Design and Engineering of an Efficient Peroxidase Using Myoglobin for Dye Decolorization and Lignin Bioconversion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Peroxidase Activity
2.2. Dye-Decolorizing Peroxidase Activity
2.3. Bioconversion of Kraft Lignin
2.4. Bioconversion of Model Compound GGE
2.5. HPLC and ESI-MS Analysis of the Products
2.6. Proposed Mechanism for GGE Bioconversion
3. Materials and Methods
3.1. Materials
3.2. Protein Expression and Purification
3.3. Peroxidase Activity Assay
3.4. Dye-Decolorizing Peroxidase Activity Assay
3.5. Kinetic Analysis of Alkali Kraft Lignin
3.6. Assay for Ketone Products
3.7. HPLC and Mass Spectrometry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, S.; Peter, A.P.; Chew, K.W.; Munawaroh, H.S.H.; Show, P.L. Resource recovery from industrial effluents through the cultivation of microalgae: A review. Bioresour. Technol. 2021, 337, 125461. [Google Scholar] [CrossRef] [PubMed]
- Andersson, E.; Dernegard, H.; Wallen, M.; Thollander, P. Decarbonization of industry: Implementation of energy performance indicators for successful energy management practices in kraft pulp mills. Energy Rep. 2021, 7, 1808–1817. [Google Scholar] [CrossRef]
- Sosa-Martinez, J.D.; Balagurusamy, N.; Montanez, J.; Peralta, R.A.; Moreira, R.D.P.M.; Bracht, A.; Peralta, R.M.; Morales-Oyervides, L. Synthetic dyes biodegradation by fungal ligninolytic enzymes: Process optimization, metabolites evaluation and toxicity assessment. J. Hazard. Mater. 2020, 400, 123254. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Bilal, M.; Iqbal, H.M.N.; Meyer, A.S.; Raj, A. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. Sci. Total Environ. 2021, 777, 145988. [Google Scholar] [CrossRef]
- Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Adv. Environ. Res. 2004, 8, 501–551. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A Review. Cellul. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Zhou, X.F. Conversion of kraft lignin under hydrothermal conditions. Bioresour. Technol. 2014, 170, 583–586. [Google Scholar] [CrossRef]
- Lin, Y.-W. Rational design of metalloenzymes: From single to multiple active sites. Coord. Chem. Rev. 2017, 336, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.-L.; Yuan, H.; Liu, C.; He, B.; Gao, S.-Q.; Wen, G.-B.; Tan, X.; Lin, Y.-W. A Rationally Designed Myoglobin Exhibits a Catalytic Dehalogenation Efficiency More than 1000-Fold That of a Native Dehaloperoxidase. ACS Catal. 2018, 8, 9619–9624. [Google Scholar] [CrossRef]
- Nastri, F.; D’Alonzo, D.; Leone, L.; Zambrano, G.; Pavone, V.; Lombardi, A. Engineering Metalloprotein Functions in Designed and Native Scaffolds. Trends Biochem. Sci. 2019, 44, 1022–1040. [Google Scholar] [CrossRef]
- Lin, Y.-W. Rational design of heme enzymes for biodegradation of pollutants toward a green future. Biotechnol. Appl. Biochem. 2020, 67, 484–494. [Google Scholar] [CrossRef]
- Lin, Y.-W. Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coord. Chem. Rev. 2021, 434, 213774. [Google Scholar] [CrossRef]
- Chen, S.-F.; Liu, X.-C.; Xu, J.-K.; Li, L.; Lang, J.-J.; Wen, G.-B.; Lin, Y.-W. Conversion of Human Neuroglobin into a Multifunctional Peroxidase by Rational Design. Inorg. Chem. 2021, 60, 2839–2845. [Google Scholar] [CrossRef]
- Cajnko, M.M.; Oblak, J.; Grilc, M.; Likozar, B. Enzymatic bioconversion process of lignin: Mechanisms, reactions and kinetics. Bioresour. Technol. 2021, 340, 125655. [Google Scholar] [CrossRef]
- Chatha, S.A.S.; Asgher, M.; Iqbal, H.M.N. Enzyme-based solutions for textile processing and dye contaminant biodegradation-a review. Environ. Sci. Pollut. Res. Int. 2017, 24, 14005–14018. [Google Scholar] [CrossRef]
