Investigation of the Role of Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Its Type 1 (PAC1) Receptor in Uterine Contractility during Endometritis in Pigs
Abstract
:1. Introduction
2. Results
2.1. Relative PAC1 Receptor mRNA Transcript Abundance
2.2. Relative PAC1 Receptor Protein Abundance
2.3. Localization of PAC1 Receptor
2.4. Influence of PACAP Alone or Combined with PAC1 Receptor Antagonist on the Contractile Amplitude of the Myometrium
2.4.1. Comparison of PACAP Influence in the Particular Groups with That in the Period before Its Application
2.4.2. Comparison of PACAP Influence between Groups
2.4.3. Comparison of the Influence of PAC1 Receptor Antagonist and PACAP in the Particular Groups with That in Period before Their Application
2.4.4. Comparison of the Influence of PAC1 Receptor Antagonist and PACAP between Groups
2.4.5. Comparison of the Influence of PAC1 Receptor Antagonist and PACAP with That of PACAP Alone
2.5. Influence of PACAP Alone or Combined with PAC1 Receptor Antagonist on the Contractile Amplitude of the Endometrium/Myometrium
2.5.1. Comparison of the Influence of PACAP in the Particular Groups with That in the Period before Its Application
2.5.2. Comparison of the Influence of PACAP between Groups
2.5.3. Comparison of the Influence of the PAC1 Receptor Antagonist and PACAP in the Particular Groups to That in the Period before Their Application
2.5.4. Comparison of the Influence of the PAC1 Receptor Antagonist and PACAP between Groups
2.5.5. Comparison of the Influence of the PAC1 Receptor Antagonist and PACAP with That of PACAP Alone
2.6. PACAP Influence Alone or Combined with PAC1 Receptor Antagonist on the Contractile Frequency of the Myometrium
2.6.1. Comparison of the Influence of PACAP in the Particular Groups with That of the Period before Its Application
2.6.2. Comparison of PACAP Influence between Groups
2.6.3. Comparison of the Influence of PAC1 Receptor Antagonist and PACAP in the Particular Groups with That in the Period before Their Application
2.6.4. Comparison of the Influence of PAC1 Receptor Antagonist and PACAP between Groups
2.6.5. Comparison of the Influence of PAC1 Receptor Antagonist and PACAP with That of PACAP Alone
2.7. Influence of PACAP Alone or Combined with PAC1 Receptor Antagonist on the Contractile Frequency of the Endometrium/Myometrium
2.7.1. Comparison of the Influence of PACAP in the Particular Groups with That in the Period before Its Application
2.7.2. Comparison of the Influence of PACAP between Groups
2.7.3. Comparison of the Influence of PAC1 Receptor Antagonist and PACAP in the Particular Groups with That in the Period before Their Application
2.7.4. Comparison of the Influence of PAC1 Receptor Antagonist and PACAP between Groups
2.7.5. Comparison of the Influence of PAC1 Receptor Antagonist and PACAP with That of PACAP Alone
3. Discussion
4. Materials and Methods
4.1. Animals and Research Procedures
4.2. RNA Extraction and Real-Time RT-PCR
4.3. Western Blotting
4.4. Immunofluorescence
4.5. Contractility Measurement
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheldon, I.M.; Cronin, J.; Goetze, L.; Donofrio, G.; Schuberth, H.-J. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol. Reprod. 2009, 81, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Tummaruk, P.; Kesdangsakonwut, S.; Prapasarakul, N.; Kaeoket, K. Endometritis in gilts: Reproductive data, bacterial culture, histopathology, and infiltration of immune cells in the endometrium. Comp. Clin. Pathol. 2010, 19, 575–584. [Google Scholar] [CrossRef]
- Mordak, R.; Stewart, P.A. Periparturient stress and immune suppression as a potential cause of retained placenta in highly productive dairy cows: Examples of prevention. Acta Vet. Scand. 2015, 57, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascottini, O.B.; LeBlanc, S.J. Modulation of immune function in the bovine uterus peripartum. Theriogenology 2020, 150, 193–200. [Google Scholar] [CrossRef]
