Osteosarcopenia: A Narrative Review on Clinical Studies
Abstract
:1. Introduction
2. Diagnostic Criteria
3. Clinical Studies on Osteosarcopenia and Associated Risk Factors
3.1. Osteosarcopenia and the Association with Falls, Fractures, and Frailty
3.2. Osteosarcopenia and Type 2 Diabetes Mellitus
3.3. Osteosarcopenia and Obesity
3.4. Osteosarcopenia and Polycystic Ovary Syndrome
3.5. Osteosarcopenia and Cardiovascular Diseases
3.6. Osteosarcopenia and Anemia
Author, Year [Ref] | Sample Size Age and Sex | % of OS | Relevant Results |
---|---|---|---|
Huo, 2015 [39] | 680 (65% W) mean age 79 yrs | 38% | OS subjects were older, mostly women, with a body mass index (BMI) below 25 and at higher risk of depression and malnutrition |
Reiss, 2019 [40] | 141 (60% W) 80.6 ± 5.5 yrs | 14.2% | BMI and Mini Nutritional Assessment-Short form were lower in OS compared to sarcopenia or osteoporosis alone (p < 0.05) |
Okayama, 2022 [41] | 61 W 77.6 ± 8.1 yrs | 39.3% | Patients with OS had lower quality of life scores, greater postural instability, and a higher incidence of falls. |
Park, 2021 [42] | 885 (67.1% W) 70.3 ± 6.2 yrs | 19.2% | Disability (17.5, 95% CI: 14.8–20.1), frailty (3.0, 95% CI: 2.6–3.4), and depression mean score (4.6, 95% CI: 3.9–5.4) were statistically significantly higher in the OS group compared the other groups. |
Pourhassan, 2021 [43] | 572 (78% W) 75.1 ± 10.8 yrs | 8% | OS patients were older and frailer and had lower BMI, fat, muscle mass, handgrip strength, and T-score compared to non-OS patients. |
Salech, 2020 [44] | 1119 (68.6% W) 72.0± 6.7 yrs | 16.4% | OS increases with age from 8.9% at 60–69.9 years), to 33.7% (>80 years) (p < 0.0001; mortality was significantly higher for the group with OS (15.9%) compared with those without the condition (6.1%). The risk of falls, fractures and functional impairment increases in OS (falls: HR 1.60; CI 1.07–2.38; p < 0.05; fractures HR 1.54; CI 1.13–2.08; p < 0.01; functional impairment: HR 1.83; CI 1.41–2.38; p < 0.001). |
Fahimfar, 2022 [45] | 341 M 73.3 ± 7.4 yrs | 100% | Risk of falls: positively associated with age (OR = 1.09, 95% CI: 1.04–1.14), fasting blood glucose, an increase of 10 mg/dL increased the chance of falling by 14% (OR = 1.14, 95% CI = 1.06–1.23); negatively associated with triglyceridemia (OR = 0.33, CI 95% = 0.12 to 0.89). |
Di Monaco, 2020 [46] | 350 W2 79.7 ±7.2 yrs | 65.7% | Significant difference in Spine Deformity Index (SDI) scores across the 3 groups (no osteoporosis and sarcopenia; osteoporosis or sarcopenia and osteosarcopenia (p < 0.001). |
Drey, 2016 [48] | 68 pre-frail older (47 W, 21 M) 65–94 yrs | 41% | OS participants showed significantly reduced hand-grip increased chair rising time, and STS power time as well as significantly increased bone turnover markers. |
Saeki, 2020 [49] | 291 (137 M 154 W) 59–76 yrs | 16.8% | OS and vertebral fracture were often seen in patients with frailty than in those without frailty (48.1% vs. 4.8% and 49.4% vs. 18.1%, respectively; p < 0.001). Frailty was an independent factor associated with OS (OR= 9.837; p < 0.001), and vice versa (OR = 10.069; p < 0.001). |
Inoue, 2021 [50] | 495 (68.7% W) 76.5 ± 7.2 yrs | 11.1% | Logistic regression analysis revealed that OS was significantly associated with social frailty (pooled OR: 2.117; 95%CI: 1.104–4.213) |