- Xu, H.; Guo, M.Y.; Gao, Y.H.; Bai, X.H.; Zhou, X.W. Expression and characteristics of manganese peroxidase from Ganoderma lucidum in Pichia pastoris and its application in the degradation of four dyes and phenol. BMC Biotechnol. 2017, 17, 19. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, J.M.X.; Noble, C.E.M.; Grayson, K.J.; Mulholland, A.J.; Anderson, J.L.R. Substrate promiscuity of a de novo designed peroxidase. J. Inorg. Biochem. 2021, 217, 111370. [Google Scholar] [CrossRef]
- Yang, S.O.; Sodaneath, H.; Lee, J.I.; Jung, H.; Choi, J.H.; Ryu, H.W.; Cho, K.S. Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2017, 52, 862–872. [Google Scholar] [CrossRef]
- Chan, J.C.; Paice, M.; Zhang, X. Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications. ChemCatChem 2019, 12, 401–425. [Google Scholar] [CrossRef]
- Colpa, D.I.; Fraaije, M.W.; van Bloois, E. DyP-type peroxidases: A promising and versatile class of enzymes. J. Ind. Microbiol. Biot. 2014, 41, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Brissos, V.; Tavares, D.; Sousa, A.C.; Robalo, M.P.; Martins, L.O. Engineering a Bacterial DyP-Type Peroxidase for Enhanced Oxidation of Lignin-Related Phenolics at Alkaline pH. ACS Catal. 2017, 7, 3454–3465. [Google Scholar] [CrossRef]
- Rahmanpour, R.; Rea, D.; Jamshidi, S.; Fulop, V.; Bugg, T.D.H. Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds. Arch. Biochem. Biophys. 2016, 594, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Chaplin, A.K.; Wilson, M.T.; Worrall, J.A.R. Kinetic characterisation of a dye decolourising peroxidase from Streptomyces lividans: New insight into the mechanism of anthraquinone dye decolourisation. Dalton. Trans. 2017, 46, 9420–9429. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Shrestha, R.; Jia, K.; Gao, P.F.; Geisbrecht, B.V.; Bossmann, S.H.; Shi, J.; Li, P. Characterization of Dye-decolorizing Peroxidase (DyP) from Thermomonospora curvata Reveals Unique Catalytic Properties of A-type DyPs. J. Biol. Chem. 2015, 290, 23447–23463. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.J.; Li, W.; Xiang, Y.; Wen, G.B.; Lin, Y.W.; Tan, X.S. A Novel Tyrosine-Heme C-O Covalent Linkage in F43Y Myoglobin: A New Post-translational Modification of Heme Proteins. Chembiochem 2015, 16, 47–50. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, H.; Liao, F.; Wei, C.W.; Du, K.J.; Gao, S.Q.; Tan, X.; Lin, Y.W. Unique Tyr-heme double cross-links in F43Y/T67R myoglobin: An artificial enzyme with a peroxidase activity comparable to that of native peroxidases. Chem. Commun. 2019, 55, 6610–6613. [Google Scholar] [CrossRef]
- Guo, W.-J.; Xu, J.-K.; Liu, J.-J.; Lang, J.-J.; Gao, S.-Q.; Wen, G.-B.; Lin, Y.-W. Biotransformation of Lignin by an Artificial Heme Enzyme Designed in Myoglobin With a Covalently Linked Heme Group. Front. Bioeng. Biotechnol. 2021, 9, 664388. [Google Scholar] [CrossRef]
- Linde, D.; Pogni, R.; Canellas, M.; Lucas, F.; Guallar, V.; Baratto, M.C.; Sinicropi, A.; Saez-Jimenez, V.; Coscolin, C.; Romero, A.; et al. Catalytic surface radical in dye-decolorizing peroxidase: A computational, spectroscopic and site-directed mutagenesis study. Biochem. J. 2015, 466, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Chen, X.J.; Ramyar, K.X.; Hayati, Z.; Carlson, E.A.; Bossmann, S.H.; Song, L.K.; Geisbrecht, B.V.; Li, P. Identification of Surface-Exposed Protein Radicals and A Substrate Oxidation Site in A-Class Dye-Decolorizing Peroxidase from Thermomonospora curvata. Acs Catal. 2016, 6, 8036–8047. [Google Scholar] [CrossRef] [Green Version]
