Fluorescent CQD-Doped Styrene Acrylic Emulsion Coating Film with Enhanced Optical Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of CQDs Made from Wood Processing Residues
2.1.1. Morphology of Fluorescent CQDs
2.1.2. Optical Properties of Fluorescent CQDs
2.2. Optical Properties of CQD/SAE Coating Films
2.2.1. Photoluminescence Intensity of CQD/SAE Coating Films
2.2.2. UV Transmittance Spectra of CQD/SAE Coating Films
2.3. Structural Characterization of CQD/SAE Coating Films
2.3.1. FT-IR Spectra of CQDs and CQD/SAE Coating Films
2.3.2. XRD Patterns of CQDs and CQD/SAE Coating Films
2.4. Morphology of CQD/SAE Coating Films
2.5. Surface Wettability of CQD/SAE Coating Films
2.5.1. Wetting Property of CQD/SAE Coating Films
2.5.2. Water Absorption of CQD/SAE Coating Films
3. Materials and Methods
3.1. Materials
3.2. Experimental Methods
3.2.1. Synthesis of Fluorescent CQDs
3.2.2. Preparation of CQD/SAE Coating Films
3.3. Characterizations
3.3.1. Characterization of Fluorescent CQDs
3.3.2. Characterization of CQD/SAE Coating Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, K.; Ni, G.H.; Xu, Y.H.; Xun, M.; Hui, W.; Li, S.; Sun, Q.; Li, Y.F. Effect of nano-SiO2/styrene-acrylic emulsion on compactness and strength of mine drilling seal materials. Powder Technol. 2020, 372, 325–335. [Google Scholar] [CrossRef]
- Dong, K.; Ni, G.H.; Xu, Y.H.; Xun, M.; Wang, H.; Li, S.; Sun, Q. Effect of optimized pore structure on sealing performance of drilling sealing materials in coal mine. Constr. Build. Mater. 2021, 274, 121765. [Google Scholar] [CrossRef]
- Liu, J.X.; Sun, Z.N.; Wang, K.; Chan, X.L.; Su, H.J. Preparation of Citric Acid Fermentation Waste-Based Mulch Films with Hydrophobic Surface by Poly(styrene-co-acrylate) Coatings. ACS Omega 2019, 4, 2540–2546. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Zhang, D. Styrene-acrylic emulsion/graphene aerogel supported phase change composite with good thermal conductivity. Thermochim. Acta 2019, 680, 178351. [Google Scholar] [CrossRef]
- Romo-Uribe, A.; Arcos-Casarrubias, J.A.; Hernandez-Vargas, M.L.; Reyes-Mayer, A.; Aguilar-Franco, M.; Bagdhachi, J. Acrylate hybrid nanocomposite coatings based on SiO2 nanoparticles by in-situ batch emulsion polymerization. Prog. Org. Coat. 2016, 97, 288–300. [Google Scholar] [CrossRef]
- Xue, X.; Qiu, M.; Li, Y.W.; Zhang, Q.M.; Li, S.Q.; Yang, Z.; Feng, C.; Zhang, W.D.; Dai, J.G.; Lei, D.Y.; et al. Creating an Eco-Friendly Building Coating with Smart Subambient Radiative Cooling. Adv. Mater. 2020, 32, 1906751. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Ni, J.P.; Tian, C.; Su, Z.H. Research in porous structure of cellulose aerogel made from cellulose nanofibrils. Int. J. Biol. Macromol. 2021, 172, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Amer, W.A.; Rehab, A.F.; Abdelghafar, M.E.; Torad, N.L.; Atlam, A.S.; Ayad, M.M. Green synthesis of carbon quantum dots from purslane leaves for the detection of formaldehyde using quartz crystal microbalance. Carbon 2021, 179, 159–171. [Google Scholar] [CrossRef]
- Wang, R.; Lu, K.Q.; Tang, Z.R.; Xu, Y.J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5, 3717–3734. [Google Scholar] [CrossRef]
- Nazri, N.A.A.; Azeman, N.H.; Luo, Y.H.; Bakar, A.A.A. Carbon quantum dots for optical sensor applications: A review. Opt. Laser Technol. 2021, 139, 106928. [Google Scholar] [CrossRef]
- Li, M.X.; Chen, T.; Gooding, J.J.; Liu, J.Q. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens. 2019, 4, 1732–1748. [Google Scholar] [CrossRef]