Inoue, 2022 [51] | 432 patients (298 W) 75.9 ± 7.3 yrs | 10.2% | Logistic regression analysis revealed that OS was independently associated with cognitive frailty with a higher odds ratio (OR: 8.246, 95% CI 3.319−20.487) than osteoporosis or sarcopenia alone. |
Liu, 2021 [54] | 150 (80 M and 70 W) patients with T2DM aged ≥50 yrs. | 29% | Patients with OS had lower body mass index, waist circumference, body fat percentage (p < 0.001), AUC-Ins/Glu (p = 0.01), and AUC-CP/Glu (p = 0.013). Both AUC-Ins/Glu (OR = 0.634, p = 0.008) and AUC-CP/Glu (OR = 0.491, p = 0.009) were negatively associated with the presence of OS. |
Pechmann, 2021 [55] | T2DM group n = 177, (64.4% W) 65.1 8.2 yrs; Control group n = 146, (54.7% W) 68.8 ± 11.0 yrs | 11.9% (T2DM group); 2.14% (control group) | T2DM group versus the control group had higher rates fractures (29.9% vs. 18.5%, respectively, p= 0.019), lower handgrip strength values (24.4 ± 10.3 kg vs. 30.9 ± 9.15 kg, respectively, p < 0.001), but comparable BMD values. OS was associated with diabetes complications (p = 0.03), calcium and vitamin D supplementation (p = 0.01), and all components of OS diagnosis (p < 0.05). |
Park, 2018 [56] | 1344 Post-menopausal W >50 yrs | 24.1% | Pro-inflammatory diet was associate with increased odds for osteopenic obesity (OR = 2.757, 95% CI: 1.398–5.438, p < 0.01) and OS obesity (OR = 2.186, 95% CI: 1.182–4.044, p < 0.05) respectivelyA deficiency of antioxidant vitamins (A and E) was found in OS subjects compared to control (p < 0.001). |
Bazdyrev, 2021 [63] | 387 stable coronary artery disease (26.9% W) 50–82 yrs | 6.5% | Patients with OS had a higher score on the SARC-F questionnaire, low handgrip strength, small area of muscle tissue, low musculoskeletal index, as well as low values of bone mineral density. |
Fahimfar, 2020 [64] | 2353 (51.2% W) >60 yrs | 34% | OS increases with age (from 14.3% in aged 60–64 years to 59.4% in aged ≥75 years in men and from 20.3% in aged 60–64 years to 48.3% in aged ≥75 years in women- p = 0.019). BMI was inversely associated with OS. High-fat mass was positively associated with OS [PR 1.46 (95% CI 1.11–1.92) in men, and 2.25 (95% CI 1.71–2.95) in women]. OS was more likely in diabetic men (adjusted PR: 1.33, 95% CI 1.04–1.69), but not in women. No association between OS and smoking and lipid profiles has been found. |
Hassan, 2020 [69] | 558 community-dwelling participants older (79 ± 7.5 yrs) | 36% | OS patients on average had 6.3 g/L lower Hb levels compared to controls (p = 0.001), and 3.7 g/L lower Hb than patients with osteoporosis/penia (p < 0.026). Sarcopenia and OS (but not osteoporosis alone) are associated with anemia |
4. Management of Osteosarcopenia
4.1. Non-Pharmacological Interventions
4.2. Pharmacological Interventions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | angiotensin-converting enzymes |
ALM | appendicular lean mass |
BALP | alkaline phosphatase bone |
BIA | bioimpedance analysis |
BMD | bone mass density |
BMI | body mass index |
CAD | coronary artery disease |
COP | Circulating osteoprogenitor |
CTX | C-terminal cross-linked telopeptide |
DEXA | Dual-energy X-ray absorptiometry |
EWGSOP2 | European Working Group on Sarcopenia in the Elderly |
FDA | Food and Drug Administration |
FFC | Falls and Fractures Clinic |
