The PagKNAT2/6b-PagBOP1/2a Regulatory Module Controls Leaf Morphogenesis in Populus
Abstract
:1. Introduction
2. Results
2.1. PagKNAT2/6b Is Expressed Broadly in Poplar Leaves
2.2. Phenotypic Changes of Transgenic Poplars Are Caused by Abnormal Expression of PagKNAT2/6b
2.3. Key Genes for Leaf Development Are Affected in PagKNAT2/6b Transgenic Plants
2.4. PagKNAT2/6b Directly Activates PagBOP1/2a Expression
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Leaf Morphological Analysis
4.3. Tissue Sections Preparation and Microscopy
4.4. Quantitative Real-Time PCR
4.5. RNA-Seq and Data Analyses
4.6. Co-Expression Analysis
4.7. Transient Expression Assay
4.8. Yeast One-Hybrid Assay (Y1H)
4.9. Transcription Factor (TF)-Centered Y1H Analysis
4.10. Electrophoretic Mobility Shift Assay (EMSA)
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsukaya, H. Comparative leaf development in angiosperms. Curr. Opin. Plant Biol. 2014, 17, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Chitwood, D.H.; Klein, L.L.; O’Hanlon, R.; Chacko, S.; Greg, M.; Kitchen, C.; Miller, A.J.; Londo, J.P. Latent developmental and evolutionary shapes embedded within the grapevine leaf. New Phytol. 2016, 210, 343–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drost, D.R.; Puranik, S.; Novaes, E.; Novaes, C.R.; Dervinis, C.; Gailing, O.; Kirst, M. Genetical genomics of Populus leaf shape variation. BMC Plant Biol. 2015, 15, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polle, A.; Chen, S.; Eckert, C.; Harfouche, A. Engineering drought resistance in forest trees. Front. Plant Sci. 2018, 9, 1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satterlee, J.; Scanlon, M.J. Plant development: How leaves take shape. Curr. Biol. 2019, 29, 803–805. [Google Scholar] [CrossRef] [PubMed]
- Machida, C.; Nakagawa, A.; Kojima, S.; Takahashi, H.; Machida, Y. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. Dev. Biol. 2015, 4, 655–671. [Google Scholar] [CrossRef]
- Cammarata, J.; Roeder, A.H. Development: Cell polarity is coordinated over an entire plant leaf. Curr. Biol. 2018, 28, 884–887. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Yan, C.; Liu, Y.; Liu, Y.; Jia, Y.; Lavelle, D.; An, G.; Zhang, W.; Zhang, L.; Han, R.; et al. Upregulation of a KN1 homolog by transposon insertion promotes leafy head development in lettuce. Proc. Natl. Acad. Sci. USA 2020, 117, 33668–33678. [Google Scholar] [CrossRef]
- Uchida, N.; Townsley, B.; Chung, K.-H.; Sinha, N. Regulation of Shoot Meristemless genes via an upstream-conserved noncoding sequence coordinates leaf development. Proc. Natl. Acad. Sci. USA 2007, 104, 15953–15958. [Google Scholar] [CrossRef] [Green Version]
- Jun, J.H.; Ha, C.M.; Fletcher, J.C. Blade-On-Petiole 1 coordinates organ determinacy and axial polarity in Arabidopsis by directly activating Asymmetric Leaves 2. Plant Cell 2010, 22, 62–76. [Google Scholar] [CrossRef] [Green Version]
- Luong, T.Q.; Keta, S.; Asai, T.; Kojima, S.; Nakagawa, A.; Micol, J.L.; Xia, S.; Machida, Y.; Machida, C. A genetic link between epigenetic repressor AS1–AS2 and DNA replication factors in establishment of adaxial–abaxial leaf polarity of Arabidopsis. Plant Biotechnol. 2018, 35, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Shchennikova, A.V.; Slugina, M.A.; Beletsky, A.V.; Filyushin, M.A.; Mardanov, A.A.; Shulga, O.A.; Skryabin, K.G. The YABBY genes of leaf and leaf-Like organ polarity in leafless plant monotropa hypopitys. Int. J. Genom. 2018, 2018, 7203469. [Google Scholar]
- Wang, H.; Kong, F.; Zhou, C. From genes to networks: The genetic control of leaf development. J. Integr. Plant Biol. 2021, 63, 1181–1196. [Google Scholar] [CrossRef]
