Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes
Abstract
:1. Introduction
2. Genomics Biomarkers for T2D
2.1. Blood
Sample Type | Profiling Method | Sample Size (Controls, T2D, Other) | Biomarker | Ref |
---|---|---|---|---|
Blood | Microarray | 178, 178 | FTO, PSMD6, SLC44A3, C2CD4B | [31] |
Blood | GWAS, microarray | 33,241 ^ | G6PD | [35] |
Blood | qRT-PCR | 3669, 2409 | KCNK11, PPARG, TCF7L2 | [25] |
Blood | qRT-PCR | 23, 23, 6 ** | LRRK2/MUC19 (mtDNACN and CFmtDNA) | [37] |
Blood | Microarray | 2776 ^ | NOTCH2, BCL11A, THADA, IGF2BP2, PPARG, ADAMTS9, CDKAL1, VEGFA, JAZF1, SLC30A8, CDKNA/2B, HHEX, CDC123, TCF7L2, KCNJ11, INS, DCD, TSPAN8 | [27] |
Blood | Microarray | 9092, 1181 | Panel of Genes DIAGRAM | [32] |
Blood | qRT-PCR, DNA Sequencing | 3471 ^ | Panel of Genes DIAGRAMv3 | [30] |
Blood | qRT-PCR | 2598, 2309 | TCF7L2, KCNJ11, CDKN2A, PPARG, ADAM30, CDKN2B, IGF2BP2, FTO, CDKAL1, SLC30A8, TSPAN8, CDC123, WFS1, TCF2, ADAMTS9, HHEX-IDE, THADA, JAZF1 | [26] |
Blood | qRT-PCR | 18,831 ^ | TCF7L2, PPARG, FTO, KCNJ11, NOTCH2, WFS1, CDKAL1, IGF2BP2, SLC30A8, JAZF1, and HHEX | [28] |
Blood | Microarray | 3171, 210 | UGT1A1 | [34] |
Blood Plasma | qRT-PCR | 20, 25, 25 ** | GAPDH | [36] |
Blood Plasma | qRT-PCR | 359, 359 | SHBG | [33] |
2.2. Urine
2.3. Other Non-Invasive Biomarkers and the Use of Metagenomics
Sample Type | Profiling Method | Sample Size (Controls, T2D, Other) | Biomarker | Ref |
---|---|---|---|---|
Fecal | 16S rRNA sequencing | 20, 20 | Gut microbiome (Ruminococcaceae, Lachnospiraceae, and Enterobacteriaceae) | [48] |
Fecal | 16S rRNA sequencing | 10, 10 | Gut microbiome (Akkermansia muciniphila) | [49] |
Fecal | 16S rRNA sequencing | 1427, 122, 1305 # | Gut microbiome (Bacterial sepecies with enriched ARG) | [50] |
Fecal | 16S rRNA sequencing | 214, 48, 17 $, 151 * | Gut microbiome (Escherichia, Veillonella, Blautia and Anaerostipes) | [51] |
Fecal | 16S rRNA sequencing | 55, 0, 71 #, 38 ** | Gut microbiome (Ruminococcus torques) | [52] |
Saliva | 16S rRNA sequencing | 27, 9, 31 #, 20 $, 46 ** | Oral Microbiome (Bulleidia, Ruminococcaceae, and Helicobacter pylori) | [47] |
3. Transcriptomics Biomarkers of T2D
3.1. Blood
Sample Type | Profiling Method | Sample Size (Controls, T2D, Other) | Biomarker | Ref |
---|---|---|---|---|
Leukocytes | qRT-PCR | 0, 35, 35 $ | SOD1 | [72] |
Monocytes | qRT-PCR | 30, 30, 30 ** | TLR2, TLR4 | [68] |
PBMC | qRT-PCR | 30, 30 | GLB1, p16, p21, p53, IL-6, TNF-a, SOCS-3, ERRγ, PPAR-γ, NOD-2, CYP2C9 | [61] |
PBMC | qRT-PCR | 20, 20 | TRAF-6, NF-kB, SOCS-3 | [64] |
Plasma | qRT-PCR | 30, 30, 30 * | NF-kB | [62] |
Plasma | qRT-PCR | 50, 55, 35 ** | Vaspin | [69] |
Plasma exosomes | qRT-PCR | 10, 15, 15 ** | AEBP1 | [66] |
Platelet | qRT-PCR | 46, 43, 48 *, 36 ** | SFRP4 | [70] |
Serum | qRT-PCR | 45, 45, 45 #, 45 ** | BSP | [71] |
Serum | qRT-PCR | 41, 33, 54 ** | TTP, IL-6, IL-8 | [60] |
Serum exosome | qRT-PCR | 0, 20, 24 ** | VEGF | [67] |
Whole blood | qRT-PCR | 110, 148 | IL-23, TNF-a, IFN-g | [63] |
Whole blood | qRT-PCR | 32, 71 | Leptin | [65] |
3.2. Urine
Sample Type | Profiling Method | Sample Size (Controls, T2D, Other) | Biomarker | Ref |
---|---|---|---|---|
Urinary exosomes | RNA sequencing and qRT-PCR | 41, 33, 54 ** | TTP, IL-6, IL-8 | [60] |
Urine | qRT-PCR | 20, 20, 40 ** | NPHS1, NPHS2, PODXL | [73] |
Urine | qRT-PCR | 18, 29 #, 166, 34 ** | UMOD, SLC12A1, NDUFB2, OAZ1 | [74] |
3.3. Other Non-Invasive Biomarkers
4. Epigenomics Biomarkers for T2D
4.1. Blood
4.1.1. DNA Methylation
Sample Type | Profiling Method | Sample Size (Controls, T2D, Other) | Biomarker | Ref |
---|---|---|---|---|
Peripheral blood leukocytes | Pyrosequencing | 11, 25 | 4 CpG sites (PEG3) | [103] |
Whole Blood | EpiTYPER assay | 93,93 | 13 CpG sites (TCF7L2) | [97] |
Whole Blood | Methylation-specific polymerase chain reaction (MSPCR) | 45, 77 | 3 CpG sites (TFAM) | [93] |
Whole Blood | Pyrosequencing | 441, 509 | 5 CpG sites (SLC30A8) | [99] |
Whole Blood | Microarray | 120, 152 | 7 CpG sites (PRKCZ) | [96] |
Whole Blood | Microarray | 93, 30 | ABCG1 and CCDC57 | [82] |
Whole Blood | Microarray | 6760, 306 | ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP | [80] |
Whole Blood | Microarray | 11927, 1608 | ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP | [80] |
Whole Blood | Microarray | 129, 129 | cg06500161 (ABCG1) and cg02650017 (PHOSPHO1) | [83] |
Whole Blood | DNA sequencing | 176, 100 | cg06500161 (ABCG1) and cg11024682 (SREBF1) | [85] |
Whole Blood | Microarray | 11,11 | cg18681426 (ELOVL5) | [106] |
Whole Blood | Microarray | 835, 153 | cg19693031 (TXNIP) | [100] |
Whole Blood | Microarray | 204, 151 | cg19693031 (TXNIP) | [101] |
Whole Blood | Microarray | 98, 100 | CpGs (in ABCG1, LOXL2, TXNIP, SLC1A5, and SREBF1) | [84] |
Whole Blood | Pyrosequencing | 606, 710 | FTO | [94] |
Whole Blood | Pyrosequencing | 100, 240 | IGFBP-1 and IGFBP-7 | [95] |
Whole Blood | Pyrosequencing | 100, 100 | Long Interspersed Nucleotide Element 1 (LINE-1) | [98] |
Whole Blood | Microarray | 220, 220 | MSI2 and CXXC4 | [102] |
Whole Blood | Microarray | 457, 256 | TXNIP (cg19693031), C7orf50 (cg04816311), CPT1A (cg00574958), and TPM4 (cg07988171) | [86] |
Whole Blood | Microarray | 676, 174 | TXNIP, ABCG1 and SAMD12 | [81] |
4.1.2. microRNA
Sample Type | Profiling Method | Sample Size (Controls, T2D, Other) | Biomarker | Ref |
---|---|---|---|---|
Endothelial progenitor cells | qRT-PCR | 15, 15 | hsa-miR-21, hsa-miR-27a, hsa-miR-27b, hsa-miR-126, hsa-miR-130 | [108] |
PBMC | qRT-PCR | 20, 20 | hsa-miR-146a | [64] |
Plasma | Microarray and qRT-PCR | 94, 112, 72 * | hsa-let-7b, hsa-miR-142, hsa-miR-144, hsa-miR-29a | [142] |
Plasma | RNA Sequencing | 0, 145, 145 * | hsa-miR-122-5p, hsa-miR-210-3p, hsa-miR-3200-3p, hsa-miR-376b-3p, hsa-miR378a-3p, hsa-miR-4532-5p, hsa-miR-483-5p and hsa-miR-660-3p | [125] |
Plasma | Microarray and qRT-PCR | 50, 50, 50 * | hsa-miR-1249, hsa-miR-320b, hsa-miR-572, hsa-miR-6069 | [147] |
Plasma | qRT-PCR | 30, 30, 30 * | hsa-miR-126 | [109] |
Plasma | qRT-PCR | 20, 20 | hsa-miR-126 | [113] |
Plasma | qRT-PCR | 0, 0, 36 $ | hsa-miR-126 | [123] |
Plasma | qRT-PCR | 58, 69, 34 #, 124 ** | hsa-miR-126-3p | [118] |
Plasma | qRT-PCR | 107, 76, 117 ** | hsa-miR-126-3p, hsa-miR-21-5p | [119] |
Plasma | qRT-PCR | 30, 30, 30 * | hsa-miR-126-5p and hsa-miR-181b | [62] |
Plasma | qRT-PCR | 20, 54, 46 ** | hsa-miR-126, hsa-miR-210 | [111] |
Plasma | qRT-PCR | 80, 55 | hsa-miR-126, hsa-miR-26a | [114] |
Plasma | qRT-PCR | 35, 30, 10 #, 18 ** | hsa-miR-140-5p, hsa-miR-142-3p, hsa-miR-222, hsa-miR-423-5p, hsa-miR-192, hsa-miR-125b, hsa-miR-195, hsa-miR-130b, hsa-miR-532-5p, hsa-miR-126 | [110] |
Plasma | qRT-PCR | 7, 18, 17 $ | hsa-miR-140-5p, hsa-miR-222, hsa-miR-142-3p, hsa-miR-192 | [110] |
Plasma | qRT-PCR | 0, 0, 24 $ | hsa-miR-145-5p, hsa-miR-29c-3p, hsa-miR-192, hsa-miR-20a, hsa-let-7b, hsa-miR-802, hsa-miR-34a | [137] |
Plasma | qRT-PCR | 90, 58, 32 ** | hsa-miR-146a | [127] |
Plasma | qRT-PCR | 9, 9, 9 * | hsa-miR-148a-3p, hsa-miR-222-3p, hsa-miR-342-3p, hsa-miR-143-3p, hsa-miR-320b, hsa-miR-320c | [148] |
Plasma | qRT-PCR | 20, 23, 26 ** | hsa-miR-191, hsa-miR-200b | [149] |
Plasma | qRT-PCR | 50, 50, 50 #, 50 ** | hsa-miR-195-5p, hsa-miR-130a-3p | [150] |
Plasma | Microarray, qRT-PCR | 80, 9, 71 ** | hsa-miR-20b, hsa-miR-21, hsa-miR-24, hsa-miR-15a, hsa-miR-126, hsa-miR-191, hsa-miR-197, hsa-miR-223, hsa-miR-320, hsa-miR-486, hsa-miR-28-3p | [107] |
Plasma | qRT-PCR | 115, 65, 124 ** | hsa-miR-21 | [151] |
Plasma | qRT-PCR | 285, 285, 855 ** | hsa-miR-21, hsa-miR-218, hsa-miR-211 | [138] |
Plasma | qRT-PCR | 119, 33 | hsa-miR-24, hsa-miR-29b, hsa-miR-144 | [152] |
Plasma | qRT-PCR | 20, 91, 95 | hsa-miR-29b, hsa-miR-200b | [153] |
Plasma | qRT-PCR | 355, 107 | hsa-miR-30a-5p, hsa-miR-150, hsa-miR-9, hsa-miR-15a, hsa-miR-28-3p, hsa-miR-29a, hsa-miR-103, hsa-miR-223, hsa-miR-126, hsa-miR-145, and hsa-miR-375 | [154] |
Plasma | qRT-PCR | 100, 100 | hsa-miR-375 | [143] |
Plasma | qRT-PCR | 0, 0, 40 $ | hsa-miR-378, hsa-miR-126-3p, hsa-miR-223-5p | [121] |
Plasma and plasma exosome | qRT-PCR | 26, 26, 24 * | hsa-miR-15a | [134] |
Plasma exosome | qRT-PCR | 18, 12 | hsa-miR-326, hsa-let-7a, hsa-let-7f | [155] |
Platelet | qRT-PCR | 46, 43, 48 #, 36 ** | hsa-miR-103b | [70] |
Serum | RNA sequencing and qRT-PCR | 3, 50, 29 ** | hsa-let-7a-5p, hsa-miR-novel-chr5_15976, hsa-miR-28-3p, hsa-miR-151a-5p, and hsa-miR-148a-3p | [142] |
Serum | qRT-PCR | 49, 155 | hsa-miR-101, hsa-miR-375, hsa-miR-802 | [144] |
Serum | qRT-PCR | 100, 100, 86 * | hsa-miR-126 | [115] |
