Sildenafil-Induced Revascularization of Rat Hindlimb Involves Arteriogenesis through PI3K/AKT and eNOS Activation
Abstract
:1. Introduction
2. Results
2.1. Body Weight and Blood Pressure of Control and Sidenafil Treated-Rats
2.2. Plasma and Aortic cGMP Levels
2.3. In Vivo Treatment of Sildenafil Enhanced Post-Ischemic Revascularization
2.4. Analysis of the NO Pathway Using Western Blot Analysis
2.5. Endothelial Cell Migration
2.6. In Vico Effect of Sildenafil on the Non-Ischemic Hindlimb
2.7. In Vivo Effect of Sildenafil Treatment on Mesenteric Resistance Arteries (MRA)
3. Discussion
4. Materials and Methods
4.1. Animal Models
4.1.1. Hindlimb Ischemia
4.1.2. Treatment
4.1.3. Groups of Animals
- CT, (control rats, N = 12)
- CT + anti-VEGF (N = 12): control rats treated in vivo with anti-VEGF for 7 days.
- Sildenafil (N = 12): control rats treated in vivo with sildenafil for 7 days.
- Sildenafil + anti-VEGF (N = 12): control rats treated in vivo with sildenafil and anti-VEGF for 7 days.
- 1
- CT, (control rats, N = 12)
- 2
- Sildenafil (N = 12): control rats treated in vivo with sildenafil for 21 days.
4.2. Blood Pressure and Mesenteric Blood Flow Measurements
4.3. Laser Doppler Flowmetry
4.4. High-Definition Microangiography
4.5. Histology
4.6. Endothelial Cell Migration Assays
4.7. Western Blot
4.8. cGMP Concentrations
4.9. Arterial Diameter Measurement in Isolated Arteries
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
(L) | Left |
(R) | Right |
Akt | Ak strain transforming |
cGMP | Guanosine 3′,5′-cyclic monophosphate |
CT | Control |
EGTA | Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid |
ELISA | Enzyme-Linked Immunosorbent Assay |
eNOS | Endothelial nitric oxide synthase |
HIF-1 | Hypoxia-Inducible Factor-1 |
HMECs | Human microvascular endothelial cells |
IP | Intraperitoneal |
MRA | Mesenteric resistance arteries |
NO | Nitric oxide |
PDE5A | Phosphodiesterase 5A |
PECAM | Platelet endothelial cell adhesion molecule |
PI3K | Phosphatidylinositol 3-kinase |
PSS | Physiological salt solution |
S | Sildenafil |
SEM | Standard error of mean |
TGF-β1 | Transforming growth factor beta 1 |
VEGF | Vascular endothelial growth factor |
References
- Qiu, H.Y.; Henrion, D.; Levy, B.I. Alterations in flow-dependent vasomotor tone in spontaneously hypertensive rats. Hypertension 1994, 24, 474–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumont, O.; Loufrani, L.; Henrion, D. Key role of the NO-pathway and matrix metalloprotease-9 in high blood flow-induced remodeling of rat resistance arteries. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumont, O.; Pinaud, F.; Guihot, A.L.; Baufreton, C.; Loufrani, L.; Henrion, D. Alteration in flow (shear stress)-induced remodelling in rat resistance arteries with aging: Improvement by a treatment with hydralazine. Cardiovasc. Res. 2008, 77, 600–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firestein, B.L.; Bredt, D.S. Regulation of sensory neuron precursor proliferation by cyclic GMP-dependent protein kinase. J. Neurochem. 1998, 71, 1846–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, H.; Tian, X.Y. The Role of Macrophages in Vascular Repair and Regeneration after Ischemic Injury. Int J. Mol. Sci. 2020, 21, 6328. [Google Scholar] [CrossRef]
- Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 2000, 6, 389–395. [Google Scholar] [CrossRef]
- Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996, 86, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Murohara, T.; Asahara, T.; Silver, M.; Bauters, C.; Masuda, H.; Kalka, C.; Kearney, M.; Chen, D.; Symes, J.F.; Fishman, M.C.; et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest. 1998, 101, 2567–2578. [Google Scholar] [CrossRef] [Green Version]