FrOST | Franconian Osteopenia and Sarcopenia Trial |
GH | the growth hormone |
GMV | gluteus maximus muscle volume |
HbA1c | glycated hemoglobin |
Hb | hemoglobin |
HIT-DRT | High-intensity dynamic resistance exercise |
hpCRP | high-sensitivity C-reactive protein |
HR | hazard ratio |
GH | growth hormone |
IGF-1; | insulin-like growth factor 1 |
GH-IGF-1 axis | growth hormone-insulin-like growth factor 1 axis |
IR | insulin resistance |
MRI | Magnetic resonance imaging |
MSCs | Mesenchymal stem cells |
NCDs | Noncommunicable diseases |
NOF | Nepean Osteoporosis and Frailty Study |
OC | osteocalcin |
OS | Osteosarcopenia; |
PCOS | Polycystic ovary syndrome |
PTH | parathyroid hormone |
RANK-L | receptor activator of nuclear factor-kappa-β ligand |
RCT | randomized controlled trials |
RE | resistance exercise |
SDI | Spine Deformity Index |
SHBG | sex hormone-binding globulin |
SMI | skeletal muscle index |
SMD | standardized mean difference |
SPPB | Short Physical Performance Battery |
STS | sit-to-stand test |
TBS | trabecular bone score |
TD2M | Type 2 diabetes mellitus |
TRAP | tartrate-resistant acid phosphatase |
WPS | whey protein supplementation |
References
- Binkley, N.; Buehring, B. Beyond FRAX®: It’s Time to Consider “Sarco-Osteopenia”. J. Clin. Densitom. 2009, 12, 413–416. [Google Scholar] [CrossRef]
- Hirschfeld, H.P.; Kinsella, R.; Duque, G. Osteosarcopenia: Where bone, muscle, and fat collide. Osteoporos. Int. 2017, 28, 2781–2790. [Google Scholar] [CrossRef]
- Kaplan, S.J.; Pham, T.N.; Arbabi, S.; Gross, J.A.; Damodarasamy, M.; Bentov, I.; Taitsman, L.A.; Mitchell, S.H.; Reed, M.J. Associationof radiologic indicators of frailty with 1-year mortality in older trauma patients: Opportunistic screening for sarcopenia and os-teopenia. JAMA Surg. 2017, 152, e164604. [Google Scholar] [CrossRef]
- Nielsen, B.R.; Abdulla, J.; Andersen, H.E.; Schwarz, P.; Suetta, C. Sarcopenia and osteoporosis in older people: A systematic review and meta-analysis. Eur. Geriatr. Med. 2018, 9, 419–434. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis. Report of the European working group on sarcopenia in older people. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Fatima, M.; Brennan-Olsen, S.L.; Duque, G. Therapeutic approaches to osteosarcopenia: Insights for the clinician. Ther. Adv. Musculoskelet. Dis. 2019, 11, 1759720X19867009. [Google Scholar] [CrossRef] [Green Version]
- Paintin, J.; Cooper, C.; Dennison, E. Osteosarcopenia. Br. J. Hosp. Med. 2018, 79, 253–258. [Google Scholar] [CrossRef]
- Azzolino, D.; Spolidoro, G.C.I.; Saporiti, E.; Luchetti, C.; Agostoni, C.; Cesari, M. Musculoskeletal Changes Across the Lifespan: Nutrition and the Life-Course Approach to Prevention. Front. Med. 2021, 8, 697954. [Google Scholar] [CrossRef]
- Schoenau, E. From mechanistic theory to development of the “Functional Muscle-Bone-Unit”. J. Musculoskelet. Neuronal. Interact. 2005, 5, 232–238. [Google Scholar]
- Lara-Castillo, N.; Johnson, M.L. Bone-Muscle Mutual Interactions. Curr. Osteoporos. Rep. 2020, 18, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. Solute Transport in the Bone Lacunar-Canalicular System (LCS). Curr. Osteoporos. Rep. 2018, 16, 32–41. [Google Scholar] [CrossRef]
- Deb, A. How Stem Cells Turn into Bone and Fat. N. Engl. J. Med. 2019, 380, 2268–2270. [Google Scholar] [CrossRef]