Serum | qRT-PCR | 138, 160, 157 * | hsa-miR-126 | [116] |
Serum | qRT-PCR | 40, 40, 40 #, 40 ** | hsa-miR-128 | [156] |
Serum | qRT-PCR | 0, 30, 20 ** | hsa-miR-1281, hsa-miR-4687-5p, hsa-miR-4688, hsa-miR-1260a, and hsa-miR-766-3p | [157] |
Serum | qRT-PCR | 49, 49, 47 * | hsa-miR-130b-3p, hsa-miR-374a-5p | [158] |
Serum | qRT-PCR | 40, 22, 34 ** | hsa-miR-146a | [128] |
Serum | qRT-PCR | 35, 54, 16 *, 28 ** | hsa-miR-146a | [130] |
Serum | qRT-PCR | 68, 215, 178 * | hsa-miR-148b, hsa-miR-223, hsa-miR-130a, and hsa-miR-19a | [141] |
Serum | qRT-PCR | 138, 136, 254 ** | hsa-miR-154-5p | [159] |
Serum | RNA Sequencing and qRT-PCR | 225, 200, 470 ** | hsa-miR-16, hsa-miR-23-3p, hsa-miR-122-5p, hsa-miR-198, hsa-miR-199a-3p, hsa-miR-221, and hsa-miR-34 | [126] |
Serum | RNA sequencing | 0, 11, 10 ** | hsa-miR-190a-5p, hsa-miR-4448, hsa-miR-338-3p, hsa-miR-485-5p, and hsa-miR-9-5p | [146] |
Serum | Microarray and qRT-PCR | 25, 50, 42 ** | hsa-miR-20a, hsa-miR-99b, hsa-miR-122-5p, and hsa-miR-486-5p | [124] |
Serum | qRT-PCR | 81, 30, 50 ** | hsa-miR-20b, hsa-miR-17-3p, HOTAIR (lncRNA), and MALAT1 (lncRNA) | [160] |
Serum | qRT-PCR | 42, 45 | hsa-miR-21 | [139] |
Serum | qRT-PCR | 33, 37, 64 ** | hsa-miR-221 | [161] |
Serum | Nanostring and qRT-PCR | 0, 24, 18 * | hsa-miR-298, hsa-miR-491-5p, hsa-miR-1307-3p | [162] |
Serum | qRT-PCR | 0, 45, 45 ** | hsa-miR-3197 and hsa-miR-2116-5p | [163] |
Serum | qRT-PCR | 50, 50, 50 #, 50 ** | hsa-miR-342 and hsa-miR-450 | [164] |
Serum | qRT-PCR | 50, 27, 23 ** | hsa-miR-421, hsa-miR-212-5p, hsa-miR-3909, hsa-miR-4677-3p, and hsa-miR-4766-5p | [165] |
Serum | qRT-PCR | 20, 13, 20 #, 16 ** | hsa-miR-503 | [166] |
Serum | qRT-PCR | 92, 92, 92 ** | hsa-miR-571, hsa-miR-661, hsa-miR-770-5p, hsa-miR-892b, hsa-miR-1303 | [167] |
Serum | qRT-PCR | 25, 25, 25 #, 25 ** | hsa-miR-593 | [168] |
Serum | qRT-PCR | 19, 18, 19 * | hsa-miR-9, hsa-miR-29a, hsa-miR-30d, hsa-miR-34a, hsa-miR-124a, hsa-miR-146a, and hsa-miR-375 | [129] |
Serum | qRT-PCR | 5, 10 | hsa-miR-455-5p, hsa-miR-454-3p, hsa-miR-144-3p, hsa-miR-96-5p, hsa-miR-665 and hsa-miR-766-3p | [169] |
Serum and serum exosomes | qRT-PCR | 74, 76, 76 ** | hsa-miR-7 | [170] |
Serum exosomes | qRT-PCR | 24, 14, 17 * | hsa-miR-10b, hsa-miR-194, hsa-miR-223-3p, hsa-miR-15a, hsa-miR-93 | [135] |
Serum exosomes | qRT-PCR | 20, 21 | hsa-miR-20b-5p and hsa-miR-150-5p | [133] |
Serum exosomes | Microarray and qRT-PCR | 0, 20, 24 ** | hsa-miR-377-3p | [67] |
Whole blood | qRT-PCR | 62, 104, 108 ** | hsa-let-7a-2 | [171] |
Whole blood | qRT-PCR | 30, 30, 30 * | hsa-miR-122, hsa-miR-126-5p, hsa-miR-146a | [120] |
Whole blood | qRT-PCR | 45, 45, 45 ** | hsa-miR-126 | [117] |
Whole blood | RNA Sequencing | 3, 3 | hsa-miR-1271-5p, hsa-miR-130a-3p, hsa-miR-130b-3p, andhsa-miR-574-3p | [172] |
Whole blood | qRT-PCR | 972, 94, 207 * | hsa-miR-1299, hsa-miR-126-3p, hsa-miR-30e-3p | [122] |
Whole blood | qRT-PCR | 8, 13, 8 * | hsa-miR-144, hsa-miR-146a, hsa-miR-150, hsa-miR-182, hsa-miR-192, hsa-miR-30d, hsa-miR-29a, hsa-miR-320 | [131] |
Whole blood | qRT-PCR | 24, 24, 22 * | hsa-miR-15a | [136] |
Whole blood | qRT-PCR | 30, 30, 30 * | hsa-miR-375, hsa-miR-9 | [145] |
Whole blood | RNA sequencing and qRT-PCR | 4, 4, 4 * | hsa-miR-98-5p, hsa-miR-143-3p, hsa-miR-21-3p, hsa-miR-379-5p | [140] |
Whole blood and exosome | qRT-PCR | 46, 50 | hsa-miR-150, hsa-miR-192,hsa-miR-27a, hsa-miR-320a and hsa-miR-375 | [132] |
4.2. Urine
4.2.1. DNA Methylation
4.2.2. microRNA
4.3. Other Non-Invasive Biomarkers
4.3.1. DNA Methylation
4.3.2. microRNA
5. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Herman, W.H.; Ye, W.; Griffin, S.J.; Simmons, R.K.; Davies, M.J.; Khunti, K.; Rutten, G.E.H.M.; Sandbaek, A.; Lauritzen, T.; Borch-Johnsen, K.; et al. Early Detection and Treatment of Type 2 Diabetes Reduce Cardiovascular Morbidity and Mortality: A Simulation of the Results of the Anglo-Danish-Dutch Study of Intensive Treatment in People with Screen-Detected Diabetes in Primary Care (ADDITION-Europe). Diabetes Care 2015, 38, 1449–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44 (Suppl. S1), S15–S33. [Google Scholar] [CrossRef]
- Harris, M.I.; Eastman, R.C. Early Detection of Undiagnosed Diabetes Mellitus: A US Perspective. Diabetes Metab. Res. Rev. 2000, 16, 230–236. [Google Scholar] [CrossRef]
- Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R. Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach: Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2015, 38, 140–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naylor, S. Biomarkers: Current Perspectives and Future Prospects. Expert Rev. Mol. Diagn. 2003, 3, 525–529. [Google Scholar] [CrossRef]
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and Other Tools) Resource; Food and Drug Administration (US): Silver Spring, MD, USA, 2016. [Google Scholar]
- FDA-NIH Biomarker Working Group. Susceptibility/Risk Biomarker; Food and Drug Administration (US): Silver Spring, MD, USA, 2020. [Google Scholar]
- FDA-NIH Biomarker Working Group. Diagnostic Biomarker; Food and Drug Administration (US): Silver Spring, MD, USA, 2020. [Google Scholar]
- FDA-NIH Biomarker Working Group. Monitoring Biomarker; Food and Drug Administration (US): Silver Spring, MD, USA, 2021. [Google Scholar]
- FDA-NIH Biomarker Working Group. Prognostic Biomarker; Food and Drug Administration (US): Silver Spring, MD, USA, 2016. [Google Scholar]
- FDA-NIH Biomarker Working Group. Predictive Biomarker; Food and Drug Administration (US): Silver Spring, MD, USA, 2016. [Google Scholar]
- FDA-NIH Biomarker Working Group. Pharmacodynamic/Response Biomarker; Food and Drug Administration (US): Silver Spring, MD, USA, 2016. [Google Scholar]
- FDA-NIH Biomarker Working Group. Safety Biomarker; Food and Drug Administration (US): Silver Spring, MD, USA, 2016. [Google Scholar]
- Laakso, M. Biomarkers for Type 2 Diabetes. Mol. Metab. 2019, 27, S139–S146. [Google Scholar] [CrossRef]
- Herder, C.; Karakas, M.; Koenig, W. Biomarkers for the Prediction of Type 2 Diabetes and Cardiovascular Disease. Clin. Pharmacol. Ther. 2011, 90, 52–66. [Google Scholar] [CrossRef]
- Abbasi, A.; Sahlqvist, A.-S.; Lotta, L.; Brosnan, J.M.; Vollenweider, P.; Giabbanelli, P.; Nunez, D.J.; Waterworth, D.; Scott, R.A.; Langenberg, C.; et al. A Systematic Review of Biomarkers and Risk of Incident Type 2 Diabetes: An Overview of Epidemiological, Prediction and Aetiological Research Literature. PLoS ONE 2016, 11, e0163721. [Google Scholar] [CrossRef] [Green Version]
- Gan, W.Z.; Ramachandran, V.; Lim, C.S.Y.; Koh, R.Y. Omics-Based Biomarkers in the Diagnosis of Diabetes. J. Basic Clin. Physiol. Pharmacol. 2019, 31, 20190120. [Google Scholar] [CrossRef] [PubMed]
- Del Giacco, L.; Cattaneo, C. Introduction to Genomics. Methods Mol. Biol. Clifton NJ 2012, 823, 79–88. [Google Scholar] [CrossRef]
- Mora, C.; Zonca, V.; Riva, M.A.; Cattaneo, A. Blood Biomarkers and Treatment Response in Major Depression. Expert Rev. Mol. Diagn. 2018, 18, 513–529. [Google Scholar] [CrossRef]
- Almgren, P. Heritability and Familiality of Type 2 Diabetes and Related Quantitative Traits in the Botnia Study. Diabetologia 2011, 54, 2811–2819. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; et al. Common SNPs Explain a Large Proportion of the Heritability for Human Height. Nat. Genet. 2010, 42, 565–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooke Bailey, J.N.; Igo, R.P. Genetic Risk Scores. Curr. Protoc. Hum. Genet. 2016, 91, 1–29. [Google Scholar] [CrossRef]
- Wray, N.; Yang, J.; Goddard, M.E.; Visscher, P.M. The Genetic Interpretation of Area under the ROC Curve in Genomic Profiling. PLoS Genet. 2010, 6, e1000864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weedon, M.N.; McCarthy, M.I.; Hitman, G.; Walker, M.; Groves, C.J.; Zeggini, E.; Rayner, N.W.; Shields, B.; Owen, K.R.; Hattersley, A.T.; et al. Combining Information from Common Type 2 Diabetes Risk Polymorphisms Improves Disease Prediction. PLoS Med. 2006, 3, e374. [Google Scholar] [CrossRef] [Green Version]
- Lango, H.; UK Type 2 Diabetes Genetics Consortium; Palmer, C.N.A.; Morris, A.D.; Zeggini, E.; Hattersley, A.T.; McCarthy, M.I.; Frayling, T.M.; Weedon, M.N. Assessing the Combined Impact of 18 Common Genetic Variants of Modest Effect Sizes on Type 2 Diabetes Risk. Diabetes 2008, 57, 3129–3135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meigs, J.B.; Shrader, P.; Sullivan, L.M.; McAteer, J.B.; Fox, C.S.; Dupuis, J.; Manning, A.K.; Florez, J.C.; Wilson, P.W.F.; D\textquotesingleAgostino, R.B.; et al. Genotype Score in Addition to Common Risk Factors for Prediction of Type 2 Diabetes. N. Engl. J. Med. 2008, 359, 2208–2219. [Google Scholar] [CrossRef]