- Son, M.H.; Park, S.W.; Jung, Y.K. Antioxidant and anti-aging carbon quantum dots using tannic acid. Nanotechnology 2021, 32, 415102. [Google Scholar] [CrossRef]
- Zhang, J.X.; An, X.L.; Li, X.A.; Liao, X.Z.; Nie, Y.Y.; Fan, Z.J. Enhanced antibacterial properties of the bracket under natural light via decoration with ZnO/carbon quantum dots composite coating. Chem. Phys. Lett. 2018, 706, 702–707. [Google Scholar] [CrossRef]
- Si, M.Y.; Sillanpaa, M.; Zhuo, S.N.; Zhang, J.; Liu, M.R.; Wang, S.; Gao, C.J.; Chai, L.Y.; Zhao, F.P.; Shi, Y. Phase separation of co-solvent promotes multiple bio-nanomaterials conversion from natural lignocellulose. Ind. Crop. Prod. 2020, 152, 112469. [Google Scholar] [CrossRef]
- da Silva, E.J.; Schmidt, G.; Mantau, U. Wood resource balance for plantation forests in brazil: Resources, consumption and cascading use. Cerne 2020, 26, 247–255. [Google Scholar] [CrossRef]
- Thiffault, E.; Barrette, J.; Blanchet, P.; Nguyen, Q.N.; Adjalle, K. Optimizing Quality ofWood Pellets Made of Hardwood Processing Residues. Forests 2019, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Surendran, P.; Lakshmanan, A.; Vinitha, G.; Ramalingam, G.; Rameshkumar, P. Facile preparation of high fluorescent carbon quantum dots from orange waste peels for nonlinear optical applications. Luminescence 2020, 35, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Kaur, S.; Lee, J.; Mehta, A.; Kumar, S.; Kim, K.H.; Basu, S.; Rawat, M. Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions. Sci. Total Environ. 2020, 720, 137604. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.L.; Yang, Y.; Sun, Y.C.; Fan, J.S.; Li, X.P.; Zhang, Z. Photoluminescent lignin hybridized carbon quantum dots composites for bioimaging applications. Int. J. Biol. Macromol. 2019, 122, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Lin, B.P. Photoelectric efficiency enhancement of a polycrystalline silicon solar cell coated with an EVA film containing Eu3+ complex by addition of modified SiO2. RSC Adv. 2016, 6, 110409–110415. [Google Scholar] [CrossRef]
- Briscoe, J.; Marinovic, A.; Sevilla, M.; Dunn, S.; Titirici, M. Biomass-Derived Carbon Quantum Dot Sensitizers for Solid-State Nanostructured Solar Cells. Angew. Chem.-Int. Edit. 2015, 54, 4463–4468. [Google Scholar] [CrossRef] [PubMed]
- Riaz, R.; Ali, M.; Maiyalagan, T.; Anjum, A.S.; Lee, S.; Ko, M.J.; Jeong, S.H. Dye-sensitized solar cell (DSSC) coated with energy down shift layer of nitrogen-doped carbon quantum dots (N-CQDs) for enhanced current density and stability. Appl. Surf. Sci. 2019, 483, 425–431. [Google Scholar] [CrossRef]
- Zhang, R.H.; Liang, J.; Wang, Q. Preparation and characterization of graphite-dispersed styrene-acrylic emulsion composite coating on magnesium alloy. Appl. Surf. Sci. 2012, 258, 4360–4364. [Google Scholar] [CrossRef]
- Mao, H.; Tang, J.; Chen, J.; Wan, J.; Hou, K.; Peng, Y.; Halat, D.M.; Xiao, L.; Zhang, R.; Lv, X.; et al. Designing hierarchical nanoporous membranes for highly efficient gas adsorption and storage. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.Y.; Chen, X.W.; Huang, R.Z.; Chen, M.Z.; Yang, R.; Lan, P.; Zhou, M.J.; Zhang, F.; Yang, Y.; Zhou, X.Y. Fast preparation of carbon spheres from enzymatic hydrolysis lignin: Effects of hydrothermal carbonization conditions. Sci. Rep. 2018, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Huan, S.Q.; Zhang, X.; Gu, J.Y.; Li, Z.G. Fabrication and evaluation of one-component core/shell structured latex adhesives containing poly(styrene) cores and poly(acrylate) shells. Int. J. Adhes. Adhes. 2016, 70, 152–159. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, H.Y.; Lu, J.L.; Lang, J.Y.; Gao, H.K. Study on Stability and Stability Mechanism of Styrene-Acrylic Emulsion Prepared Using Nanocellulose Modified with Long-Chain Fatty Acids. Polymers 2019, 11, 1131. [Google Scholar] [CrossRef] [Green Version]