- Wiebe, M.; Pfarrer, C.; Górriz Martín, L.; Schmicke, M.; Hoedemaker, M.; Bollwein, H.; Heppelmann, M. In vitro effects of lipopolysaccharides on bovine uterine contractility. Reprod. Domest. Anim. 2021, 56, 172–182. [Google Scholar] [CrossRef]
- Heppelmann, M.; Weinert, M.; Ulbrich, S.E.; Brömmling, A.; Piechotta, M.; Merbach, S.; Schoon, H.A.; Hoedemaker, M.; Bollwein, H. The effect of puerperal uterine disease on histopathologic findings and mRNA expression of proinflammatory cytokines of the endometrium in dairy cows. Theriogenology 2016, 85, 1348–1356. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Owens, S.E.; Turner, M.L. Innate immunity and the sensing of infection, damage and danger in the female genital tract. J. Reprod. Immunol. 2017, 119, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Kucharski, J.; Jaroszewski, J.; Jana, B.; Górska, J.; Kozłowska, A.; Markiewicz, W. The influence of inflammatory process on prostaglandin F2α contractile activity in porcine uterus. J. Anim. Feed Sci. 2007, 16, 654–667. [Google Scholar] [CrossRef]
- Jana, B.; Jaroszewski, J.; Kucharski, J.; Koszykowska, M.; Górska, J.; Markiewicz, W. Participation of prostaglandin E2 in contractile activity of inflamed porcine uterus. Acta Vet. 2010, 79, 335–345. [Google Scholar] [CrossRef]
- Jana, B.; Jaroszewski, J.; Czarzasta, J.; Włodarczyk, M.; Markiewicz, W. Synthesis of prostacyclin and its effect on the contractile activity of the inflamed porcine uterus. Theriogenology 2013, 79, 470–485. [Google Scholar] [CrossRef]
- Jana, B.; Jaroszewski, J.J.; Czarzasta, J.; Markiewicz, W. The influence of leukotrienes C4 and D4 on the contractility of an inflamed porcine uterus. Theriogenology 2015, 83, 1328–1337. [Google Scholar] [CrossRef] [PubMed]
- Heppelmann, M.; Volland, J.; Pfarrer, C.; Kietzmann, M.; Bäumer, W.; Merbach, S.; Schoon, H.A.; Wellnitz, O.; Schmicke, M.; Hoedemaker, M.; et al. Effects of oxytocin and PGF2α on uterine contractility in cows with and without metritis-An in-vitro study. Anim. Reprod. Sci. 2018, 188, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Meller, K.A.; Całka, J.; Kaczmarek, M.; Jana, B. Expression of alpha and beta adrenergic receptors in the pig uterus during inflammation. Theriogenology 2018, 119, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Jana, B.; Całka, J. Role of beta-adrenergic receptor subtypes in pig uterus contractility with inflammation. Sci. Rep. 2021, 11, 11512. [Google Scholar] [CrossRef]
- Jana, B.; Całka, J.; Bulc, M. Roles of alpha-2-adrenergic receptor isoforms in inflamed pig uterus contractility in vitro. Theriogenology 2022, 183, 41–52. [Google Scholar] [CrossRef]
- Jana, B.; Całka, J.; Bulc, M.; Piotrowska-Tomala, K.K. Participation of acetylcholine and its receptors in the contractility of inflamed porcine uterus. Theriogenology 2020, 143, 123–132. [Google Scholar] [CrossRef]
- Jana, B.; Całka, J.; Palus, K.; Sikora, M. Escherichia coli-induced inflammation changes the expression of acetylcholine receptors (M2R, M3R, and α-7 nAChR) in pig uterus. J. Vet. Res. 2020, 64, 531–541. [Google Scholar] [CrossRef]
- Jana, B.; Całka, J.; Palus, K. Inflammation changes the expression of neuropeptide Y receptors in the pig myometrium and their role in the uterine contractility. PLoS ONE 2020, 15, e0236044. [Google Scholar] [CrossRef]
- Jana, B.; Całka, J.; Czajkowska, M. The role of somatostatin and its receptors (sstr2, sstr5) in the contractility of gilt inflamed uterus. Res. Vet. Sci. 2020, 133, 163–173. [Google Scholar] [CrossRef]