- Lyssenko, V.; Jonsson, A.; Almgren, P.; Pulizzi, N.; Isomaa, B.; Tuomi, T.; Berglund, G.; Altshuler, D.; Nilsson, P.; Groop, L. Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes. N. Engl. J. Med. 2008, 359, 2220–2232. [Google Scholar] [CrossRef] [Green Version]
- Morris, A. Large-Scale Association Analysis Provides Insights into the Genetic Architecture and Pathophysiology of Type 2 Diabetes. Nat. Genet. 2012, 44, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Vassy, J.L.; Hivert, M.-F.; Porneala, B.; Dauriz, M.; Florez, J.C.; Dupuis, J.; Siscovick, D.S.; Fornage, M.; Rasmussen-Torvik, L.J.; Bouchard, C.; et al. Polygenic Type 2 Diabetes Prediction at the Limit of Common Variant Detection. Diabetes 2014, 63, 2172–2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chikowore, T.; van Zyl, T.; Feskens, E.J.M.; Conradie, K.R. Predictive Utility of a Genetic Risk Score of Common Variants Associated with Type 2 Diabetes in a Black South African Population. Diabetes Res. Clin. Pract. 2016, 122, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lall, K.; Mägi, R.; Morris, A.; Metspalu, A.; Fischer, K. Personalized Risk Prediction for Type 2 Diabetes: The Potential of Genetic Risk Scores. Genet. Med. 2016, 19, 322–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, E.L.; Song, Y.; Manson, J.E.; Hunter, D.J.; Lee, C.C.; Rifai, N.; Buring, J.E.; Gaziano, J.M.; Liu, S. Sex Hormone–Binding Globulin and Risk of Type 2 Diabetes in Women and Men. N. Engl. J. Med. 2009, 361, 1152–1163. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, A.; Deetman, P.E.; Corpeleijn, E.; Gansevoort, R.T.; Gans, R.O.B.; Hillege, H.L.; van der Harst, P.; Stolk, R.P.; Navis, G.; Alizadeh, B.Z.; et al. Bilirubin as a Potential Causal Factor in Type 2 Diabetes Risk: A Mendelian Randomization Study. Diabetes 2015, 64, 1459–1469. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, E.; Leong, A.; Liu, C.-T.; Hivert, M.-F.; Strawbridge, R.J.; Podmore, C.; Li, M.; Yao, J.; Sim, X.; Hong, J.; et al. Impact of Common Genetic Determinants of Hemoglobin A1c on Type 2 Diabetes Risk and Diagnosis in Ancestrally Diverse Populations: A Transethnic Genome-Wide Meta-Analysis. PLoS Med. 2017, 14, e1002383. [Google Scholar] [CrossRef] [Green Version]
- El Tarhouny, S.A.; Hadhoud, K.M.; Ebrahem, M.M.; Al Azizi, N.M. Assessment of Cell-Free DNA with Microvascular Complication of Type II Diabetes Mellitus, Using PCR and Elisa. Nucleosides Nucleotides Nucleic Acids 2010, 29, 228–236. [Google Scholar] [CrossRef]
- Silzer, T.; Barber, R.; Sun, J.; Pathak, G.; Johnson, L.; O’Bryant, S.; Phillips, N. Circulating Mitochondrial DNA: New Indices of Type 2 Diabetes-Related Cognitive Impairment in Mexican Americans. PLoS ONE 2019, 14, e0213527. [Google Scholar] [CrossRef]
- Bosschieter, J.; Bach, S.; Bijnsdorp, I.V.; Segerink, L.I.; Rurup, W.F.; van Splunter, A.P.; Bahce, I.; Novianti, P.W.; Kazemier, G.; van Moorselaar, R.J.A.; et al. A Protocol for Urine Collection and Storage Prior to DNA Methylation Analysis. PLoS ONE 2018, 13, e0200906. [Google Scholar] [CrossRef]
- Hilhorst, M.; Theunissen, R.; van Rie, H.; van Paassen, P.; Tervaert, J.W.C. DNA Extraction from Long-Term Stored Urine. BMC Nephrol. 2013, 14, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.; Wu, J.; Luo, J.; Chen, X.; Yang, J.; Fang, L. Urinary Mitochondrial DNA: A Potential Early Biomarker of Diabetic Nephropathy. Diabetes Metab. Res. Rev. 2019, 35, e3131. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, N.; Shara, N.M.; Wang, H.; Voruganti, V.S.; Laston, S.; Haack, K.; Lee, E.T.; Best, L.G.; Maccluer, J.W.; Cochran, B.J.; et al. The Association of Genetic Variants of Type 2 Diabetes with Kidney Function. Kidney Int. 2012, 82, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Prior, S.L.; Clark, A.R.; Jones, D.A.; Bain, S.C.; Hurel, S.J.; Humphries, S.E.; Stephens, J.W. Association of the PGC-1α Rs8192678 Variant with Microalbuminuria in Subjects with Type 2 Diabetes Mellitus. Dis. Markers 2012, 32, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Reutens, A.T.; Atkins, R.C. Epidemiology of Diabetic Nephropathy. Contrib. Nephrol. 2011, 170, 1–7. [Google Scholar] [CrossRef]
- Bruinsma, F.J.; Joo, J.E.; Wong, E.M.; Giles, G.G.; Southey, M.C. The Utility of DNA Extracted from Saliva for Genome-Wide Molecular Research Platforms. BMC Res. Notes 2018, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Kogawa, E.M.; Grisi, D.C.; Falcão, D.P.; Amorim, I.A.; Rezende, T.M.B.; da Silva, I.C.R.; Silva, O.N.; Franco, O.L.; de Amorim, R.F.B. Salivary Function Impairment in Type 2 Diabetes Patients Associated with Concentration and Genetic Polymorphisms of Chromogranin A. Clin. Oral Investig. 2016, 20, 2083–2095. [Google Scholar] [CrossRef]
- Thomas, T.; Gilbert, J.; Meyer, F. Metagenomics—A Guide from Sampling to Data Analysis. Microb. Inform. Exp. 2012, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Li, M.; Xia, L.; Fang, Z.; Yu, S.; Gao, J.; Feng, Q.; Yang, P. Alteration of Salivary Microbiome in Periodontitis with or without Type-2 Diabetes Mellitus and Metformin Treatment. Sci. Rep. 2020, 10, 15363. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, X.; Mao, X.; Tao, Y.; Ran, X.; Zhao, H.; Xiong, J.; Li, L. Gut Microbiome Analysis of Type 2 Diabetic Patients from the Chinese Minority Ethnic Groups the Uygurs and Kazaks. PLoS ONE 2017, 12, e0172774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yassour, M.; Lim, M.Y.; Yun, H.S.; Tickle, T.L.; Sung, J.; Song, Y.-M.; Lee, K.; Franzosa, E.A.; Morgan, X.C.; Gevers, D.; et al. Sub-Clinical Detection of Gut Microbial Biomarkers of Obesity and Type 2 Diabetes. Genome Med. 2016, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Q.; Wang, J.; Yan, Y.; Roy, B.; Chen, Y.; Shang, X.; Dou, T.; Han, L. Metagenomic Analysis Reveals the Distribution of Antibiotic Resistance Genes in a Large-Scale Population of Healthy Individuals and Patients with Varied Diseases. Front. Mol. Biosci. 2020, 7, 590018. [Google Scholar] [CrossRef]
- Diener, C.; Reyes-Escogido, M.D.; Jimenez-Ceja, L.M.; Matus, M.; Gomez-Navarro, C.M.; Chu, N.D.; Zhong, V.; Tejero, M.E.; Alm, E.; Resendis-Antonio, O.; et al. Progressive Shifts in the Gut Microbiome Reflect Prediabetes and Diabetes Development in a Treatment-Naive Mexican Cohort. Front. Endocrinol. 2021, 11, 602326. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Liu, H.; Feng, S.; Wang, H.; Wang, Y.; Wang, Y.; Liang, L.; Xu, H.; Xing, H.; Zhang, S. Gut Microbiota Dysbiosis in Stable Coronary Artery Disease Combined with Type 2 Diabetes Mellitus Influences Cardiovascular Prognosis. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1454–1466. [Google Scholar] [CrossRef]
- Whitney, D.; Skoletsky, J.; Moore, K.; Boynton, K.; Kann, L.; Brand, R.; Syngal, S.; Lawson, M.; Shuber, A. Enhanced Retrieval of DNA from Human Fecal Samples Results in Improved Performance of Colorectal Cancer Screening Test. J. Mol. Diagn. JMD 2004, 6, 386–395. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F. Gut Metagenome in European Women with Normal, Impaired and Diabetic Glucose Control. Nature 2013, 498, 99–103. [Google Scholar] [CrossRef]
- Barengolts, E.; Green, S.J.; Eisenberg, Y.; Akbar, A.; Reddivari, B.; Layden, B.T.; Dugas, L.; Chlipala, G. Gut Microbiota Varies by Opioid Use, Circulating Leptin and Oxytocin in African American Men with Diabetes and High Burden of Chronic Disease. PLoS ONE 2018, 13, e0194171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, Y.; Adachi, K.; Sugiyama, T.; Shimozato, A.; Ebi, M.; Ogasawara, N.; Funaki, Y.; Goto, C.; Sasaki, M.; Kasugai, K. Association of Intestinal Microbiota with Metabolic Markers and Dietary Habits in Patients with Type 2 Diabetes. Digestion 2016, 94, 66–72. [Google Scholar] [CrossRef]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Mutz, K.-O.; Heilkenbrinker, A.; Lönne, M.; Walter, J.-G.; Stahl, F. Transcriptome Analysis Using Next-Generation Sequencing. Curr. Opin. Biotechnol. 2013, 24, 22–30. [Google Scholar] [CrossRef]
- Olivier, M.; Asmis, R.; Hawkins, G.A.; Howard, T.D.; Cox, L.A. The Need for Multi-Omics Biomarker Signatures in Precision Medicine. Int. J. Mol. Sci. 2019, 20, 4781. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Guo, J.; Zhang, Q.; Liu, D.; Wen, L.; Yang, Y.; Yang, L.; Liu, Z. The Expression of Tristetraprolin and Its Relationship with Urinary Proteins in Patients with Diabetic Nephropathy. PLoS ONE 2015, 10, e0141471. [Google Scholar] [CrossRef]
