BRITTLE CULM17, a Novel Allele of TAC4, Affects the Mechanical Properties of Rice Plants
Abstract
:1. Introduction
2. Results
2.1. Phenotypes of Wild-Type (WT) Pingtangheinuo and Brittle Stem Mutant osbc17
2.2. Cytological Analysis and Determination of Cell Wall Composition
2.3. Gene Mutation Mapping
2.4. Gene Functional Verification
2.4.1. Gene Functional Verification by Gene Knockout
2.4.2. Gene Functional Verification by Overexpression of the OsBC17 Gene in the Brittle Stem Mutant
2.5. Lignin Metabolomics Analysis
2.6. Differential Gene Expression between the osbc17 Mutant and WT
3. Discussion
4. Materials and Methods
4.1. Rice Hybridization
4.2. Measurement of Physical Properties
4.3. Cytological Analysis
4.4. Determination of Cell Wall Cellulose and Lignin Contents
4.5. Genomic DNA Extraction
4.6. Gene Mapping by MutMap Method
4.7. Polymerase Chain Reaction
4.8. Gene Knockout by CRISPR/Cas9
4.9. Lignin Metabolomics Analysis
4.10. RNA-Sequencing Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Zhou, Y. Rice brittleness mutants: A way to open the ‘black box’ of monocot cell wall biosynthesis. J. Integr. Plant Biol. 2011, 53, 136–142. [Google Scholar] [CrossRef]
- Zhong, R.; Ye, Z.H. Regulation of cell wall biosynthesis. Curr. Opin. Plant Biol. 2007, 10, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Burk, D.H.; Ye, Z.H. Fibers. a model for studying cell differentiation, cell elongation, and cell wall biosynthesis. Tissue Antigens 2010, 42, 166–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarlane, E.H.; Döring, A.; Persson, S. The cell biology of cellulose synthesis. Annu. Rev. Plant Biol. 2014, 65, 69–94. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qian, Q.; Zhou, Y.; Yan, M.; Sun, B.L. Brittle culm1, which encodes a cobra-like protein, affects the mechanical properties of rice plants. Plant Cell 2003, 15, 2020–2031. [Google Scholar] [CrossRef] [Green Version]
- Hirano, K.; Kotake, T.; Kamihara, K.; Tsuna, K.; Aohara, T.; Kaneko, Y.; Takatsuji, H.; Tsumuraya YKawasaki, S. Rice brittle culm 3 (bc3) encodes a classical dynamin osdrp2b essential for proper secondary cell wall synthesis. Planta 2010, 232, 95–108. [Google Scholar] [CrossRef]
- Kotake, T.; Aohara, T.; Hirano, K.; Sato, A.; Kaneko, Y.; Tsumuraya, Y.; Takatsuji, H.; Kawasaki, S. Rice brittle culm 6 encodes a dominant-negative form of cesa protein that perturbs cellulose synthesis in secondary cell walls. J. Exp. Bot. 2011, 62, 2053–2062. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Yan, S.; Zeng, X.; Zhang, Z.; Gu, M. Fine mapping and isolation of bc7(t), allelic to OsCESA4. J. Genet. Genom. 2007, 34, 1019–1027. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, L.; Qian, Q.; Xiong, G.; Zeng, D.; Guo, L.; Li, J.; Zhou, Y. A missense mutation in the transmembrane domain of cesa4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol. Biol. 2009, 71, 509–524. [Google Scholar] [CrossRef]
- Wang, D.; Qin, Y.; Fang, J.; Yuan, S.; Peng, L.; Zhao, J.; Li, X. A missense mutation in the zinc finger domain of OsCESA7 deleteriously affects cellulose biosynthesis and plant growth in rice. PLoS ONE 2016, 11, e0153993. [Google Scholar] [CrossRef]