- Kozakiewicz, J.; Trzaskowska, J.; Domanowski, W.; Kieplin, A.; Ofat-Kawalec, I.; Przybylski, J.; Wozniak, M.; Witwicki, D.; Sylwestrzak, K. Studies on synthesis and characterization of aqueous hybrid silicone-acrylic and acrylic-silicone dispersions and coatings. Part II. Prog. Org. Coat. 2020, 138, 105297. [Google Scholar] [CrossRef]
- Qian, X.Y.; Zhu, A.P.; Ji, L.J. Organosilicone modified styrene-acrylic latex: Preparation and application. Polym. Bull. 2013, 70, 2373–2385. [Google Scholar] [CrossRef]
- Liu, Y.K.; Zhu, W.F.; Ni, D.L.; Zhou, Z.H.; Gu, J.H.; Zhang, W.N.; Sun, H.J.; Liu, F. Alpha lipoic acid antagonizes cytotoxicity of cobalt nanoparticles by inhibiting ferroptosis-like cell death. J. Nanobiotechnol. 2020, 18, 1–14. [Google Scholar] [CrossRef]
- He, W.; Zhang, Y.; Luo, F.; Li, J.H.; Wang, K.; Tan, H.; Fu, Q. A novel non-releasing antibacterial poly(styrene-acrylate)/waterborne polyurethane composite containing gemini quaternary ammonium salt. RSC Adv. 2015, 5, 89763–89770. [Google Scholar] [CrossRef]
- Wu, Q.S.; Ma, H.G.; Chen, Q.J.; Gu, B.; Li, S.P.; Zhu, H.J. Effect of silane modified styrene-acrylic emulsion on the waterproof properties of flue gas desulfurization gypsum. Constr. Build. Mater. 2019, 197, 506–512. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Pan, H.; Xu, N.; Mei, C.; Mao, H.; Zhang, W.; Cai, J.; Xu, C. Preparation and Performance of Radiata-Pine-Derived Polyvinyl Alcohol/Carbon Quantum Dots Fluorescent Films. Materials 2019, 13, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Gawryszewska-Wilczynsk, P.; Zhang, X.R.; Yin, J.; Wen, Y.Q.; Li, H.R. Photovoltaic efficiency enhancement of polycrystalline silicon solar cells by a highly stable luminescent film. Sci. China-Mater. 2020, 63, 544–551. [Google Scholar] [CrossRef] [Green Version]
Wavenumber (cm−1) | Functional Groups | Vibrations |
---|---|---|
3454 | O-H | stretching |
3026, 1450 | C6H6 | stretching |
2960 | C-H | bending |
2924, 2866 | -CHO | stretching |
1726 | C=O | stretching |
1157 | C-O-C | stretching |
760, 700 | Unsaturated C-H | deformation |
Samples | CQD Powders/mg | Deionized Water/mL | SAE/mL |
---|---|---|---|
Ⅰ | 0 | 5 | 20 |
Ⅱ | 5 | 5 | 20 |
Ⅲ | 10 | 5 | 20 |
Ⅳ | 15 | 5 | 20 |
Ⅴ | 20 | 5 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xu, L.; Yang, R.; Huang, R.; Mao, H. Fluorescent CQD-Doped Styrene Acrylic Emulsion Coating Film with Enhanced Optical Properties. Int. J. Mol. Sci. 2022, 23, 60. https://doi.org/10.3390/ijms23010060
Wang X, Xu L, Yang R, Huang R, Mao H. Fluorescent CQD-Doped Styrene Acrylic Emulsion Coating Film with Enhanced Optical Properties. International Journal of Molecular Sciences. 2022; 23(1):60. https://doi.org/10.3390/ijms23010060
Chicago/Turabian StyleWang, Xiaohui, Li Xu, Rui Yang, Runzhou Huang, and Haiyan Mao. 2022. "Fluorescent CQD-Doped Styrene Acrylic Emulsion Coating Film with Enhanced Optical Properties" International Journal of Molecular Sciences 23, no. 1: 60. https://doi.org/10.3390/ijms23010060
APA StyleWang, X., Xu, L., Yang, R., Huang, R., & Mao, H. (2022). Fluorescent CQD-Doped Styrene Acrylic Emulsion Coating Film with Enhanced Optical Properties. International Journal of Molecular Sciences, 23(1), 60. https://doi.org/10.3390/ijms23010060