- Soundararajan, A.; Prabu, P.; Mohan, V.; Gibert, Y.; Balasubramanyam, M. Novel Insights of Elevated Systemic Levels of Bisphenol-A (BPA) Linked to Poor Glycemic Control, Accelerated Cellular Senescence and Insulin Resistance in Patients with Type 2 Diabetes. Mol. Cell. Biochem. 2019, 458, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Aghaei Zarch, S.M.; Vahidi Mehrjardi, M.Y.; Nazari, M.; Babakhanzadeh, E.; Ghadimi, H.; Zeinali, F.; Talebi, M. Evaluation of MiR-181b and MiR-126-5p Expression Levels in T2DM Patients Compared to Healthy Individuals: Relationship with NF-ΚB Gene Expression. Endocrinol. Diabetes Nutr. Engl. Ed. 2020, 67, 454–460. [Google Scholar] [CrossRef]
- Fatima, N.; Faisal, S.M.; Zubair, S.; Siddiqui, S.S.; Moin, S.; Owais, M. Emerging Role of Interleukins IL-23/IL-17 Axis and Biochemical Markers in the Pathogenesis of Type 2 Diabetes: Association with Age and Gender in Human Subjects. Int. J. Biol. Macromol. 2017, 105, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanyam, M.; Aravind, S.; Gokulakrishnan, K.; Prabu, P.; Sathishkumar, C.; Ranjani, H.; Mohan, V. Impaired MiR-146a Expression Links Subclinical Inflammation and Insulin Resistance in Type 2 Diabetes. Mol. Cell. Biochem. 2011, 351, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Al-Harithy, R.N.; Alomari, A.S. Expression of Leptin MRNA as Non-invasive Biomarker in Type 2 Diabetes Mellitus. Int. J. Clin. Pract. 2021, e14844. [Google Scholar] [CrossRef]
- Tao, Y.; Wei, X.; Yue, Y.; Wang, J.; Li, J.; Shen, L.; Lu, G.; He, Y.; Zhao, S.; Zhao, F.; et al. Extracellular Vesicle-Derived AEBP1 MRNA as a Novel Candidate Biomarker for Diabetic Kidney Disease. J. Transl. Med. 2021, 19, 326. [Google Scholar] [CrossRef]
- Jiang, L.; Cao, H.; Deng, T.; Yang, M.; Meng, T.; Yang, H.; Luo, X. Serum Exosomal MiR-377-3p Inhibits Retinal Pigment Epithelium Proliferation and Offers a Biomarker for Diabetic Macular Edema. J. Int. Med. Res. 2021, 49, 03000605211002975. [Google Scholar] [CrossRef]
- Que, Y.; Shen, X. Changes in Blood Monocyte Toll-like Receptor and Serum Surfactant Protein A Reveal a Pathophysiological Mechanism for Community-Acquired Pneumonia in Patients with Type 2 Diabetes: Changes of TLR and SP-A in Diabetes and Pneumonia. Intern. Med. J. 2016, 46, 213–219. [Google Scholar] [CrossRef]
- Rashad, N.M.; Ahmed, H.S.; Ashour, W.M.R.; Yousef, M.S. Association of Vaspin Gene Expression and Its Serum Level on the Risk of Ischemic Stroke in Type 2 Diabetic Egyptian Patients: Prospective Case-Control Study. Biotechnol. Appl. Biochem. 2020, 67, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Li, R.; Deng, X.; Ren, M.; Chen, N.; Zeng, M.; Yan, K.; Xia, J.; Liu, F.; Ma, W.; et al. Platelet-Derived MiR-103b as a Novel Biomarker for the Early Diagnosis of Type 2 Diabetes. Acta Diabetol. 2015, 52, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Wang, Z.; Li, Q.; Luo, L.; Zhu, Y.; Yang, Y. The Relationship between BSP MRNA Expression and 25(OH)D/OPG in Peripheral Blood of Newly Diagnosed T2DM Patients with Different Bone Mass. Endokrynol. Pol. 2020, 71, 160–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazem, M.R.; Asadi, M.; Jabbari, N.; Allameh, A. Effects of Zinc Supplementation on Superoxide Dismutase Activity and Gene Expression, and Metabolic Parameters in Overweight Type 2 Diabetes Patients: A Randomized, Double-Blind, Controlled Trial. Clin. Biochem. 2019, 69, 15–20. [Google Scholar] [CrossRef]
- Fayed, A.; Rahman Tohamy, I.A.; Kahla, H.; Elsayed, N.M.; El Ansary, M.; Saadi, G. Urinary Podocyte-Associated MRNA Profile in Egyptian Patients with Diabetic Nephropathy. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2849–2854. [Google Scholar] [CrossRef]
- Yamamoto, C.M.; Murakami, T.; Oakes, M.L.; Mitsuhashi, M.; Kelly, C.; Henry, R.R.; Sharma, K. Uromodulin MRNA from Urinary Extracellular Vesicles Correlate to Kidney Function Decline in Type 2 Diabetes Mellitus. Am. J. Nephrol. 2018, 47, 283–291. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Joshipura, K.; Vergara, J.L.; Wong, D.T. Detection of Type II Diabetes Mellitus Using Salivary Transcriptomic Biomarkers. Genomic Med. Biomark. Health Sci. 2012, 4, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.C.; Chang, H.Y. Epigenomics—Technologies and Applications. Circ. Res. 2018, 122, 1191–1199. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Kim, V.N.; Han, J.; Siomi, M.C. Biogenesis of Small RNAs in Animals. Nat. Rev. Mol. Cell Biol. 2009, 10, 126–139. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, J.C.; Loh, M.; Lehne, B.; Drong, A.; Kriebel, J.; Motta, V.; Wahl, S.; Elliott, H.R.; Rota, F.; Scott, W.R.; et al. Epigenome-Wide Association of DNA Methylation Markers in Peripheral Blood from Indian Asians and Europeans with Incident Type 2 Diabetes: A Nested Case-Control Study. Lancet Diabetes Endocrinol. 2015, 3, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, H.; Kos, M.Z.; Neary, J.; Dyer, T.D.; Kent, J.W.; Göring, H.H.H.; Cole, S.A.; Comuzzie, A.G.; Almasy, L.; Mahaney, M.C.; et al. Novel Epigenetic Determinants of Type 2 Diabetes in Mexican-American Families. Hum. Mol. Genet. 2015, 24, 5330–5344. [Google Scholar] [CrossRef] [PubMed]
- Al Muftah, W.A.; Al-Shafai, M.; Zaghlool, S.B.; Visconti, A.; Tsai, P.-C.; Kumar, P.; Spector, T.; Bell, J.; Falchi, M.; Suhre, K. Epigenetic Associations of Type 2 Diabetes and BMI in an Arab Population. Clin. Epigenetics 2016, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Dayeh, T.; Tuomi, T.; Almgren, P.; Perfilyev, A.; Jansson, P.-A.; de Mello, V.D.; Pihlajamäki, J.; Vaag, A.; Groop, L.; Nilsson, E.; et al. DNA Methylation of Loci within ABCG1 and PHOSPHO1 in Blood DNA Is Associated with Future Type 2 Diabetes Risk. Epigenetics 2016, 11, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Walaszczyk, E.; Luijten, M.; Spijkerman, A.M.W.; Bonder, M.J.; Lutgers, H.L.; Snieder, H.; Wolffenbuttel, B.H.R.; van Vliet-Ostaptchouk, J.V. DNA Methylation Markers Associated with Type 2 Diabetes, Fasting Glucose and HbA1c Levels: A Systematic Review and Replication in a Case–Control Sample of the Lifelines Study. Diabetologia 2018, 61, 354–368. [Google Scholar] [CrossRef] [Green Version]
- Krause, C.; Sievert, H.; Geißler, C.; Grohs, M.; El Gammal, A.T.; Wolter, S.; Ohlei, O.; Kilpert, F.; Krämer, U.M.; Kasten, M.; et al. Critical Evaluation of the DNA-Methylation Markers ABCG1 and SREBF1 for Type 2 Diabetes Stratification. Epigenomics 2019, 11, 885–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeks, K.A.C.; Henneman, P.; Venema, A.; Addo, J.; Bahendeka, S.; Burr, T.; Danquah, I.; Galbete, C.; Mannens, M.M.A.M.; Mockenhaupt, F.P.; et al. Epigenome-Wide Association Study in Whole Blood on Type 2 Diabetes among Sub-Saharan African Individuals: Findings from the RODAM Study. Int. J. Epidemiol. 2019, 48, 58–70. [Google Scholar] [CrossRef]
- Tarling, E.J. Expanding Roles of ABCG1 and Sterol Transport. Curr. Opin. Lipidol. 2013, 24, 138–146. [Google Scholar] [CrossRef]
- Hidalgo, B.; Irvin, M.R.; Sha, J.; Zhi, D.; Aslibekyan, S.; Absher, D.; Tiwari, H.K.; Kabagambe, E.K.; Ordovas, J.M.; Arnett, D.K. Epigenome-Wide Association Study of Fasting Measures of Glucose, Insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network Study. Diabetes 2014, 63, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Cha-Molstad, H.; Saxena, G.; Chen, J.; Shalev, A. Glucose-Stimulated Expression of Txnip Is Mediated by Carbohydrate Response Element-Binding Protein, P300, and Histone H4 Acetylation in Pancreatic Beta Cells. J. Biol. Chem. 2009, 284, 16898–16905. [Google Scholar] [CrossRef] [Green Version]
- Minn, A.H.; Hafele, C.; Shalev, A. Thioredoxin-Interacting Protein Is Stimulated by Glucose through a Carbohydrate Response Element and Induces Beta-Cell Apoptosis. Endocrinology 2005, 146, 2397–2405. [Google Scholar] [CrossRef] [Green Version]
- Vitto, M.F.; Luz, G.; Luciano, T.F.; Marques, S.O.; Souza, D.R.; Pinho, R.A.; Lira, F.S.; Cintra, D.E.; De Souza, C.T. Reversion of Steatosis by SREBP-1c Antisense Oligonucleotide Did Not Improve Hepatic Insulin Action in Diet-Induced Obesity Mice. Horm. Metab. Res. Horm. Stoffwechselforschung Horm. Metab. 2012, 44, 885–890. [Google Scholar] [CrossRef] [Green Version]
- Bobryshev, Y.V.; Orekhov, A.N.; Sobenin, I.; Chistiakov, D.A. Role of Bone-Type Tissue-Nonspecific Alkaline Phosphatase and PHOSPO1 in Vascular Calcification. Curr. Pharm. Des. 2014, 20, 5821–5828. [Google Scholar] [CrossRef] [PubMed]