- Palus, K.; Całka, J.; Jana, B. Alterations in the relative abundance of the vasoactive intestinal peptide receptors (VPAC1 and VPAC2) and functions in uterine contractility during inflammation. Anim. Reprod. Sci. 2021, 225, 106680. [Google Scholar] [CrossRef]
- Jana, B.; Całka, J.; Miciński, B. Regulatory influence of galanin and GALR1/GALR2 receptors on inflamed uterus contractility in pigs. Int. J. Mol. Sci. 2021, 22, 6415. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Remington, J.M.; May, V.; Li, J. Molecular Basis of Class B GPCR Selectivity for the Neuropeptides PACAP and VIP. Front. Mol. Biosci. 2021, 8, 644644. [Google Scholar] [CrossRef] [PubMed]
- Karpiesiuk, A.; Palus, K. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Physiological and Pathological Processes within the Gastrointestinal Tract: A Review. Int. J. Mol. Sci. 2021, 22, 8682. [Google Scholar] [CrossRef] [PubMed]
- Moody, T.W.; Jensen, R.T. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide (Part 2): Biology and clinical importance in central nervous system and inflammatory disorders. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 206–213. [Google Scholar] [CrossRef]
- Bulc, M.; Całka, J.; Meller, K.; Jana, B. Endometritis affects chemical coding of the dorsal root ganglia neurons supplying uterus in the sexually mature gilts. Res. Vet. Sci. 2019, 124, 417–425. [Google Scholar] [CrossRef]
- Papka, R.E.; Workley, M.; Usip, S.; Mowa, C.N.; Fahrenkrug, J. Expression of pituitary adenylate cyclase activating peptide in the uterine cervix, lumbosacral dorsal root ganglia and spinal cord of rats during pregnancy. Peptides 2006, 27, 743–752. [Google Scholar] [CrossRef]
- Podlasz, P.; Wasowicz, K. Effect of partial hysterectomy on the neurons of the paracervical ganglion (PCG) of the pig. PLoS ONE 2021, 16, e0245974. [Google Scholar]
- Steenstrup, B.R.; Alm, P.; Hannibal, J.; Jørgensen, J.C.; Palle, C.; Junge, J.; Christensen, H.B.; Ottesen, B.; Fahrenkrug, J. Pituitary adenylate cyclase-activating polypeptide: Occurrence and relaxant effect in female genital tract. Am. J. Physiol. 1995, 269, E108–E117. [Google Scholar] [CrossRef]
- Fahrenkrug, J.; Hannibal, J. Pituitary adenylate cyclase activating polypeptide innervation of the rat female reproductive tract and the associated paracervical ganglia: Effect of capsaicin. Neuroscience 1996, 73, 1049–1060. [Google Scholar] [CrossRef]
- Rytel, L.; Gonkowski, S. The influence of bisphenol A on the nitrergic nervous structures in the domestic porcine uterus. Int. J. Mol. Sci. 2020, 21, 4543. [Google Scholar] [CrossRef]
- Steenstrup, B.R.; Ottesen, B.; Jørgensen, M.; Jørgensen, J.C. Pituitary adenylate cyclase activating polypeptide induces vascular relaxation and inhibits non-vascular smooth muscle activity in the rabbit female genital tract. Acta Physiol. Scand. 1994, 152, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Horvath, G.; Reglodi, D.; Brubel, R.; Halasz, M.; Barakonyi, A.; Tamas, A.; Fabian, E.; Opper, B.; Toth, G.; Cohen, M.; et al. Investigation of the possible functions of PACAP in human trophoblast cells. J. Mol. Neurosci. 2014, 54, 320–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somoskői, B.; Török, D.; Reglődi, D.; Tamás, A.; Fülöp, B.D.; Cseh, S. Possible effects of pituitary adenylate cyclase activating polypeptide (PACAP) on early embryo implantation marker HB-EGF in mouse. Reprod. Biol. 2020, 20, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Rettenmeier, A.W.; Schmitz-Spanke, S. Recent advances in the use of Sus scrofa (pig) as a model system for proteomic studies. Proteomics 2011, 11, 776–793. [Google Scholar] [CrossRef] [PubMed]