- Chen, Q.; Shou, P.; Zheng, C.; Jiang, M.; Cao, G.; Yang, Q.; Cao, J.; Xie, N.; Velletri, T.; Zhang, X.; et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ. 2016, 23, 1128–1139. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.; Tyagi, S.; Myers, D.; Duque, G. Good, Bad, or Ugly: The Biological Roles of Bone Marrow Fat. Curr. Osteoporos. Rep. 2018, 16, 130–137. [Google Scholar] [CrossRef]
- Carter, C.S.; Justice, J.N.; Thompson, L. Lipotoxicity, aging, and muscle contractility: Does fiber type matter? GeroScience 2019, 41, 297–308. [Google Scholar] [CrossRef]
- Hamrick, M.W.; McGee-Lawrence, M.E.; Frechette, D.M. Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity. Front. Endocrinol. 2016, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Rivas, D.A.; McDonald, D.J.; Rice, N.P.; Haran, P.H.; Dolnikowski, G.G.; Fielding, R.A. Diminished anabolic signaling response to insulin induced by intramuscular lipid accumulation is associated with inflammation in aging but not obesity. Am. J. Physiol. Integr. Comp. Physiol. 2016, 310, R561–R569. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, R.C.; Mohan, S. Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Mol. Cell. Endocrinol. 2015, 432, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Ferrucci, L.; Baroni, M.; Ranchelli, A.; Lauretani, F.; Maggio, M.; Mecocci, P.; Ruggiero, C. Interaction between Bone and Muscle in Older Persons with Mobility Limitations. Curr. Pharm. Des. 2014, 20, 3178–3197. [Google Scholar] [CrossRef] [Green Version]
- Colón, C.J.P.; Molina-Vicenty, I.L.; Frontera-Rodríguez, M.; García-Ferré, A.; Rivera, B.P.; Cintrón-Vélez, G.; Frontera-Rodríguez, S. Muscle and Bone Mass Loss in the Elderly Population: Advances in diagnosis and treatment. J. Biomed. 2018, 3, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Russo, C.R.; Ricca, M.; Ferrucci, L. Sarcopenia, the physiological decline in muscle mass and function occurring in the elderly, may influence age-related osteoporosis. J. Am. Geriatr. Soc. 2000, 48, 1738–1739. [Google Scholar] [CrossRef] [PubMed]
- Di Monaco, M.; Castiglioni, C.; Milano, E.; Massazza, G. Is there a definition of low lean mass that captures the associated low bone mineral density? A cross-sectional study of 80 men with hip fracture. Aging 2018, 30, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, B.R.; Andersen, H.E.; Haddock, B.; Hovind, P.; Schwarz, P.; Suetta. Prevalence of muscle dysfunction concomitant with osteoporosis in a home-dwelling Danish population aged 65–93 years—The Copenhagen Sarcopenia Study. Exp. Gerontol. 2020, 138, 110974. [Google Scholar] [CrossRef]
- Sepúlveda-Loyola, W.; Phu, S.; Hassan, E.B.; Brennan-Olsen, S.L.; Zanker, J.; Vogrin, S.; Conzade, R.; Kirk, B.; Al Saedi, A.; Probst, V.; et al. The joint occur-rence of osteoporosis and sarcopenia (osteosarcopenia): Definitions and characteristics. J. Am. Med. Dir. Assoc. 2020, 21, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Prevention and Management of Osteoporosis; WHO Technical Report Series n. 921; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Peppa, M.; Stefanaki, C.; Papaefstathiou, A.; Boschiero, D.; Dimitriadis, G.; Chrousos, G.P. Bioimpedance analysis vs. DEXA as a screening tool for osteosarcopenia in lean, overweight and obese Caucasian postmenopausal females. Hormones 2017, 16, 181–193. [Google Scholar]