- Li, L.L.; Yuan, H.; Liao, F.; He, B.; Gao, S.Q.; Wen, G.B.; Tan, X.; Lin, Y.W. Rational design of artificial dye-decolorizing peroxidases using myoglobin by engineering Tyr/Trp in the heme center. Dalton. Trans. 2017, 46, 11230–11238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xu, J.; Wang, X.-J.; He, B.; Gao, S.-Q.; Lin, Y.-W. The Third Generation of Artificial Dye-Decolorizing Peroxidase Rationally Designed in Myoglobin. ACS Catal. 2019, 9, 7888–7893. [Google Scholar] [CrossRef]
- Liao, F.; Xu, J.K.; Luo, J.; Gao, S.Q.; Wang, X.J.; Lin, Y.W. Bioinspired design of an artificial peroxidase: Introducing key residues of native peroxidases into F43Y myoglobin with a Tyr-heme cross-link. Dalton. Trans. 2020, 49, 5029–5033. [Google Scholar] [CrossRef] [PubMed]
- van Bloois, E.; Pazmino, D.E.T.; Winter, R.T.; Fraaije, M.W. A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl. Microbiol. Biot. 2010, 86, 1419–1430. [Google Scholar] [CrossRef] [Green Version]
- Uchida, T.; Sasaki, M.; Tanaka, Y.; Ishimorit, K. A Dye-Decolorizing Peroxidase from Vibrio cholerae. Biochemistry 2015, 54, 6610–6621. [Google Scholar] [CrossRef]
- Urayama, P.; Phillips, G.N.; Gruner, S.M. Probing Substates in Sperm Whale Myoglobin Using High-Pressure Crystallography. Structure 2002, 10, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Maglio, O.; Chino, M.; Vicari, C.; Pavone, V.; Louro, R.O.; Lombardi, A. Histidine orientation in artificial peroxidase regioisomers as determined by paramagnetic NMR shifts. Chem. Commun. 2021, 57, 990–993. [Google Scholar] [CrossRef]
- Leone, L.; D’Alonzo, D.; Maglio, O.; Pavone, V.; Nastri, F.; Lombardi, A. Highly Selective Indole Oxidation Catalyzed by a Mn-Containing Artificial Mini-Enzyme. ACS Catal. 2021, 11, 9407–9417. [Google Scholar] [CrossRef]
- Liao, F.; He, B.; Du, K.-J.; Gao, S.-Q.; Wen, G.-B.; Lin, Y.-W. Enhanced Dehaloperoxidase Activity of F43Y Myoglobin with a Novel Thyrosine–Heme Crosslink. Chem. Lett. 2016, 45, 1087–1089. [Google Scholar] [CrossRef]
- Koduri, R.S.; Tien, M. Oxidation of guaiacol by lignin peroxidase. Role of veratryl alcohol. J. Biol. Chem. 1995, 270, 22254–22258. [Google Scholar] [CrossRef] [Green Version]
- Savenkova, M.I.; Kuo, J.M.; Ortiz de Montellano, P.R. Improvement of Peroxygenase Activity by Relocation of a Catalytic Histidine within the Active Site of Horseradish Peroxidase. Biochemistry 1998, 37, 10828–10836. [Google Scholar] [CrossRef]
- Fruk, L.; Müller, J.; Niemeyer, C.M. Kinetic analysis of semisynthetic peroxidase enzymes containing a covalent DNA-heme adduct as the cofactor. Chemistry 2006, 12, 7448–7457. [Google Scholar] [CrossRef] [PubMed]
- Sinirlioglu, Z.A.; Sinirlioglu, D.; Akbas, F. Preparation and characterization of stable cross-linked enzyme aggregates of novel laccase enzyme from Shewanella putrefaciens and using malachite green decolorization. Bioresour. Technol. 2013, 146, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Rahman Pour, R.; Ehibhatiomhan, A.; Huang, Y.; Ashley, B.; Rashid, G.M.; Mendel-Williams, S.; Bugg, T.D.H. Protein engineering of Pseudomonas fluorescens peroxidase Dyp1B for oxidation of phenolic and polymeric lignin substrates. Enzym. Microb. Technol. 2019, 123, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonin, F.; Vignali, E.; Pollegioni, L.; D’Arrigo, P.; Rosini, E. A novel, simple screening method for investigating the properties of lignin oxidative activity. Enzym. Microb. Technol. 2017, 96, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Caramelo, L.; Martinez, M.J.; Martinez, A.T. A Search for Ligninolytic Peroxidases in the Fungus Pleurotus eryngii Involving α-Keto-γ-Thiomethylbutyric Acid and Lignin Model Dimers. Appl. Environ. Microbiol. 1999, 65, 916–922. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Sun, J.; Qaria, M.A.; Gao, L.; Zhu, D. Dye Decoloring Peroxidase Structure, Catalytic Properties and Applications: Current Advancement and Futurity. Catalysts 2021, 11, 955. [Google Scholar] [CrossRef]