- Vaccari, S.; Latini, S.; Barberi, M.; Teti, A.; Stefanini, M.; Canipari, R. Characterization and expression of different pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide receptors in rat ovarian follicles. J. Endocrinol. 2006, 191, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Kotani, E.; Usuki, S.; Kubo, T. Rat corpus luteum expresses both PACAP and PACAP type IA receptor mRNAs. Peptides 1997, 18, 1453–1455. [Google Scholar]
- Scaldaferri, M.L.; Modesti, A.; Palumbo, C.; Ulisse, S.; Fabbri, A.; Piccione, E.; Frajese, G.; Moretti, C. Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP-receptor type 1 expression in rat and human placenta. Endocrinology 2000, 141, 1158–1167. [Google Scholar] [CrossRef]
- Koh, P.O.; Kwak, S.D.; Kim, H.J.; Roh, G.; Kim, J.H.; Kang, S.S.; Choi, W.S.; Cho, G.J. Expression patterns of pituitary adenylate cyclase activating polypeptide and its type I receptor mRNAs in the rat placenta. Mol. Reprod. Dev. 2003, 64, 27–31. [Google Scholar] [CrossRef]
- Girard, B.M.; Wolf-Johnston, A.; Braas, K.M.; Birder, L.A.; May, V.; Vizzard, M.A. PACAP-mediated ATP release from rat urothelium and regulation of PACAP/VIP and receptor mRNA in micturition pathways after cyclophosphamide (CYP)-induced cystitis. J. Mol. Neurosci. 2008, 36, 310–320. [Google Scholar] [CrossRef] [Green Version]
- Lauenstein, H.D.; Quarcoo, D.; Plappert, L.; Schleh, C.; Nassimi, M.; Pilzner, C.; Rochlitzer, S.; Brabet, P.; Welte, T.; Hoymann, H.G.; et al. Pituitary adenylate cyclase-activating peptide receptor 1 mediates anti-inflammatory effects in allergic airway inflammation in mice. Clin. Exp. Allergy 2011, 41, 592–601. [Google Scholar] [CrossRef] [Green Version]
- Steenstrup, B.R.; Jørgensen, J.C.; Alm, P.; Hannibal, J.; Junge, J.; Fahrenkrug, J.; Ottesen, B. Pituitary adenylate cyclase activating polypeptide (PACAP): Occurrence and vasodilatory effect in the human uteroplacental unit. Regul. Pept. 1996, 61, 197–204. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.G.; Castrogiovanni, P.; Saccone, S.; Federico, C.; Reibaldi, M.; Russo, A.; Bonfiglio, V.; Avitabile, T.; Longo, A.; et al. PACAP through EGFR transactivation preserves human corneal endothelial integrity. J. Cell. Biochem. 2019, 120, 10097–10105. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.; Hein, L.; Brede, M.; Jahns, R.; Engelhardt, S.; Gröne, H.-J.; Schütz, G. Pulmonary hypertension and right heart failure in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. Circulation 2004, 110, 3245–3251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schytz, H.W.; Olesen, J.; Ashina, M. The PACAP receptor: A novel target for migraine treatment. Neurotherapeutics 2010, 7, 191–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsoulis, S.; Clemens, A.; Schwörer, H.; Creutzfeldt, W.; Schmidt, W.E. Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent relaxant of the rat ileum. Peptides 1993, 14, 587–592. [Google Scholar] [CrossRef]
- Katsoulis, S.; Schmidt, W.E. Role of PACAP in the regulation of gastrointestinal motility. Ann. N. Y. Acad. Sci. 1996, 805, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Kishi, M.; Takeuchi, T.; Suthamnatpong, N.; Ishii, T.; Nishio, H.; Hata, F.; Takewaki, T. VIP- and PACAP-mediated nonadrenergic, noncholinergic inhibition in longitudinal muscle of rat distal colon: Involvement of activation of charybdotoxin- and apamin-sensitive K+ channels. Br. J. Pharmacol. 1996, 119, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Ekblad, E.; Sundler, F. Distinct receptors mediate pituitary adenylate cyclase-activating peptide- and vasoactive intestinal peptide-induced relaxation of rat ileal longitudinal muscle. Eur. J. Pharmacol. 1997, 334, 61–66. [Google Scholar] [CrossRef]