- Gemma, C.; Sookoian, S.; Dieuzeide, G.; García, S.I.; Gianotti, T.F.; González, C.D.; Pirola, C.J. Methylation of TFAM Gene Promoter in Peripheral White Blood Cells Is Associated with Insulin Resistance in Adolescents. Mol. Genet. Metab. 2010, 100, 83–87. [Google Scholar] [CrossRef]
- Toperoff, G.; Aran, D.; Kark, J.D.; Rosenberg, M.; Dubnikov, T.; Nissan, B.; Wainstein, J.; Friedlander, Y.; Levy-Lahad, E.; Glaser, B.; et al. Genome-Wide Survey Reveals Predisposing Diabetes Type 2-Related DNA Methylation Variations in Human Peripheral Blood. Hum. Mol. Genet. 2012, 21, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.F.; Gu, T.; Hilding, A.; Zhu, Y.; Kärvestedt, L.; Östenson, C.-G.; Lai, M.; Kutsukake, M.; Frystyk, J.; Tamura, K.; et al. Evaluation of IGFBP-7 DNA Methylation Changes and Serum Protein Variation in Swedish Subjects with and without Type 2 Diabetes. Clin. Epigenetics 2013, 5, 20. [Google Scholar] [CrossRef]
- Zou, L.; Yan, S.; Guan, X.; Pan, Y.; Qu, X. Hypermethylation of the PRKCZ Gene in Type 2 Diabetes Mellitus. J. Diabetes Res. 2013, 2013, 721493. [Google Scholar] [CrossRef] [Green Version]
- Canivell, S.; Ruano, E.G.; Sisó-Almirall, A.; Kostov, B.; Paz, L.G.; Fernandez-Rebollo, E.; Hanzu, F.A.; Párrizas, M.; Novials, A.; Gomis, R. Differential Methylation of TCF7L2 Promoter in Peripheral Blood DNA in Newly Diagnosed, Drug-Naïve Patients with Type 2 Diabetes. PLoS ONE 2014, 9, e99310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Núñez, G.M.; Rubio-Martín, E.; Cabrera-Mulero, R.; Rojo-Martínez, G.; Olveira, G.; Valdés, S.; Soriguer, F.; Castaño, L.; Morcillo, S. Type 2 Diabetes Mellitus in Relation to Global LINE-1 DNA Methylation in Peripheral Blood: A Cohort Study. Epigenetics 2014, 9, 1322–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seman, N.A.; Mohamud, W.N.W.; Östenson, C.-G.; Brismar, K.; Gu, H.F. Increased DNA Methylation of the SLC30A8 Gene Promoter Is Associated with Type 2 Diabetes in a Malay Population. Clin. Epigenetics 2015, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florath, I.; Butterbach, K.; Heiss, J.; Bewerunge-Hudler, M.; Zhang, Y.; Schöttker, B.; Brenner, H. Type 2 Diabetes and Leucocyte DNA Methylation: An Epigenome-Wide Association Study in over 1500 Older Adults. Diabetologia 2016, 59, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Tárraga, C.; Jiménez-Conde, J.; Giralt-Steinhauer, E.; Mola-Caminal, M.; Vivanco-Hidalgo, R.M.; Ois, A.; Rodríguez-Campello, A.; Cuadrado-Godia, E.; Sayols-Baixeras, S.; Elosua, R.; et al. Epigenome-Wide Association Study Identifies TXNIP Gene Associated with Type 2 Diabetes Mellitus and Sustained Hyperglycemia. Hum. Mol. Genet. 2016, 25, 609–619. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.-P.; Koh, I.-U.; Choi, N.-H.; Kim, B.-J.; Han, B.-G.; Lee, S. Differential DNA Methylation of MSI2 and Its Correlation with Diabetic Traits. PLoS ONE 2017, 12, e0177406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Otterdijk, S.D.; Binder, A.M.; Szarc Vel Szic, K.; Schwald, J.; Michels, K.B. DNA Methylation of Candidate Genes in Peripheral Blood from Patients with Type 2 Diabetes or the Metabolic Syndrome. PLoS ONE 2017, 12, e0180955. [Google Scholar] [CrossRef]
- Nilsson, E.; Jansson, P.A.; Perfilyev, A.; Volkov, P.; Pedersen, M.; Svensson, M.K.; Poulsen, P.; Ribel-Madsen, R.; Pedersen, N.L.; Almgren, P.; et al. Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue from Subjects with Type 2 Diabetes. Diabetes 2014, 63, 2962–2976. [Google Scholar] [CrossRef] [Green Version]
- Illig, T.; Gieger, C.; Zhai, G.; Römisch-Margl, W.; Wang-Sattler, R.; Prehn, C.; Altmaier, E.; Kastenmüller, G.; Kato, B.S.; Mewes, H.-W.; et al. A Genome-Wide Perspective of Genetic Variation in Human Metabolism. Nat. Genet. 2010, 42, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.-Y.; Lee, H.J.; Go, M.J.; Jang, H.B.; Choi, N.-H.; Bae, J.B.; Castillo-Fernandez, J.E.; Bell, J.T.; Spector, T.D.; Lee, H.-J.; et al. Genome-Wide Methylation Analysis Identifies ELOVL5 as an Epigenetic Biomarker for the Risk of Type 2 Diabetes Mellitus. Sci. Rep. 2018, 8, 14862. [Google Scholar] [CrossRef]
- Zampetaki, A.; Kiechl, S.; Drozdov, I.; Willeit, P.; Mayr, U.; Prokopi, M.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Bonora, E.; et al. Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes. Circ. Res. 2010, 107, 810–817. [Google Scholar] [CrossRef]
- Meng, S.; Cao, J.-T.; Zhang, B.; Zhou, Q.; Shen, C.-X.; Wang, C.-Q. Downregulation of MicroRNA-126 in Endothelial Progenitor Cells from Diabetes Patients, Impairs Their Functional Properties, via Target Gene Spred-1. J. Mol. Cell. Cardiol. 2012, 53, 64–72. [Google Scholar] [CrossRef]
- Zhang, T.; Lv, C.; Li, L.; Chen, S.; Liu, S.; Wang, C.; Su, B. Plasma MiR-126 Is a Potential Biomarker for Early Prediction of Type 2 Diabetes Mellitus in Susceptible Individuals. BioMed Res. Int. 2013, 2013, e761617. [Google Scholar] [CrossRef]
- Ortega, F.J.; Mercader, J.M.; Moreno-Navarrete, J.M.; Rovira, O.; Guerra, E.; Esteve, E.; Xifra, G.; Martínez, C.; Ricart, W.; Rieusset, J.; et al. Profiling of Circulating MicroRNAs Reveals Common MicroRNAs Linked to Type 2 Diabetes That Change with Insulin Sensitization. Diabetes Care 2014, 37, 1375–1383. [Google Scholar] [CrossRef] [Green Version]
- Amr, K.; Abdelmawgoud, H.; Ali, Z.; Shehata, S.; Raslan, H. Potential Value of Circulating MicroRNA-126 and MicroRNA-210 as Biomarkers for Type 2 Diabetes with Coronary Artery Disease. Br. J. Biomed. Sci. 2018, 75, 82–87. [Google Scholar] [CrossRef]
- Jiménez-Lucena, R.; Rangel-Zúñiga, O.A.; Alcalá-Díaz, J.F.; López-Moreno, J.; Roncero-Ramos, I.; Molina-Abril, H.; Yubero-Serrano, E.M.; Caballero-Villarraso, J.; Delgado-Lista, J.; Castaño, J.P.; et al. Circulating MiRNAs as Predictive Biomarkers of Type 2 Diabetes Mellitus Development in Coronary Heart Disease Patients from the CORDIOPREV Study. Mol. Ther.-Nucleic Acids 2018, 12, 146–157. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Shang, Q.; Lv, C.; Wang, C.; Su, B. Circulating MiR-126 Is a Potential Biomarker to Predict the Onset of Type 2 Diabetes Mellitus in Susceptible Individuals. Biochem. Biophys. Res. Commun. 2015, 463, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Jansen, F.; Wang, H.; Przybilla, D.; Franklin, B.S.; Dolf, A.; Pfeifer, P.; Schmitz, T.; Flender, A.; Endl, E.; Nickenig, G.; et al. Vascular Endothelial Microparticles-Incorporated MicroRNAs Are Altered in Patients with Diabetes Mellitus. Cardiovasc. Diabetol. 2016, 15, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezk, N.A.; Sabbah, N.A.; Saad, M.S.S. Role of MicroRNA 126 in Screening, Diagnosis, and Prognosis of Diabetic Patients in Egypt. IUBMB Life 2016, 68, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gao, G.; Yang, C.; Zhou, K.; Shen, B.; Liang, H.; Jiang, X. The Role of Circulating MicroRNA-126 (MiR-126): A Novel Biomarker for Screening Prediabetes and Newly Diagnosed Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2014, 15, 10567–10577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Kafaji, G.; Al-Mahroos, G.; Abdulla Al-Muhtaresh, H.; Sabry, M.A.; Abdul Razzak, R.; Salem, A.H. Circulating Endothelium-Enriched MicroRNA-126 as a Potential Biomarker for Coronary Artery Disease in Type 2 Diabetes Mellitus Patients. Biomarkers 2017, 22, 268–278. [Google Scholar] [CrossRef]
- Olivieri, F.; Bonafè, M.; Spazzafumo, L.; Gobbi, M.; Prattichizzo, F.; Recchioni, R.; Marcheselli, F.; La Sala, L.; Galeazzi, R.; Rippo, M.R.; et al. Age- and Glycemia-Related MiR-126-3p Levels in Plasma and Endothelial Cells. Aging 2014, 6, 771–787. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, F.; Spazzafumo, L.; Bonafè, M.; Recchioni, R.; Prattichizzo, F.; Marcheselli, F.; Micolucci, L.; Mensà, E.; Giuliani, A.; Santini, G.; et al. MiR-21-5p and MiR-126a-3p Levels in Plasma and Circulating Angiogenic Cells: Relationship with Type 2 Diabetes Complications. Oncotarget 2015, 6, 35372–35382. [Google Scholar] [CrossRef] [Green Version]
- Zeinali, F.; Zarch, S.M.A.; Jahan-Mihan, A.; Kalantar, S.M.; Mehrjardi, M.Y.V.; Fallahzadeh, H.; Hosseinzadeh, M.; Rahmanian, M.; Mozaffari-Khosravi, H. Circulating MicroRNA-122, MicroRNA-126-3p and MicroRNA-146a Are Associated with Inflammation in Patients with Pre-Diabetes and Type 2 Diabetes Mellitus: A Case Control Study. PLoS ONE 2021, 16, e0251697. [Google Scholar] [CrossRef]
- Catanzaro, G.; Besharat, Z.M.; Chiacchiarini, M.; Abballe, L.; Sabato, C.; Vacca, A.; Borgiani, P.; Dotta, F.; Tesauro, M.; Po, A.; et al. Circulating MicroRNAs in Elderly Type 2 Diabetic Patients. Int. J. Endocrinol. 2018, 2018, 6872635. [Google Scholar] [CrossRef]