- Tanaka, K.; Murata, K.; Yamazaki, M.; Onosato, K.; Miyao, A.; Hirochika, H. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 2003, 133, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Wang, S.; Zhang, B.; Shang-Guan, K.; Shi, Y.; Zhang, D.; Liu, X.; Wu, K.; Xu, Z.; Fu, X.; et al. A gibberellin-mediated della-nac signaling cascade regulates cellulose synthesis in rice. Plant Cell 2015, 27, 1681–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Y.; Liu, B.; Zhao, M.; Wu, K.; Cheng, W.; Chen, X.; Liu, Q.; Liu, Z.; Fu, X.; Wu, Y. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice. Plant Mol. Biol. 2015, 89, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar]
- Richet, N.; Tozo, K.; DAfif Banvoy, J.; Legay, S.; Dizengremel, P.; Cabané, M. The response to daylight or continuous ozone of phenylpropanoid and lignin biosynthesis pathways in poplar differs between leaves and wood. Planta 2012, 236, 727–737. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Yao, J.; Chen, G.; Li, X.; Zhang, Q.; Wu, C. Flexible culm 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol. Biol. 2009, 69, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Raes, J.; Rohde, A.; Christensen, J.H.; Van de Peer, Y.; Boerjan, P.W. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol. 2003, 133, 1051–1071. [Google Scholar] [CrossRef] [Green Version]
- Vanholme, R.; Cesarino, I.; Rataj, K.; Xiao, Y.; Sundin, L.; Goeminne, G.; Kim, H.; Cross, J.; Morreel, K.; Araujo, P.; et al. Caffeoyl shikimate esterase (cse) is an enzyme in the lignin biosynthetic pathway in arabidopsis. Science 2013, 341, 1103–1106. [Google Scholar] [CrossRef]
- Guillaumie, S.; Pichon, M.; Martinant, J.P.; Bosio, M.; Barrière, G.Y. Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. Planta 2007, 226, 235–250. [Google Scholar] [CrossRef]
- Tang, H.M.; Liu, S.; Hill-Skinner, S.; Wu, W.; Schnable, P.S. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J. 2014, 77, 380–392. [Google Scholar] [CrossRef] [Green Version]
- Kelleher, C.T.; Wilkin, J.; Zhuang, J.; Cortes, A.J.; Quintero AL, P.; Gallagher, T.F.; Boehlmann, J.; Douglas, C.J.; Ellis, B.E.; Ritland, K. Snp discovery, gene diversity, and linkage disequilibrium in wild populations of populus tremuloides. Tree Genet. Genomes 2012, 8, 821–829. [Google Scholar] [CrossRef]
- Wang, X.; Zhuo, C.; Xiao, X.; Wang, X.; Docampo-Palacios, M.C.F.; Dixon, R.A. Substrate Specificity of LACCASE8 Facilitates Polymerization of Caffeyl Alcohol for C-Lignin Biosynthesis in the Seed Coat of Cleome hassleriana. Plant Cell 2020, 32, 3825–3845. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, H.; Jiang, J.; Sun, X.; Tan, L.; Sun, C. Tac4 controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnol. J. 2021, 19, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Yu, C. Comparison of test and matching methods of hybrid rice. Crop Res. 2014, 28, 3. [Google Scholar]
- Zhang, X.; Jiang, S.; Zheng, X.; Xu, Z.; Chen, W.; MA, D.; Xu, C. Correlation analysis and QTL mapping between basal elongation internode traits and stem mechanical strength in rice. J. Plant Physiol. 2009, 45, 223–228. [Google Scholar]
- Cheng, K.; Du, H.; Ouyang, Y.D. Paraffin embedding rice tissue and sectioning. Bio-101 2018, e1010140. Available online: https://bio-protocol.org/pdf/bio-protocol1010140.pdf (accessed on 1 April 2022).
- Cao, J.B.; Du, H.; Yuan, M. Observation of Cell Surface and Cross-sectional Structure of Rice Tissue by Scanning Electron Microscopy. Bio-101 2018, e1010144. Available online: https://bio-protocol.org/bio101/e1010144 (accessed on 1 April 2022).