- Dimmeler, S.; Fleming, I.; Fisslthaler, B.; Hermann, C.; Busse, R.; Zeiher, A.M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999, 399, 601–605. [Google Scholar] [CrossRef]
- Fulton, D.; Gratton, J.P.; McCabe, T.J.; Fontana, J.; Fujio, Y.; Walsh, K.; Franke, T.F.; Papapetropoulos, A.; Sessa, W.C. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999, 399, 597–601. [Google Scholar] [CrossRef]
- Michell, B.J.; Griffiths, J.E.; Mitchelhill, K.I.; Rodriguez-Crespo, I.; Tiganis, T.; Bozinovski, S.; de Montellano, P.R.; Kemp, B.E.; Pearson, R.B. The Akt kinase signals directly to endothelial nitric oxide synthase. Curr. Biol. 1999, 9, 845–848. [Google Scholar] [CrossRef] [Green Version]
- Falero-Diaz, G.; Barboza, C.A.; Pires, F.; Fanchin, M.; Ling, J.; Zigmond, Z.M.; Griswold, A.J.; Martinez, L.; Vazquez-Padron, R.I.; Velazquez, O.C.; et al. Ischemic-Trained Monocytes Improve Arteriogenesis in a Mouse Model of Hindlimb Ischemia. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Ketat, A.F. Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T. BMC Pharmacol. 2005, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhang, R.L.; Wang, Y.; Zhang, C.; Zhang, Z.G.; Meng, H.; Chopp, M. Functional recovery in aged and young rats after embolic stroke: Treatment with a phosphodiesterase type 5 inhibitor. Stroke 2005, 36, 847–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbin, J.D.; Francis, S.H. Cyclic GMP phosphodiesterase-5: Target of sildenafil. J. Biol Chem 1999, 274, 13729–13732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kataoka, M.; Satoh, T.; Manabe, T.; Anzai, T.; Yoshikawa, T.; Mitamura, H.; Ogawa, S. Marked improvement with sildenafil in a patient with primary pulmonary hypertension unresponsive to epoprostenol. Intern. Med. 2004, 43, 945–950. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Ohashi, K.; Takeuchi, K.; Yamashita, K.; Yokoyama, T.; Tran, Q.K.; Satoh, H.; Terada, H.; Ohashi, H.; Hayashi, H. Sildenafil for primary and secondary pulmonary hypertension. Clin. Pharmacol. Ther. 2002, 71, 398–402. [Google Scholar] [CrossRef]
- Wierzbicki, A.S.; Solomon, H.; Lumb, P.J.; Lyttle, K.; Lambert-Hammill, M.; Jackson, G. Asymmetric dimethyl arginine levels correlate with cardiovascular risk factors in patients with erectile dysfunction. Atherosclerosis 2006, 185, 421–425. [Google Scholar] [CrossRef]
- El-Naa, M.M.; Othman, M.; Younes, S. Sildenafil potentiates the antitumor activity of cisplatin by induction of apoptosis and inhibition of proliferation and angiogenesis. Drug Des. Dev. Ther. 2016, 10, 3661–3672. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, A.; Smith, R.D.; Khitha, J.; Arora, N.; Veerareddy, S.; Langston, W.; Chidlow, J.H., Jr.; Barlow, S.C.; Teng, X.; Patel, R.P.; et al. Sildenafil promotes ischemia-induced angiogenesis through a PKG-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1947–1954. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Wang, L.; Zhang, L.; Chen, J.; Zhu, Z.; Zhang, Z.; Chopp, M. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ. Res. 2003, 92, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constantinescu, I.M.; Bolfa, P.; Constantinescu, D.; Mironiuc, A.I.; Gherman, C.D. Treatment with Sildenafil and Donepezil Improves Angiogenesis in Experimentally Induced Critical Limb Ischemia. Biomed. Res. Int. 2017, 2017, 9532381. [Google Scholar] [CrossRef] [PubMed]