- Sinha, N.R.; Williams, R.E.; Hake, S. Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from deter-minate to indeterminate cell fates. Genes Dev. 1993, 7, 187–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuck, G.; Lincoln, C.; Hake, S. KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 1996, 8, 1277–1289. [Google Scholar] [PubMed] [Green Version]
- Tsuda, K.; Ito, Y.; Sato, Y.; Kurata, N. Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice. Plant Cell 2011, 23, 4368–4381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farquharson, K.L. A rice KNOX transcription factor represses brassinosteroid production in the shoot apical meristem. Plant Cell 2014, 26, 3469. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Dharmawardhana, P.; Arias, R.; Allen, M.B.; Ma, C.; Strauss, S.H. WUS and STM-based reporter genes for studying meristem development in poplar. Plant Cell Rep. 2009, 28, 947–962. [Google Scholar] [CrossRef] [Green Version]
- Groover, A.; Robischon, M. Developmental mechanisms regulating secondary growth in woody plants. Curr. Opin. Plant Biol. 2006, 9, 55–58. [Google Scholar] [CrossRef]
- Du, J.; Mansfield, S.D.; Groover, A.T. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during sec-ondary growth. Plant J. 2009, 60, 1000–1014. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, X.; Zhou, H.; Wei, K.; Jiang, C.; Wang, J.; Cao, Y.; Tang, F.; Zhao, S.; Lu, M.; et al. KNAT 2/6b, a class I KNOX gene, impedes xylem differentiation by regulating NAC domain transcription factors in poplar. New Phytol. 2020, 225, 1531–1544. [Google Scholar] [CrossRef]
- Bolduc, N.; Yilmaz, A.; Mejia-Guerra, M.K.; Morohashi, K.; O’Connor, D.; Grotewold, E.; Hake, S. Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev. 2012, 26, 1685–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Giacomo, E.; Iannelli, M.A.; Frugis, G. TALE and shape: How to make a leaf different. Plants 2013, 2, 317–342. [Google Scholar] [CrossRef] [Green Version]
- Hepworth, S.; Zhang, Y.; McKim, S.; Li, X.; Haughn, G.W. BLADE-ON-PETIOLE–dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 2005, 17, 1434–1448. [Google Scholar] [CrossRef] [PubMed]
- Ha, C.M.; Jun, J.H.; Gil Nam, H.; Fletcher, J.C. BLADE-ON-PETIOLE1 and 2 control Arabidopsis lateral organ fate through regulation of LOB domain and adaxial-abaxial polarity genes. Plant Cell 2007, 19, 1809–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKim, S.M.; Stenvik, G.-E.; Butenko, M.A.; Kristiansen, W.; Cho, S.K.; Hepworth, S.R.; Aalen, R.B.; Haughn, G.W. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 2008, 2008, 1537–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.Q.; Zhao, Y.Q.; Wang, J.N.; Lu, M.Z. The transcription factor KNAT2/6b mediates changes in plant architecture in response to drought via down-regulating GA20ox1 in Populus alba × P. glandulosa. J. Exp. Bot. 2021, 72, 5625–5637. [Google Scholar] [CrossRef]
- Meicenheimer, R.D. The plastochron index: Still useful after nearly six decades. Am. J. Bot. 2014, 101, 1821–1835. [Google Scholar] [CrossRef] [Green Version]
- Du, F.; Guan, C.; Jiao, Y. Molecular mechanisms of leaf morphogenesis. Mol. Plant 2018, 11, 1117–1134. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Wang, L.; Nie, X.; He, L.; Zang, D.; Liu, Y.; Zhang, B.; Wang, Y. A novel method to identify the DNA motifs recognized by a defined transcription factor. Plant Mol. Biol. 2014, 86, 367–380. [Google Scholar] [CrossRef]