- Hernández, M.; Barahona, M.V.; Recio, P.; Rivera, L.; Benedito, S.; Martínez, A.C.; García-Sacristán, A.; Orensanz, L.M.; Prieto, D. Heterogeneity of neuronal and smooth muscle receptors involved in the VIP- and PACAP-induced relaxations of the pig intravesical ureter. Br. J. Pharmacol. 2004, 141, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Braas, K.M.; May, V.; Zvara, P.; Nausch, B.; Kliment, J.; Dunleavy, J.D.; Nelson, M.T.; Vizzard, M.A. Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R951–R962. [Google Scholar] [CrossRef] [Green Version]
- Gobbetti, A.; Zerani, M.; Miano, A.; Bramucci, M.; Murri, O.; Amici, D. Presence of pituitary adenylate cyclase-activating polypeptide 38-immuno-like material in the brain and ovary of the female crested newt, Triturus carnifex: Its involvement in the ovarian synthesis of prostaglandins and steroids. J. Endocrinol. 1997, 152, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Taupenot, L.; Mahata, M.; Mahata, S.K.; O’Connor, D.T. Time-dependent effects of the neuropeptide PACAP on catecholamine secretion: Stimulation and desensitization. Hypertension 1999, 34, 1152–1162. [Google Scholar] [CrossRef] [Green Version]
- Pugh, P.C.; Jayakar, S.S.; Margiotta, J.F. PACAP/PAC1R signaling modulates acetylcholine release at neuronal nicotinic synapses. Mol. Cell. Neurosci. 2010, 43, 244–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zizzo, M.G.; Mulè, F.; Serio, R. Interplay between PACAP and NO in mouse ileum. Neuropharmacology 2004, 46, 449–455. [Google Scholar] [CrossRef]
- Jana, B.; Kucharski, J.; Dzienis, A.; Deptuła, K. Changes in prostaglandin production and ovarian function in gilts during endometritis induced by Escherichia coli infection. Anim. Reprod. Sci. 2007, 97, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Jana, B.; Andronowska, A.; Kucharski, J. Nitric oxide mediates an inflammatory effect of Escherichia coli in the porcine uterus. Pol. J. Vet. Sci. 2000, 4, 207–212. [Google Scholar]
- Zhao, S.; Fernald, R.D. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 2005, 12, 1047–1064. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Majewski, M.; Heym, C. The origin of ovarian neuropeptide Y (NPY)-immunoreactive nerve fibres from the inferior mesenteric ganglion in the pig. Cell Tissue Res. 1991, 266, 591–596. [Google Scholar] [CrossRef]
Symbol | Name | Assay No. |
---|---|---|
PAC1R | adenylate cyclase-activating polypeptide (pituitary) receptor type I | Ss04248302_m1 |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase | Ss03375435_u1 |
ACTB | β-actin | Ss03376081_u1 |
HPRT | hypoxanthine guanine phosphoribosyl transferase | Ss03388274_m1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jana, B.; Całka, J.; Witek, K. Investigation of the Role of Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Its Type 1 (PAC1) Receptor in Uterine Contractility during Endometritis in Pigs. Int. J. Mol. Sci. 2022, 23, 5467. https://doi.org/10.3390/ijms23105467
Jana B, Całka J, Witek K. Investigation of the Role of Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Its Type 1 (PAC1) Receptor in Uterine Contractility during Endometritis in Pigs. International Journal of Molecular Sciences. 2022; 23(10):5467. https://doi.org/10.3390/ijms23105467
Chicago/Turabian StyleJana, Barbara, Jarosław Całka, and Krzysztof Witek. 2022. "Investigation of the Role of Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Its Type 1 (PAC1) Receptor in Uterine Contractility during Endometritis in Pigs" International Journal of Molecular Sciences 23, no. 10: 5467. https://doi.org/10.3390/ijms23105467
APA StyleJana, B., Całka, J., & Witek, K. (2022). Investigation of the Role of Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Its Type 1 (PAC1) Receptor in Uterine Contractility during Endometritis in Pigs. International Journal of Molecular Sciences, 23(10), 5467. https://doi.org/10.3390/ijms23105467