Covalently Immobilized Regenerable Immunoaffinity Layer with Orientation-Controlled Antibodies Based on Z-Domain Autodisplay
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Chemical Immobilizing Conditions
2.2. Regenerable Immunoassay Based on Covalently Immobilized Antibodies with Orientation Control
2.3. Application of Covalently Immobilized Regenerable Immunoaffinity Layer with Orientation Control in an SPR Biosensor
3. Materials and Methods
3.1. Reagent
3.2. Cultivation of Autodisplaying E. coli Cells and OM Isolation
3.3. Regenerable Test of Covalently Immobilized Immunoaffinity Layer with Orientation Control
3.4. SPR Biosensor Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Park, M. Orientation Control of the Molecular Recognition Layer for Improved Sensitivity: A Review. BioChip J. 2019, 13, 82–94. [Google Scholar] [CrossRef]
- Park, M.; Pyun, J.C.; Jose, J. Orientation and density control of proteins on solid matters by outer membrane coating: Analytical and diagnostic applications. J. Pharm. Biomed. Anal. 2018, 147, 174–184. [Google Scholar] [CrossRef]
- Kim, J.; Park, M. Recent Progress in Electrochemical Immunosensors. Biosensors 2021, 11, 360360. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Kim, M.-G. Advancements in DNA-assisted Immunosensors. BioChip J. 2020, 14, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Kim, Y.J.; Kang, H.-L.; Yoon, S.; Hong, D.-K.; Kim, W.-H.; Shin, I.-S.; Seong, W.K.; Lee, K.-N. Sensitivity Improvement in Electrochemical Immunoassays Using Antibody Immobilized Magnetic Nanoparticles with a Clean ITO Working Electrode. BioChip J. 2020, 14, 308–316. [Google Scholar] [CrossRef]
- Kim, D.-H.; Paek, S.-H.; Choi, D.-Y.; Lee, M.-K.; Park, J.-N.; Cho, H.-M.; Paek, S.-H. Real-time monitoring of biomarkers in serum for early diagnosis of target disease. BioChip J. 2020, 14, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Pyun, J.C.; Jose, J.; Park, M. Development of a wash-free immunoassay using Escherichia coli cells with autodisplayed Z-domains. Analyst 2017, 142, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Park, M. Surface Display Technology for Biosensor Applications: A Review. Sensors 2020, 20, 2775. [Google Scholar] [CrossRef]
- Lu, B.; Smyth, M.R.; O’Kennedy, R. Tutorial review. Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. Analyst 1996, 121, 29R–32R. [Google Scholar] [CrossRef]
- Park, M.; Jose, J.; Pyun, J.-C. SPR biosensor by using E. coli outer membrane layer with autodisplayed Z-domains. Sens. Actuators B Chem. 2011, 154, 82–88. [Google Scholar] [CrossRef]
- Turkova, J. Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J. Chromatogr. B Biomed. Sci. Appl. 1999, 722, 11–31. [Google Scholar] [CrossRef]
- Ståhl, S.; Nygren, P. The use of gene fusions to protein A and protein G in immunology and biotechnology. Pathol. Biol. 1997, 45, 66–76. [Google Scholar]
- Trilling, A.K.; Beekwilder, J.; Zuilhof, H. Antibody orientation on biosensor surfaces: A minireview. Analyst 2013, 138, 1619–1627. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, B.; Moks, T.; Jansson, B.; Abrahmsen, L.; Elmblad, A.; Holmgren, E.; Henrichson, C.; Jones, T.A.; Uhlen, M. A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng. Des. Sel. 1987, 1, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Jose, J.; Maas, R.M.; Teese, M.G. Autodisplay of enzymes-molecular basis and perspectives. J. Biotechnol. 2012, 161, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Maurer, J.; Jose, J.; Meyer, T.F. Autodisplay: One-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J. Bacteriol. 1997, 179, 794–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.-Y.; Park, M.; Kang, M.-J.; Langer, K.; Jose, J.; Pyun, J.-C. Thermophoretic immunoassay based on autodisplayed Z-domains for the diagnosis of C-reactive protein. Sens. Actuators B Chem. 2018, 258, 1131–1137. [Google Scholar] [CrossRef]
- Asanov, A.N.; Wilson, W.W.; Oldham, P.B. Regenerable biosensor platform: A total internal reflection fluorescence cell with electrochemical control. Anal. Chem. 1998, 70, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Sung, G.Y.; Park, M. Efficient portable urea biosensor based on urease immobilized membrane for monitoring of physiological fluids. Biomedicines 2020, 8, 596. [Google Scholar] [CrossRef] [PubMed]