- Weale, C.J.; Matshazi, D.M.; Davids, S.F.G.; Raghubeer, S.; Erasmus, R.T.; Kengne, A.P.; Davison, G.M.; Matsha, T.E. MicroRNAs-1299, -126-3p and -30e-3p as Potential Diagnostic Biomarkers for Prediabetes. Diagnostics 2021, 11, 949. [Google Scholar] [CrossRef] [PubMed]
- de Boer, H.C.; van Solingen, C.; Prins, J.; Duijs, J.M.G.J.; Huisman, M.V.; Rabelink, T.J.; van Zonneveld, A.J. Aspirin Treatment Hampers the Use of Plasma MicroRNA-126 as a Biomarker for the Progression of Vascular Disease. Eur. Heart J. 2013, 34, 3451–3457. [Google Scholar] [CrossRef] [PubMed]
- Regmi, A.; Liu, G.; Zhong, X.; Hu, S.; Ma, R.; Gou, L.; Zafar, M.I.; Chen, L. Evaluation of Serum MicroRNAs in Patients with Diabetic Kidney Disease: A Nested Case-Controlled Study and Bioinformatics Analysis. Med. Sci. Monit. 2019, 25, 1699–1708. [Google Scholar] [CrossRef]
- Ghai, V.; Baxter, D.; Wu, X.; Kim, T.-K.; Kuusisto, J.; Laakso, M.; Connolly, T.; Li, Y.; Andrade-Gordon, P.; Wang, K. Circulating RNAs as Predictive Markers for the Progression of Type 2 Diabetes. J. Cell. Mol. Med. 2019, 23, 2753–2768. [Google Scholar] [CrossRef] [Green Version]
- Elemeery, M.N.; Mohamed, M.A.; Madkour, M.A.; Shamseya, M.M.; Issa, N.M.; Badr, A.N.; Ghareeb, D.A.; Pan, C.-H. MicroRNA Signature in Patients with Hepatocellular Carcinoma Associated with Type 2 Diabetes. World J. Gastroenterol. 2019, 25, 6322–6341. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Bao, W.; Shan, Z.; Liu, J.; Yu, X.; Xia, S.; Gao, H.; Wang, X.; Yao, P.; Hu, F.B.; et al. Increased MicroRNA-146a Levels in Plasma of Patients with Newly Diagnosed Type 2 Diabetes Mellitus. PLoS ONE 2013, 8, e73272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldeón, L.; Weigelt, K.; de Wit, H.; Ozcan, B.; van Oudenaren, A.; Sempértegui, F.; Sijbrands, E.; Grosse, L.; Freire, W.; Drexhage, H.A.; et al. Decreased Serum Level of MiR-146a as Sign of Chronic Inflammation in Type 2 Diabetic Patients. PLoS ONE 2014, 9, e115209. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Zhu, J.; Han, W.; Jiang, X.; Xu, M.; Zhao, Y.; Dong, Q.; Pang, Z.; Guan, Q.; Gao, L.; et al. Significance of Serum MicroRNAs in Pre-Diabetes and Newly Diagnosed Type 2 Diabetes: A Clinical Study. Acta Diabetol. 2011, 48, 61–69. [Google Scholar] [CrossRef] [PubMed]
- García-Jacobo, R.E.; Uresti-Rivera, E.E.; Portales-Pérez, D.P.; González-Amaro, R.; Lara-Ramírez, E.E.; Enciso-Moreno, J.A.; García-Hernández, M.H. Circulating MiR-146a, MiR-34a and MiR-375 in Type 2 Diabetes Patients, Pre-diabetic and Normal-glycaemic Individuals in Relation to Β-cell Function, Insulin Resistance and Metabolic Parameters. Clin. Exp. Pharmacol. Physiol. 2019, 46, 1092–1100. [Google Scholar] [CrossRef]
- Karolina, D.S.; Armugam, A.; Tavintharan, S.; Wong, M.T.K.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. MicroRNA 144 Impairs Insulin Signaling by Inhibiting the Expression of Insulin Receptor Substrate 1 in Type 2 Diabetes Mellitus. PLoS ONE 2011, 6, e22839. [Google Scholar] [CrossRef]
- Karolina, D.S.; Tavintharan, S.; Armugam, A.; Sepramaniam, S.; Pek, S.L.T.; Wong, M.T.K.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. Circulating MiRNA Profiles in Patients with Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2012, 97, E2271–E2276. [Google Scholar] [CrossRef] [Green Version]
- Katayama, M.; Wiklander, O.P.B.; Fritz, T.; Caidahl, K.; El-Andaloussi, S.; Zierath, J.R.; Krook, A. Circulating Exosomal MiR-20b-5p Is Elevated in Type 2 Diabetes and Could Impair Insulin Action in Human Skeletal Muscle. Diabetes 2019, 68, 515–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangalli, E.; Tagliabue, E.; Sala, L.L.; Prattichizzo, F.; Uccellatore, A.; Spada, D.; Lorino, F.; de Candia, P.; Lupini, S.; Cantone, L.; et al. Circulating MicroRNA-15a Associates with Retinal Damage in Patients with Early Stage Type 2 Diabetes. Front. Endocrinol. 2020, 11, 254. [Google Scholar] [CrossRef] [PubMed]
- Parrizas, M.; Mundet, X.; Castaño, C.; Canivell, S.; Cos, X.; Brugnara, L.; Giráldez-García, C.; Regidor, E.; Mata-Cases, M.; Franch-Nadal, J.; et al. MiR-10b and MiR-223-3p in Serum Microvesicles Signal Progression from Prediabetes to Type 2 Diabetes. J. Endocrinol. Investig. 2020, 43, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Al Kafaji, G.; Al Mahroos, G.; Alsayed, N.A.; Hasan, Z.A.; Nawaz, S.; Bakhiet, M. Peripheral Blood MicroRNA-15a Is a Potential Biomarker for Type 2 Diabetes Mellitus and Pre-Diabetes. Mol. Med. Rep. 2015, 12, 7485–7490. [Google Scholar] [CrossRef] [Green Version]
- Nunez Lopez, Y.O.; Retnakaran, R.; Zinman, B.; Pratley, R.E.; Seyhan, A.A. Predicting and Understanding the Response to Short-Term Intensive Insulin Therapy in People with Early Type 2 Diabetes. Mol. Metab. 2019, 20, 63–78. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Gong, Y.-L.; Li, C.-J.; Qi, Q.; Zhang, Q.-M.; Yu, D.-M. Circulating MiRNA Biomarkers Serve as a Fingerprint for Diabetic Atherosclerosis. Am. J. Transl. Res. 2016, 8, 2650–2658. [Google Scholar]
- Ghorbani, S.; Mahdavi, R.; Alipoor, B.; Panahi, G.; Nasli Esfahani, E.; Razi, F.; Taghikhani, M.; Meshkani, R. Decreased Serum MicroRNA-21 Level Is Associated with Obesity in Healthy and Type 2 Diabetic Subjects. Arch. Physiol. Biochem. 2018, 124, 300–305. [Google Scholar] [CrossRef]
- Dias, S.; Hemmings, S.; Muller, C.; Louw, J.; Pheiffer, C. MicroRNA Expression Varies According to Glucose Tolerance, Measurement Platform, and Biological Source. BioMed Res. Int. 2017, 2017, e1080157. [Google Scholar] [CrossRef]
- Yan, L.-N. Four-MicroRNA Signature for Detection of Type 2 Diabetes. World J. Clin. Cases 2020, 8, 1923–1931. [Google Scholar] [CrossRef]
- Liang, Y.-Z.; Dong, J.; Zhang, J.; Wang, S.; He, Y.; Yan, Y.-X. Identification of Neuroendocrine Stress Response-Related Circulating MicroRNAs as Biomarkers for Type 2 Diabetes Mellitus and Insulin Resistance. Front. Endocrinol. 2018, 9, 132. [Google Scholar] [CrossRef]
- Sun, K.; Chang, X.; Yin, L.; Li, J.; Zhou, T.; Zhang, C.; Chen, X. Expression and DNA Methylation Status of MicroRNA-375 in Patients with Type 2 Diabetes Mellitus. Mol. Med. Rep. 2014, 9, 967–972. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, C.; Nakatsuka, A.; Eguchi, J.; Teshigawara, S.; Kanzaki, M.; Katayama, A.; Yamaguchi, S.; Takahashi, N.; Murakami, K.; Ogawa, D.; et al. Identification of Circulating MiR-101, MiR-375 and MiR-802 as Biomarkers for Type 2 Diabetes. Metabolism 2015, 64, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Al-Muhtaresh, H.A.; Al-Kafaji, G. Evaluation of Two-Diabetes Related MicroRNAs Suitability as Earlier Blood Biomarkers for Detecting Prediabetes and Type 2 Diabetes Mellitus. J. Clin. Med. 2018, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Dong, Y.; He, C.; Pan, X.; Liu, D.; Yang, J.; Sun, L.; Chen, P.; Wang, Q. RNA-Seq Revealed Novel Non-Proliferative Retinopathy Specific Circulating MiRNAs in T2DM Patients. Front. Genet. 2019, 10, 531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, S.; Wang, T.; Huang, S.; Di, Y.; Huang, Y.; Liu, X.; Luo, Z.; Han, W.; An, B. Differential Expression of MicroRNAs in Plasma of Patients with Prediabetes and Newly Diagnosed Type 2 Diabetes. Acta Diabetol. 2016, 53, 693–702. [Google Scholar] [CrossRef]
- De Candia, P.; Spinetti, G.; Specchia, C.; Sangalli, E.; Sala, L.L.; Uccellatore, A.; Lupini, S.; Genovese, S.; Matarese, G.; Ceriello, A. A Unique Plasma MicroRNA Profile Defines Type 2 Diabetes Progression. PLoS ONE 2017, 12, e0188980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangwal, S.; Stratmann, B.; Bang, C.; Lorenzen, J.M.; Kumarswamy, R.; Fiedler, J.; Falk, C.S.; Scholz, C.J.; Thum, T.; Tschoepe, D. Impairment of Wound Healing in Patients with Type 2 Diabetes Mellitus Influences Circulating MicroRNA Patterns via Inflammatory Cytokines. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1480–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Li, Q.; Zhang, L.; Zhong, L.; Gu, M.; He, B.; Qu, Q.; Lao, Y.; Gu, K.; Zheng, B.; et al. Serum MiR-195-5p Exhibits Clinical Significance in the Diagnosis of Essential Hypertension with Type 2 Diabetes Mellitus by Targeting DRD1. Clinics 2021, 76, e2502. [Google Scholar] [CrossRef]
- Jiang, Q.; Lyu, X.-M.; Yuan, Y.; Wang, L. Plasma MiR-21 Expression: An Indicator for the Severity of Type 2 Diabetes with Diabetic Retinopathy. Biosci. Rep. 2017, 37, BSR20160589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Sundquist, J.; Zöller, B.; Memon, A.A.; Palmér, K.; Sundquist, K.; Bennet, L. Determination of 14 Circulating MicroRNAs in Swedes and Iraqis with and without Diabetes Mellitus Type 2. PLoS ONE 2014, 9, e86792. [Google Scholar] [CrossRef]
