A Novel Method of Endotoxins Removal from Chitosan Hydrogel as a Potential Bioink Component Obtained by CO2 Saturation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of the Method of Chitosan Hydrogel Purification on LPS Content
2.2. Effect of the Method of Chitosan Hydrogel Purification on the Molecular Weight of Polymer and Hydrogel Viscosity
2.3. Effect of the Method of Chitosan Hydrogel Preparation on Microbiological Purity
2.4. Effect of the Method of Chitosan Hydrogel Preparation on Cytotoxicity
3. Materials and Methods
3.1. Materials
3.2. Chitosan Hydrogels Preparation and Purification
3.3. Determination of Endotoxins Concentration
3.4. Determination of Chitosan Molecular Weight and Hydrogel Viscosity
3.5. Purity and Microbiological Stability
3.6. Determination of Cytotoxicity
3.6.1. Cell Culture
3.6.2. Cell Viability and Morphology Assessment
3.7. Statistical Analysis of the Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tylingo, R.; Kempa, P.; Banach-Kopeć, A.; Mania, S. A novel method of creating thermoplastic chitosan blends to produce cell scaffolds by FDM additive manufacturing. Carbohydr. Polym. 2022, 280, 119028. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gao, L.; Ma, L.; Luo, Y.; Yang, H.; Cui, Z. 3D Bioprinting: A novel avenue for manufacturing tissues and organs. Engineering 2019, 5, 777–794. [Google Scholar] [CrossRef]
- Laurenti, M.; Cauda, V. ZnO Nanostructures for tissue engineering applications. Nanomaterials 2017, 7, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidenreich, A.C.; Pérez-Recalde, M.; González Wusener, A.; Hermida, É.B. Collagen and chitosan blends for 3D bioprinting: A rheological and printability approach. Polym. Test. 2020, 82, 106297. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef]
- Francis Suh, J.K.; Matthew, H.W.T. Application of Chitosan-Based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 2000, 21, 2589–2598. [Google Scholar] [CrossRef]
- Gorczyca, G.; Tylingo, R.; Szweda, P.; Augustin, E.; Sadowska, M.; Milewski, S. Preparation and characterization of genipin cross-linked porous chitosan–collagen–gelatin scaffolds using chitosan–CO2 solution. Carbohydr. Polym. 2014, 102, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Ravindranathan, S.; Koppolu, B.P.; Smith, S.G.; Zaharoff, D.A. Effect of chitosan properties on immunoreactivity. Mar. Drugs 2016, 14, 91. [Google Scholar] [CrossRef] [Green Version]
- Heine, H.; Rietschel, E.T.; Ulmer, A.J. The biology of endotoxin. Mol. Biotechnol. 2001, 19, 279–296. [Google Scholar] [CrossRef]
- Miyamoto, T.; Okano, S.; Kasai, N. Inactivation of Escherichia coli endotoxin by soft hydrothermal processing. Appl. Environ. Microbiol. 2009, 75, 5058. [Google Scholar] [CrossRef] [Green Version]
- Dawson, M. Endotoxin limits for parenteral drug products. BET White Pap. 2017, 1, 1–7. [Google Scholar]
- Serdakowski London, A.; Kerins, B.; Tschantz, W.R.; Mackay, K. Endotoxin removal and prevention for pre-clinical biologics production. Biotechnol. J. 2012, 7, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Lieder, R.; Petersen, P.H.; Sigurjónsson, Ó.E. Endotoxins-the invisible companion in biomaterials research. Tissue Eng. Part B Rev. 2013, 19, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Piehler, M.; Roeder, R.; Blessing, S.; Reich, J. Comparison of LAL and RFC assays—Participation in a proficiency test program between 2014 and 2019. Microorganisms 2020, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.L.; Ho, B. A new era in pyrogen testing. Trends Biotechnol. 2001, 19, 277–281. [Google Scholar] [CrossRef]