- Arora, B.; Tandon, R.; Attri, P.; Bhatia, R. Chemical crosslinking: Role in protein and peptide science. Curr. Protein Pept. Sci. 2017, 18, 946–955. [Google Scholar] [CrossRef]
- Mattson, G.; Conklin, E.; Desai, S.; Nielander, G.; Savage, M.; Morgensen, S. A practical approach to crosslinking. Mol. Biol. Rep. 1993, 17, 167–183. [Google Scholar] [CrossRef]
- Mizsei, R.; Li, X.; Chen, W.-N.; Szabo, M.; Wang, J.-H.; Wagner, G.; Reinherz, E.L.; Mallis, R.J. A general chemical crosslinking strategy for structural analyses of weakly interacting proteins applied to preTCR–pMHC complexes. J. Biol. Chem. 2021, 296, 100255. [Google Scholar] [CrossRef]
- Sinz, A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein–protein interactions. Mass Spectrom. Rev. 2006, 25, 663–682. [Google Scholar] [CrossRef]
- Tomohiro, T.; Hashimoto, M.; Hatanaka, Y. Cross-linking chemistry and biology: Development of multifunctional photoaffinity probes. Chem. Rec. 2005, 5, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 2004, 37, 790–802. [Google Scholar] [CrossRef] [PubMed]
- El-Thaher, N.; Mekonnen, T.; Mussone, P.; Bressler, D.; Choi, P. Effects of electrolytes, water, and temperature on cross-linking of glutaraldehyde and hydrolyzed specified risk material. Ind. Eng. Chem. Res. 2013, 52, 4987–4993. [Google Scholar] [CrossRef]
- Venkatachalam, N.; Ramesh, N.; Turuvekere, P.; Prasad, S.V.; Ramees, M.; Kumar, C. Evaluation of efficacy of four disinfectants on striated and non-striated orthodontic instruments: An in vitro study. J. Pharm. Bioallied Sci. 2020, 12, S254. [Google Scholar] [PubMed]
- Mateo, C.; Palomo, J.M.; Van Langen, L.M.; Van Rantwijk, F.; Sheldon, R.A. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol. Bioeng. 2004, 86, 273–276. [Google Scholar] [CrossRef]
- Berg, E.A.; Fishman, J.B. Labeling antibodies. Cold Spring Harb. Protoc. 2020, 2020, pdb-top099242. [Google Scholar] [CrossRef]
- Mädler, S.; Bich, C.; Touboul, D.; Zenobi, R. Chemical cross-linking with NHS esters: A systematic study on amino acid reactivities. J. Mass Spectrom. 2009, 44, 694–706. [Google Scholar] [CrossRef]
- Kalkhof, S.; Sinz, A. Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters. Anal. Bioanal. Chem. 2008, 392, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Jeon, D.; Pyun, J.C.; Jose, J.; Park, M. A Regenerative Immunoaffinity Layer Based on the Outer Membrane of Z-Domains Autodisplaying, E. coli for Immunoassays and Immunosensors. Sensors 2018, 18, 4030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.; Yoo, G.; Bong, J.H.; Jose, J.; Kang, M.J.; Pyun, J.C. Isolation and characterization of the outer membrane of Escherichia coli with autodisplayed Z-domains. Biochim. Biophys. Acta 2015, 1848, 842–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Wang, Q.; Xu, W.; Ma, Y.; Wang, Q.; Eatman, D.; You, S.; Zou, J.; Champion, J.; Zhao, L. C-reactive protein causes adult-onset obesity through chronic inflammatory mechanism. Front. Cell Dev. Biol. 2020, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-M.; Kim, M.Y.; Jose, J.; Park, M. Covalently Immobilized Regenerable Immunoaffinity Layer with Orientation-Controlled Antibodies Based on Z-Domain Autodisplay. Int. J. Mol. Sci. 2022, 23, 459. https://doi.org/10.3390/ijms23010459
Park J-M, Kim MY, Jose J, Park M. Covalently Immobilized Regenerable Immunoaffinity Layer with Orientation-Controlled Antibodies Based on Z-Domain Autodisplay. International Journal of Molecular Sciences. 2022; 23(1):459. https://doi.org/10.3390/ijms23010459
Chicago/Turabian StylePark, Jong-Min, Mi Yeon Kim, Joachim Jose, and Min Park. 2022. "Covalently Immobilized Regenerable Immunoaffinity Layer with Orientation-Controlled Antibodies Based on Z-Domain Autodisplay" International Journal of Molecular Sciences 23, no. 1: 459. https://doi.org/10.3390/ijms23010459
APA StylePark, J. -M., Kim, M. Y., Jose, J., & Park, M. (2022). Covalently Immobilized Regenerable Immunoaffinity Layer with Orientation-Controlled Antibodies Based on Z-Domain Autodisplay. International Journal of Molecular Sciences, 23(1), 459. https://doi.org/10.3390/ijms23010459