- Dantas da Costa e Silva, M.E.; Polina, E.R.; Crispim, D.; Sbruzzi, R.C.; Lavinsky, D.; Mallmann, F.; Martinelli, N.C.; Canani, L.H.; dos Santos, K.G. Plasma Levels of MiR-29b and MiR-200b in Type 2 Diabetic Retinopathy. J. Cell. Mol. Med. 2019, 23, 1280–1287. [Google Scholar] [CrossRef]
- Jimenez-Lucena, R.; Alcala-Diaz, J.F.; Roncero-Ramos, I.; Lopez-Moreno, J.; Camargo, A.; Gomez-Delgado, F.; Quintana-Navarro, G.M.; Vals-Delgado, C.; Rodriguez-Cantalejo, F.; Luque, R.M.; et al. MiRNAs Profile as Biomarkers of Nutritional Therapy for the Prevention of Type 2 Diabetes Mellitus: From the CORDIOPREV Study. Clin. Nutr. 2021, 40, 1028–1038. [Google Scholar] [CrossRef]
- Santovito, D.; De Nardis, V.; Marcantonio, P.; Mandolini, C.; Paganelli, C.; Vitale, E.; Buttitta, F.; Bucci, M.; Mezzetti, A.; Consoli, A.; et al. Plasma Exosome MicroRNA Profiling Unravels a New Potential Modulator of Adiponectin Pathway in Diabetes: Effect of Glycemic Control. J. Clin. Endocrinol. Metab. 2014, 99, E1681–E1685. [Google Scholar] [CrossRef]
- Prabu, P.; Poongothai, S.; Shanthirani, C.S.; Anjana, R.M.; Mohan, V.; Balasubramanyam, M. Altered Circulatory Levels of MiR-128, BDNF, Cortisol and Shortened Telomeres in Patients with Type 2 Diabetes and Depression. Acta Diabetol. 2020, 57, 799–807. [Google Scholar] [CrossRef]
- Greco, M.; Chiefari, E.; Accattato, F.; Corigliano, D.M.; Arcidiacono, B.; Mirabelli, M.; Liguori, R.; Brunetti, F.S.; Pullano, S.A.; Scorcia, V.; et al. MicroRNA-1281 as a Novel Circulating Biomarker in Patients with Diabetic Retinopathy. Front. Endocrinol. 2020, 11, 528. [Google Scholar] [CrossRef]
- Prabu, P.; Rome, S.; Sathishkumar, C.; Aravind, S.; Mahalingam, B.; Shanthirani, C.S.; Gastebois, C.; Villard, A.; Mohan, V.; Balasubramanyam, M. Circulating MiRNAs of ‘Asian Indian Phenotype’ Identified in Subjects with Impaired Glucose Tolerance and Patients with Type 2 Diabetes. PLoS ONE 2015, 10, e0128372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, H.; Wu, C.; Shao, Y.; Liu, S.; Zhou, Y.; Wang, Q. Correlation between Serum MiR-154-5p and Urinary Albumin Excretion Rates in Patients with Type 2 Diabetes Mellitus: A Cross-Sectional Cohort Study. Front. Med. 2020, 14, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Shaker, O.G.; Abdelaleem, O.O.; Mahmoud, R.H.; Abdelghaffar, N.K.; Ahmed, T.I.; Said, O.M.; Zaki, O.M. Diagnostic and Prognostic Role of Serum MiR-20b, MiR-17-3p, HOTAIR, and MALAT1 in Diabetic Retinopathy. IUBMB Life 2018, 71, 310–320. [Google Scholar] [CrossRef]
- Liu, H.-N.; Li, X.; Wu, N.; Tong, M.-M.; Chen, S.; Zhu, S.-S.; Qian, W.; Chen, X.-L. Serum MicroRNA-221 as a Biomarker for Diabetic Retinopathy in Patients Associated with Type 2 Diabetes. Int. J. Ophthalmol. 2018, 11, 1889–1894. [Google Scholar] [CrossRef] [PubMed]
- Sidorkiewicz, I.; Niemira, M.; Maliszewska, K.; Erol, A.; Bielska, A.; Szalkowska, A.; Adamska-Patruno, E.; Szczerbinski, L.; Gorska, M.; Kretowski, A. Circulating MiRNAs as a Predictive Biomarker of the Progression from Prediabetes to Diabetes: Outcomes of a 5-Year Prospective Observational Study. J. Clin. Med. 2020, 9, 2184. [Google Scholar] [CrossRef]
- Ji, H.; Yi, Q.; Chen, L.; Wong, L.; Liu, Y.; Xu, G.; Zhao, J.; Huang, T.; Li, B.; Yang, Y.; et al. Circulating MiR-3197 and MiR-2116-5p as Novel Biomarkers for Diabetic Retinopathy. Clin. Chim. Acta 2020, 501, 147–153. [Google Scholar] [CrossRef]
- Seleem, M.; Shabayek, M.; Ewida, H.A. MicroRNAs 342 and 450 Together with NOX-4 Activity and Their Association with Coronary Artery Disease in Diabetes. Diabetes Metab. Res. Rev. 2019, 35, e3130. [Google Scholar] [CrossRef]
- Elemam, N.M.; Hasswan, H.; Aljaibeji, H.; Sulaiman, N. Circulating Soluble ACE2 and Upstream MicroRNA Expressions in Serum of Type 2 Diabetes Mellitus Patients. Int. J. Mol. Sci. 2021, 22, 5263. [Google Scholar] [CrossRef]
- Pescador, N.; Pérez-Barba, M.; Ibarra, J.M.; Corbatón, A.; Martínez-Larrad, M.T.; Serrano-Ríos, M. Serum Circulating MicroRNA Profiling for Identification of Potential Type 2 Diabetes and Obesity Biomarkers. PLoS ONE 2013, 8, e77251. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wan, S.; Yang, T.; Niu, D.; Zhang, A.; Yang, C.; Cai, J.; Wu, J.; Song, J.; Zhang, C.-Y.; et al. Increased Serum MicroRNAs Are Closely Associated with the Presence of Microvascular Complications in Type 2 Diabetes Mellitus. Sci. Rep. 2016, 6, 20032. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Dai, X.; Zhan, J.; Zhang, Y.; Zhang, H.; Zhang, H.; Zeng, S.; Xi, W. Profiling Peripheral MicroRNAs in Obesity and Type 2 Diabetes Mellitus. APMIS 2015, 123, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-M.; Chen, L.-H.; Hong, M.; Chen, Y.-Y.; Yang, X.-R.; Tang, S.-M.; Yuan, Q.-F.; Chen, W.-W. Serum MicroRNA Profiling and Bioinformatics Analysis of Patients with Type 2 Diabetes Mellitus in a Chinese Population. Mol. Med. Rep. 2017, 15, 2143–2153. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Wang, J.; Wang, J.; Wu, J.; Song, J.; Zhang, C.-Y.; Zhang, C.; Wang, C.; Wang, J.-J. Increased Serum MiR-7 Is a Promising Biomarker for Type 2 Diabetes Mellitus and Its Microvascular Complications. Diabetes Res. Clin. Pract. 2017, 130, 171–179. [Google Scholar] [CrossRef]
- Zhou, J.; Peng, R.; Li, T.; Luo, X.; Peng, H.; Zha, H.; Yin, P.; Wen, L.; Zhang, Z. A Potentially Functional Polymorphism in the Regulatory Region of Let-7a-2 Is Associated with an Increased Risk for Diabetic Nephropathy. Gene 2013, 527, 456–461. [Google Scholar] [CrossRef]
- Feng, T.; Li, K.; Zheng, P.; Wang, Y.; Lv, Y.; Shen, L.; Chen, Y.; Xue, Z.; Li, B.; Jin, L.; et al. Weighted Gene Coexpression Network Analysis Identified MicroRNA Coexpression Modules and Related Pathways in Type 2 Diabetes Mellitus. Oxid. Med. Cell. Longev. 2019, 2019, e9567641. [Google Scholar] [CrossRef]
- Marumo, T.; Hoshino, J.; Kawarazaki, W.; Nishimoto, M.; Ayuzawa, N.; Hirohama, D.; Yamanouchi, M.; Ubara, Y.; Okaneya, T.; Fujii, T.; et al. Methylation Pattern of Urinary DNA as a Marker of Kidney Function Decline in Diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001501. [Google Scholar] [CrossRef]
- Onishi, A.; Sugiyama, H.; Kitagawa, M.; Yamanari, T.; Tanaka, K.; Ogawa-Akiyama, A.; Kano, Y.; Mise, K.; Tanabe, K.; Morinaga, H.; et al. Urine 5MedC, a Marker of DNA Methylation, in the Progression of Chronic Kidney Disease. Dis. Markers 2019, 2019, 5432453. [Google Scholar] [CrossRef] [Green Version]
- Lecamwasam, A.; Sexton-Oates, A.; Carmody, J.; Ekinci, E.I.; Dwyer, K.M.; Saffery, R. DNA Methylation Profiling of Genomic DNA Isolated from Urine in Diabetic Chronic Kidney Disease: A Pilot Study. PLoS ONE 2018, 13, e0190280. [Google Scholar] [CrossRef]
- Fukuda, A.; Minakawa, A.; Sato, Y.; Iwakiri, T.; Iwatsubo, S.; Komatsu, H.; Kikuchi, M.; Kitamura, K.; Wiggins, R.C.; Fujimoto, S. Urinary Podocyte and TGF-Β1 MRNA as Markers for Disease Activity and Progression in Anti-Glomerular Basement Membrane Nephritis. Nephrol. Dial. Transplant. 2017, 32, 1818–1830. [Google Scholar] [CrossRef] [PubMed]
- Hishikawa, A.; Hayashi, K.; Yoshimoto, N.; Nakamichi, R.; Homma, K.; Itoh, H. DNA Damage and Expression of DNA Methylation Modulators in Urine-Derived Cells of Patients with Hypertension and Diabetes. Sci. Rep. 2020, 10, 3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.; Zhong, M.; Zhao, W.; Wang, C.; Zhang, J.; Liu, X.; Li, Y.; Paudel, S.D.; Wang, Q.; Lou, T. Urinary MiR-29 Correlates with Albuminuria and Carotid Intima-Media Thickness in Type 2 Diabetes Patients. PLoS ONE 2013, 8, e82607. [Google Scholar] [CrossRef] [Green Version]
- Prabu, P.; Rome, S.; Sathishkumar, C.; Gastebois, C.; Meugnier, E.; Mohan, V.; Balasubramanyam, M. MicroRNAs from Urinary Extracellular Vesicles Are Non-Invasive Early Biomarkers of Diabetic Nephropathy in Type 2 Diabetes Patients with the ‘Asian Indian Phenotype’. Diabetes Metab. 2018, 45, 276–285. [Google Scholar] [CrossRef]
- Jia, Y.; Guan, M.; Zheng, Z.; Zhang, Q.; Tang, C.; Xu, W.; Xiao, Z.; Wang, L.; Xue, Y. MiRNAs in Urine Extracellular Vesicles as Predictors of Early-Stage Diabetic Nephropathy. J. Diabetes Res. 2016, 2016, e7932765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eissa, S.; Matboli, M.; Aboushahba, R.; Bekhet, M.M.; Soliman, Y. Urinary Exosomal MicroRNA Panel Unravels Novel Biomarkers for Diagnosis of Type 2 Diabetic Kidney Disease. J. Diabetes Complicat. 2016, 30, 1585–1592. [Google Scholar] [CrossRef]
