MacFarquhar, J.K.; Broussard, D.L.; Melstrom, P.; Hutchinson, R.; Wolkin, A.; Martin, C.; Burk, R.F.; Dunn, J.R.; Green, A.L.; Hammond, R.; et al. Acute Selenium Toxicity Associated with a Dietary Supplement. Arch. Intern. Med. 2010, 170, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.C.; Kim, J.B.; Heo, Y.; Park, D.C.; Lee, I.S.; Chung, H.W.; Han, J.H.; Chung, W.G.; Vendeland, S.C.; Whanger, P.D. Metabolism of Subtoxic Level of Selenite by Double-Perfused Small Intestine in Rats. Biol. Trace Elem. Res. 2004, 98, 143–157. [Google Scholar] [CrossRef]
- Rayman, M.P. Food-Chain Selenium and Human Health: Emphasis on Intake. Br. J. Nutr. 2008, 100, 254–268. [Google Scholar] [CrossRef] [Green Version]
Topic | Conclusions | References |
---|---|---|
Viral Infections, Reactive Oxygen Species (ROS), and Selenium (Se) | Viral Infections are associated with ROS. Glutathione peroxidases (GPXs) and thioredoxin reductases (TXNRDs) (family of selenoproteins) play a role as antioxidants and confer protection against free radicals as a result of viral infection. Se intake may affect GPXs and TXNRDs levels. | [8,35,36,40,42] |
Coxsackie Virus | Keshan disease responsive to sodium selenite supplementation. Keshan disease due to infection with Coxsackie B virus and Se deficiency. Benign Coxsackie B virus became virulent when mice were Se-deficient and greater pathology in cardiovirulent Coxsackie B virus strain. Se deficiency was responsible for a change in the genotype of the benign coxsackie virus CVB3/0 that caused it to become virulent and decreased the activity of GPX. | [28,45,47,48,49,50,51,52,54] |
Influenza | Se deficiency has been associated with poor selenoprotein expression, altered antioxidant response, and viral genome changes in viral influenza A infection. Se supplementation in healthy older adults yielded beneficial and detrimental effects related to anti-flu immunity. | [11,12,13,55,56] |
Human Immunodeficiency Virus (HIV) | Se deficiency was associated with advanced immunodeficiency and mortality. Se supplementation in HIV has demonstrated benefits on HIV disease progression. | [63,68,69,70,71,86,87,88,91,92,93,94,95,96] |
Hepatitis B and C Viruses | Se levels associated with HBV/HCV infection, severity, and progression of disease. Depletion of GSH and GPX in HBV/HCV. Se supplementation in areas of low intake may prevent HBV and primary liver cancer. Se deficiency associated with inflammation of the liver. | [103,104,105,106,117,118,125,129] |
Poliovirus | Supplementation of Se to improve the response of polio vaccine remains inconclusive. | [135,136] |
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) | Se soil status may be associated with COVID-19 incidence and severity of COVID-19 outcomes in China. COVID-19 infection and severity associated with lower Se levels, greater oxidative stress, and lower antioxidant status. | [158,159,161,162,163,164,165,166,167] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, S.S.; Huang, Y.; Acuna, L.; Laverde, E.; Trujillo, D.; Barbieri, M.A.; Tamargo, J.; Campa, A.; Baum, M.K. Role of Selenium in Viral Infections with a Major Focus on SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 280. https://doi.org/10.3390/ijms23010280
Martinez SS, Huang Y, Acuna L, Laverde E, Trujillo D, Barbieri MA, Tamargo J, Campa A, Baum MK. Role of Selenium in Viral Infections with a Major Focus on SARS-CoV-2. International Journal of Molecular Sciences. 2022; 23(1):280. https://doi.org/10.3390/ijms23010280
Chicago/Turabian StyleMartinez, Sabrina Sales, Yongjun Huang, Leonardo Acuna, Eduardo Laverde, David Trujillo, Manuel A. Barbieri, Javier Tamargo, Adriana Campa, and Marianna K. Baum. 2022. "Role of Selenium in Viral Infections with a Major Focus on SARS-CoV-2" International Journal of Molecular Sciences 23, no. 1: 280. https://doi.org/10.3390/ijms23010280
APA StyleMartinez, S. S., Huang, Y., Acuna, L., Laverde, E., Trujillo, D., Barbieri, M. A., Tamargo, J., Campa, A., & Baum, M. K. (2022). Role of Selenium in Viral Infections with a Major Focus on SARS-CoV-2. International Journal of Molecular Sciences, 23(1), 280. https://doi.org/10.3390/ijms23010280