- Sun, L.-J.; Yuan, H.; Xu, J.-K.; Luo, J.; Lang, J.-J.; Wen, G.-B.; Tan, X.; Lin, Y.-W. Phenoxazinone Synthase-like Activity of Rationally Designed Heme Enzymes Based on Myoglobin. Biochemistry 2021, 3, 554. [Google Scholar] [CrossRef]
- Ahmad, M.; Roberts, J.N.; Hardiman, E.M.; Singh, R.; Eltis, L.D.; Bugg, T.D. Identification of DypB from Rhodococcus jostii RHA1 as a Lignin Peroxidase. Biochemistry 2011, 50, 5096–5107. [Google Scholar] [CrossRef]
- Springer, B.A.; Sligar, S.G. High-level expression of sperm whale myoglobin in Escherichia coli. Proc. Natl. Acad. Sci. USA 1987, 84, 8961. [Google Scholar] [CrossRef] [Green Version]
- Bilal, M.; Iqbal, H.M.N.; Hu, H.; Wang, W.; Zhang, X. Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Sci. Total Environ. 2017, 575, 1352–1360. [Google Scholar] [CrossRef]
- Vignali, E.; Tonin, F.; Pollegioni, L.; Rosini, E. Characterization and use of a bacterial lignin peroxidase with an improved manganese-oxidative activity. Appl. Microbiol. Biotechnol. 2018, 102, 10579–10588. [Google Scholar] [CrossRef]
Enzyme | kcat (s−1) | Km (mM/μM) | kcat /Km (M−1s−1) |
---|---|---|---|
Guaiacol (Km, mM) | |||
WT Mb [38] | 0.4 ± 0.1 | 3.53 ± 0.05 | 110 |
F43Y Mb [38] | 10.7 ± 0.4 | 2.67 ± 0.21 | 4000 |
F43Y/T67R Mb [32] | 23.5 ± 0.3 | 2.61 ± 0.06 | 9000 |
F43Y/T67R/F138W Mb [32] | 27.7 ± 0.8 | 0.79 ± 0.07 | 35,000 |
F43Y/F138W/P88W Mb | 11.3 ± 0.2 | 0.25 ± 0.01 | 44,380 |
F43Y/T67R/P88W/F138W Mb | 11.0 ± 0.2 | 0.11 ± 0.01 | 103,400 |
Lignin peroxidase [39] | 7.7 ± 0.0 | 0.16 ± 0.00 | 48,000 |
HPR [40] | 420 ± 40.0 | 5.8 ± 0.70 | 72,000 |
ABTS (Km, μM) | |||
WT Mb [38] | 0.55 ± 0.02 | 124 ± 15 | 4440 |
F43Y Mb [38] | 12.0 ± 0.68 | 351 ± 40 | 34,190 |
F43Y/T67R Mb [32] | 50.8 ± 3.6 | 567 ± 68 | 89,600 |
F43Y/T67R/F138W Mb [32] | 31.5 ± 0.6 | 16 ± 2 | 1,970,000 |
F43Y/F138W/P88W Mb | 88.5 ± 6.64 | 162 ± 21 | 545,050 |
F43Y/T67R/P88W/F138W Mb | 76.8 ± 1.89 | 60 ± 4 | 1,276,570 |
HRP [40] | 340 ± 60 | 430 ± 20 | 800,000 |
HRP [41] | 332 ± 18 | 233 ± 21 | 1,420,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.-J.; Xu, J.-K.; Wu, S.-T.; Gao, S.-Q.; Wen, G.-B.; Tan, X.; Lin, Y.-W. Design and Engineering of an Efficient Peroxidase Using Myoglobin for Dye Decolorization and Lignin Bioconversion. Int. J. Mol. Sci. 2022, 23, 413. https://doi.org/10.3390/ijms23010413
Guo W-J, Xu J-K, Wu S-T, Gao S-Q, Wen G-B, Tan X, Lin Y-W. Design and Engineering of an Efficient Peroxidase Using Myoglobin for Dye Decolorization and Lignin Bioconversion. International Journal of Molecular Sciences. 2022; 23(1):413. https://doi.org/10.3390/ijms23010413
Chicago/Turabian StyleGuo, Wen-Jie, Jia-Kun Xu, Sheng-Tao Wu, Shu-Qin Gao, Ge-Bo Wen, Xiangshi Tan, and Ying-Wu Lin. 2022. "Design and Engineering of an Efficient Peroxidase Using Myoglobin for Dye Decolorization and Lignin Bioconversion" International Journal of Molecular Sciences 23, no. 1: 413. https://doi.org/10.3390/ijms23010413
APA StyleGuo, W. -J., Xu, J. -K., Wu, S. -T., Gao, S. -Q., Wen, G. -B., Tan, X., & Lin, Y. -W. (2022). Design and Engineering of an Efficient Peroxidase Using Myoglobin for Dye Decolorization and Lignin Bioconversion. International Journal of Molecular Sciences, 23(1), 413. https://doi.org/10.3390/ijms23010413