- Eissa, S.; Matboli, M.; Bekhet, M.M. Clinical Verification of a Novel Urinary MicroRNA Panal: 133b, -342 and -30 as Biomarkers for Diabetic Nephropathy Identified by Bioinformatics Analysis. Biomed. Pharmacother. 2016, 83, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shen, A.; Guo, F.; Song, Y.; Jing, N.; Ding, X.; Pan, M.; Zhang, H.; Wang, J.; Wu, L.; et al. Urinary Exosomal MiRNA-4534 as a Novel Diagnostic Biomarker for Diabetic Kidney Disease. Front. Endocrinol. 2020, 11, 590. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, G.; Yang, C.; Zhou, K.; Shen, B.; Liang, H.; Jiang, X. Stability of MiR-126 in Urine and Its Potential as a Biomarker for Renal Endothelial Injury with Diabetic Nephropathy. Int. J. Endocrinol. 2014, 2014, 393109. [Google Scholar] [CrossRef]
- Cho, N.-J.; Kim, D.-Y.; Kwon, S.H.; Ha, T.W.; Kim, H.K.; Lee, M.R.; Chun, S.W.; Park, S.; Lee, E.; Gil, H.-W. Urinary Exosomal MicroRNA Profiling in Type 2 Diabetes Patients Taking Dipeptidyl Peptidase-4 Inhibitor Compared with Sulfonylurea. Kidney Res. Clin. Pract. 2021, 40, 383–391. [Google Scholar] [CrossRef]
- Nishitani, S.; Parets, S.E.; Haas, B.W.; Smith, A.K. DNA Methylation Analysis from Saliva Samples for Epidemiological Studies. Epigenetics 2018, 13, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Sapienza, C.; Lee, J.; Powell, J.; Erinle, O.; Yafai, F.; Reichert, J.; Siraj, E.S.; Madaio, M. DNA Methylation Profiling Identifies Epigenetic Differences between Diabetes Patients with ESRD and Diabetes Patients without Nephropathy. Epigenetics 2011, 6, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rushing, A.; Sommer, E.C.; Zhao, S.; Po’e, E.K.; Barkin, S.L. Salivary Epigenetic Biomarkers as Predictors of Emerging Childhood Obesity. BMC Med. Genet. 2020, 21, 34. [Google Scholar] [CrossRef]
- Al-Rawi, N.H.; Al-Marzooq, F.; Al-Nuaimi, A.S.; Hachim, M.Y.; Hamoudi, R. Salivary MicroRNA 155, 146a/b and 203: A Pilot Study for Potentially Non-Invasive Diagnostic Biomarkers of Periodontitis and Diabetes Mellitus. PLoS ONE 2020, 15, e0237004. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-MiRPath v3.0: Deciphering MicroRNA Function with Experimental Support. Nucleic Acids Res. 2015, 43, W460–W466. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, I.S.; Paraskevopoulou, M.D.; Karagkouni, D.; Georgakilas, G.; Vergoulis, T.; Kanellos, I.; Anastasopoulos, I.-L.; Maniou, S.; Karathanou, K.; Kalfakakou, D.; et al. DIANA-TarBase v7.0: Indexing More than Half a Million Experimentally Supported MiRNA:MRNA Interactions. Nucleic Acids Res. 2015, 43, D153–D159. [Google Scholar] [CrossRef] [PubMed]
Type of Biomarker | BEST Definition | Application/Example |
---|---|---|
Susceptibility/risk | A biomarker that indicates the potential for developing a disease or medical condition in an individual who does not currently have clinically apparent disease or medical condition. | BRCA1/2 mutations can be used to identify individuals with a predisposition to develop breast cancer |
Diagnostic | A biomarker to detect or confirm the presence of a disease or condition of interest or to identify individuals with a subtype of the disease. | HbA1c can be used to identify patients with T2DM |
Monitoring | A biomarker measured repeatedly for assessing disease status or medical condition or for evidence of exposure to (or effect of) a medical product or an environmental agent. | Hepatitis C virus or HIV RNA may be measured repeatedly to monitor treatment response |
Prognostic | A biomarker to identify likelihood of a clinical event, disease recurrence, or progression in patients who have the disease or medical condition of interest | BRCA1/2 mutations can evaluate the likelihood of second breast cancer. |
Predictive | A biomarker used to identify individuals who are more likely than similar individuals without the biomarker to experience a favorable or unfavorable effect from exposure to a medical product or an environmental agent. | BRCA1/2 mutations can identify ovarian cancer patients likely to respond to PARP inhibitors. |
Pharmacodynamic/response | A biomarker used to show that a biological response has occurred in an individual who has been exposed to a medical product or an environmental agent. | HbA1c may be used to assess diabetes control after treatment |
Safety | A biomarker measured before or after an exposure to a medical product or an environmental agent to indicate the likelihood, presence, or extent of toxicity as an adverse effect. | Neutrophil count can be used to adjust dose for patients on cytotoxic chemotherapy. |
Sample Type | Profiling Method | Sample Size (Controls, T2D, Other) | Biomarker | Ref |
---|---|---|---|---|
Blood (plasma or serum) and urine | qRT-PCR | 4668, 0, 2290 ** | Urine albumin-to-creatinine ratio and WFS1 (rs10010131) | [41] |
Blood (plasma) and urine | qRT-PCR | 0, 290, 285 ** | Urine albumin and PGC-1α (rs8192678) | [42] |
Blood and urine | qRT-PCR | 35, 0, 42 ** | Urine creatinine ratio with mtDNA | [40] |
Sample Type | Profiling Method | Sample Size (Controls, T2D, Other) | Biomarker | Ref |
---|---|---|---|---|
Urine | Global DNA Methylation ELISA kit | 0, 0, 308 ** | 5-methyl-2′-deoxycytidine (5MedC) | [174] |
Urine | Illumina Infinium MethylationEPIC Kit | 9, 0, 4 ** | SMTNL2 and G6PC | [173] |
Sample Type | Profiling Method | Sample Size (Controls, T2D, Other) | Biomarker | Ref |
---|---|---|---|---|
Urine | qRT-PCR | 85, 86, 92 ** | hsa-miR-126 | [184] |
Urine | qRT-PCR | 0, 41, 42 ** | hsa-miR-29a | [178] |
Urinary exosome | qRT-PCR | 54, 56, 110 ** | hsa-miR-133b, hsa-miR-342, hsa-miR-30a | [182] |
Urinary exosome | qRT-PCR | 40, 40, 80 ** | hsa-miR-15b-5p, hsa-let-7i-5p, hsa-miR-135b-5p, hsa-miR-24-3p, hsa-miR-27b-3p, hsa-miR-30a-5p, hsa-miR-197-3p | [179] |
Urinary exosome | qRT-PCR | 44, 46, 90 ** | hsa-miR-15b, hsa-miR-34a and hsa-miR-636 | [181] |
Urinary exosome | qRT-PCR | 10, 30, 50 ** | hsa-miR-192, hsa-miR-194, and hsa-miR-215 | [180] |
Urinary exosome | Nanostring and qPCR | 7, 23, 34 ** | hsa-miR-23a-3p | [185] |
Urinary exosome | Microarray and qRT-PCR | 0, 14, 14 ** | hsa-miR-4687-3p, hsa-miR-4534, hsa-miR-5007-3p | [183] |
Biomarker Type | Definition | Genomics (SNPs) | Transcriptomics (mRNA) | DNA Methylation | miRNA |
---|---|---|---|---|---|
Risk | Risk for developing T2D in those who appear healthy | PPARG, FTO, CDC123, TCF7L2, CDKAL1, WFS1, KCNJ11, SLC30A8, ADAMTS9, IGF2BP2, TSPAN8, JAZF1 | - | ABCG1, PHOSPHO1, SOCS3, SREBF1, TXNIP | - |
Diagnostic | Confirming the presence of T2D or identifying a subset of T2D | Ruminococcaceae (Gut microbiome) | IL-6, IL-8, TTP | - | hsa-miR-126, hsa-miR-126-3p, hsa-miR-126-5p, hsa-miR-122-5p, hsa-miR-144, hsa-miR-146a, hsa-miR-150, hsa-miR-15a, hsa-miR-191, hsa-miR-192, hsa-miR-20b, hsa-miR-21, hsa-miR-221, hsa-miR-223, hsa-miR-24, hsa-miR-27a, hsa-miR-28-3p, hsa-miR-29a, hsa-miR-29b, hsa-miR-30d, hsa-miR-34a, hsa-miR-375 |
Monitoring | Measured repeatedly to assess T2D status | - | - | - | - |
Prognostic | To identify the likelihood of progressing from IGT to T2D or developing T2D complications | - | IL-6, IL-8, TTP | - | hsa-miR-122-5p, hsa-miR-126, hsa-miR-126-3p, hsa-miR-143-3p, hsa-miR-144, hsa-miR-146a, hsa-miR-192, hsa-miR-194, hsa-miR-21, hsa-miR-29a, hsa-miR-320b, hsa-miR-34a, hsa-miR-375 |
Predictive | To identify individuals who will experience favorable/unfavorable medical response, compared to those without the biomarker | - | - | - | - |
Pharmacodynamic/response | To observe T2D treatment response, not measured repeatedly | - | SOD1 | - | hsa-miR-126, hsa-miR-192 |
Safety | To evaluate toxicity response to a treatment | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padilla-Martinez, F.; Wojciechowska, G.; Szczerbinski, L.; Kretowski, A. Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. Int. J. Mol. Sci. 2022, 23, 295. https://doi.org/10.3390/ijms23010295
Padilla-Martinez F, Wojciechowska G, Szczerbinski L, Kretowski A. Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. International Journal of Molecular Sciences. 2022; 23(1):295. https://doi.org/10.3390/ijms23010295
Chicago/Turabian StylePadilla-Martinez, Felipe, Gladys Wojciechowska, Lukasz Szczerbinski, and Adam Kretowski. 2022. "Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes" International Journal of Molecular Sciences 23, no. 1: 295. https://doi.org/10.3390/ijms23010295
APA StylePadilla-Martinez, F., Wojciechowska, G., Szczerbinski, L., & Kretowski, A. (2022). Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. International Journal of Molecular Sciences, 23(1), 295. https://doi.org/10.3390/ijms23010295