- Rodríguez-Vázquez, M.; Vega-Ruiz, B.; Ramos-Zúñiga, R.; Saldaña-Koppel, D.A.; Quiñones-Olvera, L.F. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Res. Int. 2015, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pezeshki-Modaress, M.; Zandi, M.; Rajabi, S. Tailoring the Gelatin/Chitosan electrospun scaffold for application in skin tissue engineering: An in vitro study. Prog. Biomater. 2018, 7, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Lebre, F.; Lavelle, E.C.; Borges, O. Easy and effective method to generate endotoxin-free chitosan particles for immunotoxicology and immunopharmacology studies. J. Pharm. Pharmacol. 2019, 71, 920–928. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Y.; Tuohuti, P.; Qin, Z.; Zhang, Z.; Zhao, W.; Su, B. Advances in the development of biomaterials for endotoxin adsorption in sepsis. Front. Bioeng. Biotechnol. 2021, 9, 646. [Google Scholar] [CrossRef]
- Davydova, V.N.; Yermak, I.M.; Gorbach, V.I.; Krasikova, I.N.; Solov’eva, T.F. Interaction of bacterial endotoxins with chitosan. Effect of endotoxin structure, chitosan molecular mass, and ionic strength of the solution on the formation of the complex. Biochem. Biokhimiia 2000, 65, 1082–1090. [Google Scholar]
- Martini, B.; Dimida, S.; de Benedetto, E.; Madaghiele, M.; Demitri, C. Study on the degradation of chitosan slurries. Results Phys. 2016, 6, 728–729. [Google Scholar] [CrossRef] [Green Version]
- Sikorski, D.; Gzyra-Jagieła, K.; Draczyński, Z. The kinetics of chitosan degradation in organic acid solutions. Mar. Drugs 2021, 19, 236. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, E.; Winnicka, K. Stability of chitosan-A challenge for pharmaceutical and biomedical applications. Mar. Drugs 2015, 13, 1819–1846. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.-L.; Deng, F.-S.; Chuang, C.-Y.; Lin, C.-H.; Bardosova, M. Polymers antimicrobial actions and applications of chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- San Juan, A.; Montembault, A.; Gillet, D.; Say, J.P.; Rouif, S.; Bouet, T.; Royaud, I.; David, L. Degradation of chitosan-based materials after different sterilization treatments. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Tokyo, Japan, 2012; Volume 31. [Google Scholar]
- Huang, M.; Khor, E.; Lim, L.Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of Molecular weight and degree of deacetylation. Pharm. Res. 2004, 21, 344–353. [Google Scholar] [CrossRef]
- Nalbantsoy, A.; Karabay-Yavasoglu, N.U.; Deliloglu-Gurhan, I. Food and Agricultural immunology determination of in vivo toxicity and in vitro cytotoxicity of lipopolysaccharide isolated from salmonella enteritidis and its potential use for production of polyclonal antibody. Food Agric. Immunol. 2011, 22, 271–281. [Google Scholar] [CrossRef]
- Yacob, N.; Talip, N.; Mahmud, M.; Aizam Aisam Idayu Mat Sani, N.; Akma Samsuddin, N.; Fabillah, N.A. Determination of viscosity-average molecular weight of chitosan using intrinsic viscosity measurement. J. Nucl. Relat. Technol. 2013, 10, 39–44. [Google Scholar]
Storage Period (d) | Total Viable Count (CFU/g) | ||
---|---|---|---|
Control | M1 | M2 | |
0 | 1.6 × 103 | ND | ND |
15 | 2.5 × 103 | ND | ND |
30 | 3.3 × 104 | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banach-Kopeć, A.; Mania, S.; Pilch, J.; Augustin, E.; Gabriel, I.; Tylingo, R. A Novel Method of Endotoxins Removal from Chitosan Hydrogel as a Potential Bioink Component Obtained by CO2 Saturation. Int. J. Mol. Sci. 2022, 23, 5505. https://doi.org/10.3390/ijms23105505
Banach-Kopeć A, Mania S, Pilch J, Augustin E, Gabriel I, Tylingo R. A Novel Method of Endotoxins Removal from Chitosan Hydrogel as a Potential Bioink Component Obtained by CO2 Saturation. International Journal of Molecular Sciences. 2022; 23(10):5505. https://doi.org/10.3390/ijms23105505
Chicago/Turabian StyleBanach-Kopeć, Adrianna, Szymon Mania, Joanna Pilch, Ewa Augustin, Iwona Gabriel, and Robert Tylingo. 2022. "A Novel Method of Endotoxins Removal from Chitosan Hydrogel as a Potential Bioink Component Obtained by CO2 Saturation" International Journal of Molecular Sciences 23, no. 10: 5505. https://doi.org/10.3390/ijms23105505
APA StyleBanach-Kopeć, A., Mania, S., Pilch, J., Augustin, E., Gabriel, I., & Tylingo, R. (2022). A Novel Method of Endotoxins Removal from Chitosan Hydrogel as a Potential Bioink Component Obtained by CO2 Saturation. International Journal of Molecular Sciences, 23(10), 5505. https://doi.org/10.3390/ijms23105505