- Jin, Y.L.; Tang, R.J.; Wang, H.H.; Jiang, C.M.; Bao, Y.; Yang, Y.; Liang, M.X.; Sun, Z.C.; Kong, F.J.; Li, B.; et al. Overexpression of populus trichocarpa cyp85a3 promotes growth and biomass production in transgenic trees. Plant Biotechnol. J. 2017, 15, 1309–1321. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Y.; Cui, H.R.; Bao, J.S.; Zhou, X.S.; Shu, Q.Y. A simplified rice dna extraction protocol for pcr analysis. Rice Sci. 2006, 13, 67–70. [Google Scholar]
- Abe, A.; Kosugi, S.; Yoshida, K.; Natsume, S.; Takagi, H.; Kanzaki, H.; Matsumura, H.; Yoshida, K.; Mitsuoka, C.; Tamiru, M. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat. Biotechnol. 2012, 30, 174–178. [Google Scholar] [CrossRef] [Green Version]
- Rad, M.; Kadir, M.A.; Rafii, M.Y.; Jaafar HZ, E.; Naghavi, M. Bulked segregant analysis for relative water content to detect quantitative trait loci in wheat under drought stress. Genet. Mol. Res. 2012, 11, 3882–3888. [Google Scholar]
- Zou, C.; Wang, P.; Xu, Y. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol. J. 2016, 14, 1941–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiei, Y.; Komari, T. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 2008, 3, 824–834. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Fiume, M.; Smith EJ, M.; Brook, A.; Strbenac, D.; Turner, B.; Mezlini, A.M.; Robinson, M.D.; Wodak, S.J.; Brudno, M. Savant Genome Browser 2: Visualization and analysis for population-scale genomics. Nucleic Acids Res. 2012, 40, W615–W621. [Google Scholar] [CrossRef]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S.; et al. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013, 74, 174–183. [Google Scholar] [CrossRef]
- Xu, R.F.; Li, H.; Qin, R.Y.; Li, J.; Qiu, C.H.; Yang, Y.C.; Ma, H.; Li, L.; Wei, P.C.; Yang, J.B. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 2015, 5, 11491. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sun, Y.; Du, J.; Zhao, Y.; Xia, L. Generation of targeted point mutations in rice by a modified crispr/cas9 system. Mol. Plant 2016, 10, 526–529. [Google Scholar] [CrossRef] [Green Version]
- Debladis, E.; Lee, T.F.; Huang, Y.J.; Lu, J.H.; Mathioni, S.M.; Carpentier, M.C.; Llauro, C.; Pierron, D.; Mieulet, D.; Guiderdoni, E.; et al. Construction and characterization of a knock-down RNA interference line of OsNRPD1 in rice (Oryza sativa ssp. japonica cv Nipponbare). Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2020, 375, 20190338. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Clowers, B.H.; Moore, R.J.; Zink, E.M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Anal. Chem. 2010, 82, 4165–4173. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, R.; Song, Y.; He, J. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: Finding potential biomarkers for breast cancer. Analyst 2009, 134, 2003–2011. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Feng, Z.; Wang, X.; Wang, X.; Zhang, X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2009, 26, 136–138. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Chong, J.; Xia, J. MetaboAnalystR: An R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 2018, 34, 4313–4314. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Zeng, X.; Li, Y.; Li, J.; Huang, X.; Zhao, D. BRITTLE CULM17, a Novel Allele of TAC4, Affects the Mechanical Properties of Rice Plants. Int. J. Mol. Sci. 2022, 23, 5305. https://doi.org/10.3390/ijms23105305
Li G, Zeng X, Li Y, Li J, Huang X, Zhao D. BRITTLE CULM17, a Novel Allele of TAC4, Affects the Mechanical Properties of Rice Plants. International Journal of Molecular Sciences. 2022; 23(10):5305. https://doi.org/10.3390/ijms23105305
Chicago/Turabian StyleLi, Guangzheng, Xiaofang Zeng, Yan Li, Jianrong Li, Xiaozhen Huang, and Degang Zhao. 2022. "BRITTLE CULM17, a Novel Allele of TAC4, Affects the Mechanical Properties of Rice Plants" International Journal of Molecular Sciences 23, no. 10: 5305. https://doi.org/10.3390/ijms23105305
APA StyleLi, G., Zeng, X., Li, Y., Li, J., Huang, X., & Zhao, D. (2022). BRITTLE CULM17, a Novel Allele of TAC4, Affects the Mechanical Properties of Rice Plants. International Journal of Molecular Sciences, 23(10), 5305. https://doi.org/10.3390/ijms23105305