- Gad, S.B.; Hafez, M.H.; El-Sayed, Y.S. Platelet-rich plasma and/or sildenafil topical applications accelerate and better repair wound healing in rats through regulation of proinflammatory cytokines and collagen/TGF-β1 pathway. Environ. Sci. Pollut. Res. Int. 2020, 27, 40757–40768. [Google Scholar] [CrossRef] [PubMed]
- Guilluy, C.; Sauzeau, V.; Rolli-Derkinderen, M.; Guerin, P.; Sagan, C.; Pacaud, P.; Loirand, G. Inhibition of RhoA/Rho kinase pathway is involved in the beneficial effect of sildenafil on pulmonary hypertension. Br. J. Pharmacol. 2005, 146, 1010–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 2003, 9, 653–660. [Google Scholar] [CrossRef]
- Vidavalur, R.; Penumathsa, S.V.; Zhan, L.; Thirunavukkarasu, M.; Maulik, N. Sildenafil induces angiogenic response in human coronary arteriolar endothelial cells through the expression of thioredoxin, hemeoxygenase and vascular endothelial growth factor. Vasc. Pharmacol. 2006, 45, 91–95. [Google Scholar] [CrossRef]
- Koneru, S.; Varma Penumathsa, S.; Thirunavukkarasu, M.; Vidavalur, R.; Zhan, L.; Singal, P.K.; Engelman, R.M.; Das, D.K.; Maulik, N. Sildenafil-mediated neovascularization and protection against myocardial ischaemia reperfusion injury in rats: Role of VEGF/angiopoietin-1. J. Cell Mol. Med. 2008, 12, 2651–2664. [Google Scholar] [CrossRef] [Green Version]
- Elrod, J.W.; Greer, J.J.; Lefer, D.J. Sildenafil-mediated acute cardioprotection is independent of the NO/cGMP pathway. Am. J. Physiol.-Heart Circ. Physiol. 2007, 292, H342–H347. [Google Scholar] [CrossRef]
- Kawasaki, K.; Smith, R.S., Jr.; Hsieh, C.M.; Sun, J.; Chao, J.; Liao, J.K. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol. Cell Biol. 2003, 23, 5726–5737. [Google Scholar] [CrossRef] [Green Version]
- Loufrani, L.; Henrion, D. Vasodilator treatment with hydralazine increases blood flow in mdx mice resistance arteries without vascular wall remodelling or endothelium function improvement. J. Hypertens. 2005, 23, 1855–1860. [Google Scholar] [CrossRef]
- Gorny, D.; Loufrani, L.; Kubis, N.; Levy, B.I.; Henrion, D. Chronic hydralazine improves flow (shear stress)-induced endothelium-dependent dilation in mouse mesenteric resistance arteries in vitro. Microvasc. Res. 2002, 64, 127–134. [Google Scholar] [CrossRef]
- Babaei, S.; Teichert-Kuliszewska, K.; Monge, J.C.; Mohamed, F.; Bendeck, M.P.; Stewart, D.J. Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor. Circ. Res. 1998, 82, 1007–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.K.; Tsugawa, K.; Tarnawski, A.S.; Baatar, D. Dual actions of nitric oxide on angiogenesis: Possible roles of PKC, ERK, and AP-1. Biochem. Biophys. Res. Commun. 2004, 318, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Loufrani, L.; Li, Z.; Levy, B.I.; Paulin, D.; Henrion, D. Excessive microvascular adaptation to changes in blood flow in mice lacking gene encoding for desmin. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1579–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Z.G.; Wong, C.; Wu, J.; Berk, B.C. Flow shear stress stimulates Gab1 tyrosine phosphorylation to mediate protein kinase B and endothelial nitric-oxide synthase activation in endothelial cells. J. Biol. Chem. 2005, 280, 12305–12309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luque Contreras, D.; Vargas Robles, H.; Romo, E.; Rios, A.; Escalante, B. The role of nitric oxide in the post-ischemic revascularization process. Pharmacol. Ther. 2006, 112, 553–563. [Google Scholar] [CrossRef]