- Grafi, G.; Florentin, A.; Ransbotyn, V.; Morgenstern, Y. The stem cell state in plant development and in response to stress. Front. Plant Sci. 2011, 2, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lusk, C.H.; Grierson, E.; Laughlin, D.C. Large leaves in warm, moist environments confer an advantage in seedling light in-terception efficiency. New Phytol. 2019, 223, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.E.; Simorowski, J.; Martienssen, R.A. Asymmetric Leaves1 reveals knox gene redundancy in Arabidopsis. Development 2002, 129, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Zhang, L.; Wang, W.Y.; Tian, P.; Wang, W.Y.; Tian, P.; Wang, W.; Wang, K.; Huang, T. TCP5 controls leaf margin development by regulating KNOX and BEL-like transcription factors in Arabidopsis. J. Exp. Bot. 2021, 72, 1809–1821. [Google Scholar] [CrossRef] [PubMed]
- Bolduc, N.; Hake, S. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 2009, 21, 1647–1658. [Google Scholar] [CrossRef] [Green Version]
- Krusell, L.; Rasmussen, I.; Gausing, K. DNA binding sites recognised in vitro by a knotted class 1 homeodomain protein encoded by the hooded gene, k, in barley (Hordeum vulgare). FEBS Lett. 1997, 408, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Stougaard, J.; Jørgensen, J.-E.; Christensen, T.; Kühle, A.; Marcker, K.A. Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc3 and N23 gene promoters. Mol. Gen. Genet. 1990, 220, 353–360. [Google Scholar] [CrossRef]
- Fehlberg, V.; Vieweg, M.F.; Dohmann, E.M.N.; Hohnjec, N.; Pühler, A.; Perlick, A.M.; Küster, H. The promoter of the leghaemoglobin gene VfLb29: Functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J. Exp. Bot. 2005, 56, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Azarakhsh, M.; Kirienko, A.N.; Zhukov, V.A.; Lebedeva, M.A.; Dolgikh, E.A.; Lutova, L.A. KNOTTED1-LIKE HOMEOBOX 3: A new regulator of symbiotic nodule development. J. Exp. Bot. 2015, 66, 7181–7195. [Google Scholar] [CrossRef] [Green Version]
- Di Giacomo, E.; Laffont, C.; Sciarra, F.; Iannelli, M.A.; Frugier, F.; Frugis, G. KNAT3/4/5-like class 2 KNOX transcription factors are involved in Medicago truncatula symbiotic nodule organ development. New Phytol. 2017, 213, 822–837. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Song, X.; Wei, K.; Zhao, Y.; Jiang, C.; Wang, J.; Tang, F.; Lu, M. Growth-regulating factor 15 is required for leaf size control in Populus. Tree Physiol. 2018, 39, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- An, J.P.; Qu, F.J.; Yao, J.F.; Wang, X.N.; You, C.X.; Wang, X.F.; Hao, Y.J. The bZIP transcription factor MdHY5 regulates anthocyanin accu-mulation and nitrate assimilation in apple. Hortic. Res. 2017, 4, 17023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.Q.; Li, Z.; Wen, S.S.; Wang, J.N.; Zhao, S.T.; Lu, M.Z. WUSCHEL-related homeobox gene PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in poplar. J. Exp. Bot. 2020, 4, 1460–2431. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, Y.; Zhang, W.; Shi, Y.; Jiang, C.; Song, X.; Tuskan, G.A.; Zeng, W.; Zhang, J.; Lu, M. The PagKNAT2/6b-PagBOP1/2a Regulatory Module Controls Leaf Morphogenesis in Populus. Int. J. Mol. Sci. 2022, 23, 5581. https://doi.org/10.3390/ijms23105581
Zhao Y, Zhang Y, Zhang W, Shi Y, Jiang C, Song X, Tuskan GA, Zeng W, Zhang J, Lu M. The PagKNAT2/6b-PagBOP1/2a Regulatory Module Controls Leaf Morphogenesis in Populus. International Journal of Molecular Sciences. 2022; 23(10):5581. https://doi.org/10.3390/ijms23105581
Chicago/Turabian StyleZhao, Yanqiu, Yifan Zhang, Weilin Zhang, Yangxin Shi, Cheng Jiang, Xueqin Song, Gerald A. Tuskan, Wei Zeng, Jin Zhang, and Mengzhu Lu. 2022. "The PagKNAT2/6b-PagBOP1/2a Regulatory Module Controls Leaf Morphogenesis in Populus" International Journal of Molecular Sciences 23, no. 10: 5581. https://doi.org/10.3390/ijms23105581
APA StyleZhao, Y., Zhang, Y., Zhang, W., Shi, Y., Jiang, C., Song, X., Tuskan, G. A., Zeng, W., Zhang, J., & Lu, M. (2022). The PagKNAT2/6b-PagBOP1/2a Regulatory Module Controls Leaf Morphogenesis in Populus. International Journal of Molecular Sciences, 23(10), 5581. https://doi.org/10.3390/ijms23105581