- Baron-Menguy, C.; Bocquet, A.; Guihot, A.L.; Chappard, D.; Amiot, M.J.; Andriantsitohaina, R.; Loufrani, L.; Henrion, D. Effects of red wine polyphenols on postischemic neovascularization model in rats: Low doses are proangiogenic, high doses anti-angiogenic. FASEB J. 2007, 21, 3511–3521. [Google Scholar] [CrossRef]
- Markvardsen, L.K.; Sønderskov, L.D.; Wandall-Frostholm, C.; Pinilla, E.; Prat-Duran, J.; Aalling, M.; Mogensen, S.; Andersen, C.U.; Simonsen, U. Cystamine Treatment Fails to Prevent the Development of Pulmonary Hypertension in Chronic Hypoxic Rats. J. Vasc. Res. 2021, 58, 237–251. [Google Scholar] [CrossRef]
- Tamarat, R.; Silvestre, J.S.; Kubis, N.; Benessiano, J.; Duriez, M.; deGasparo, M.; Henrion, D.; Levy, B.I. Endothelial nitric oxide synthase lies downstream from angiotensin II-induced angiogenesis in ischemic hindlimb. Hypertension 2002, 39, 830–835. [Google Scholar] [CrossRef] [Green Version]
- Dowell, F.J.; Henrion, D.; Duriez, M.; Michel, J.B. Vascular reactivity in mesenteric resistance arteries following chronic nitric oxide synthase inhibition in Wistar rats. Br. J. Pharmacol. 1996, 117, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Loufrani, L.; Matrougui, K.; Gorny, D.; Duriez, M.; Blanc, I.; Levy, B.I.; Henrion, D. Flow (shear stress)-induced endothelium-dependent dilation is altered in mice lacking the gene encoding for dystrophin. Circulation 2001, 103, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.Y.; Henrion, D.; Benessiano, J.; Heymes, C.; Tournier, B.; Levy, B.I. Decreased flow-induced dilation and increased production of cGMP in spontaneously hypertensive rats. Hypertension 1998, 32, 1098–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Controls Rats (n = 10) | Sildenafil-Treated Rats (n = 10) | |||
---|---|---|---|---|
7 days | 21 days | 7 days | 21 days | |
Body weight (g) | 279 ± 8 | 426 ± 5 | 272 ± 6 | 418 ± 5 |
Mean arterial blood pressure (mmHg) | 107 ± 3 | 115 ± 4 | 107 ± 2 | 100 ± 2 * |
Controls Rats (n = 5) | Sildenafil-Treated Rats (n = 10) | |
---|---|---|
Aorta cGMP (nmol/mg) | 20.48 ± 0.88 | 63.96 ± 10.18 * |
Plasma cGMP (nmol/mL) | 17.12 ± 2.48 | 32.82 ± 4.69 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baron-Menguy, C.; Bocquet, A.; Richard, A.; Guihot, A.-L.; Toutain, B.; Pacaud, P.; Fassot, C.; Loirand, G.; Henrion, D.; Loufrani, L. Sildenafil-Induced Revascularization of Rat Hindlimb Involves Arteriogenesis through PI3K/AKT and eNOS Activation. Int. J. Mol. Sci. 2022, 23, 5542. https://doi.org/10.3390/ijms23105542
Baron-Menguy C, Bocquet A, Richard A, Guihot A-L, Toutain B, Pacaud P, Fassot C, Loirand G, Henrion D, Loufrani L. Sildenafil-Induced Revascularization of Rat Hindlimb Involves Arteriogenesis through PI3K/AKT and eNOS Activation. International Journal of Molecular Sciences. 2022; 23(10):5542. https://doi.org/10.3390/ijms23105542
Chicago/Turabian StyleBaron-Menguy, Celine, Arnaud Bocquet, Alexis Richard, Anne-Laure Guihot, Bertrand Toutain, Pierre Pacaud, Celine Fassot, Gervaise Loirand, Daniel Henrion, and Laurent Loufrani. 2022. "Sildenafil-Induced Revascularization of Rat Hindlimb Involves Arteriogenesis through PI3K/AKT and eNOS Activation" International Journal of Molecular Sciences 23, no. 10: 5542. https://doi.org/10.3390/ijms23105542
APA StyleBaron-Menguy, C., Bocquet, A., Richard, A., Guihot, A. -L., Toutain, B., Pacaud, P., Fassot, C., Loirand, G., Henrion, D., & Loufrani, L. (2022). Sildenafil-Induced Revascularization of Rat Hindlimb Involves Arteriogenesis through PI3K/AKT and eNOS Activation. International Journal of Molecular Sciences, 23(10), 5542. https://doi.org/10.3390/ijms23105542