- Hamad, B.; Basaran, S.; Benlidayi, I.C. Osteosarcopenia among postmenopausal women and handgrip strength as a practical method for predicting the risk. Aging 2019, 32, 1923–1930. [Google Scholar] [CrossRef]
- Fathi, M.; Heshmat, R.; Ebrahimi, M.; Salimzadeh, A.; Ostovar, A.; Fathi, A.; Razi, F.; Nabipour, I.; Moghaddassi, M.; Shafiee, G. Association between biomarkers of bone health and osteosarcopenia among Iranian older people: The Bushehr Elderly Health (BEH) program. BMC Geriatr. 2021, 21, 654. [Google Scholar] [CrossRef]
- Poggiogalle, E.; Cherry, K.E.; Su, L.J.; Kim, S.; Myers, L.; Welsh, D.A.; Jazwinski, S.M.; Ravussin, E. Body Composition, IGF1 Status, and Physical Functionality in Nonagenarians: Implications for Osteosarcopenia. J. Am. Med. Dir. Assoc. 2018, 20, 70–75.e2. [Google Scholar] [CrossRef]
- Pignolo, R.J.; Kassem, M. Circulating osteogenic cells: Implications for injury, repair, and regeneration. J. Bone Miner. Res. 2011, 26, 1685–1693. [Google Scholar] [CrossRef]
- Gunawardene, P.; Bermeo, S.; Vidal, C.; Al-Saedi, A.; Chung, P.; Boersma, D.; Phu, S.; Pokorski, I.; Suriyaarachchi, P.; Demontiero, O.; et al. Association between circulating osteogenic progenitor cells and disability and frailty in older persons: The Nepean osteoporosis and frailty study. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1124–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirro, M.; Leli, C.; Fabbriciani, G.; Manfredelli, M.R.; Callarelli, L.; Bagaglia, F.; Scarponi, A.M.; Mannarino, E. Association between circulating osteoprogenitor cell numbers and bone mineral density in postmenopausal osteoporosis. Osteoporos. Int. 2010, 21, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Gunawardene, P.; Al Saedi, A.; Singh, L.; Bermeo, S.; Vogrin, S.; Phu, S.; Suriyaarachchi, P.; Pignolo, R.J.; Duque, G. Age, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Study. Exp. Gerontol. 2017, 96, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Al Saedi, A.; Gunawardene, P.; Bermeo, S.; Vogrin, S.; Boersma, D.; Phu, S.; Duque, G. Lamin A expression in circulat-ing osteoprogenitors as a potential biomarker for frailty: The Nepean Osteoporosis and Frailty (NOF) Study. Exp. Gerontol. 2018, 102, 69–75. [Google Scholar] [CrossRef]
- Cedeno-Veloz, B.; Bonnardeauxa, P.L.D.; Duque, G. Osteosarcopenia: Una revisión narrativa. Rev. Españ. Geriatr. Gerontol. 2019, 54, 103–108. [Google Scholar] [CrossRef]
- Clynes, M.A.; Gregson, C.L.; Bruyère, O.; Cooper, C.; Dennison, E.M. Osteosarcopenia: Where osteoporosis and sarcopenia collide. Rheumatology 2020, 60, 529–537. [Google Scholar] [CrossRef]
- Teng, Z.; Zhu, Y.; Teng, Y.; Long, Q.; Hao, Q.; Yu, X.; Yang, L.; Lv, Y.; Liu, J.; Zeng, Y.; et al. The analysis of osteosarcopenia as a risk factor for fractures, mortality, and falls. Osteoporos. Int. 2021, 32, 2173–2183. [Google Scholar] [CrossRef]
- Huo, Y.R.; Suriyaarachchi, P.; Gomez, F.; Curcio, C.L.; Boersma, D.; Muir, S.W.; Gunawardene, P.; Demontiero, O.; Duque, G. Phenotype of osteosarco-penia in older individuals with a history of falling. J. Am. Med. Dir. Assoc. 2015, 16, 290–295. [Google Scholar] [CrossRef]
- Reiss, J.; Iglseder, B.; Alzner, R.; Mayr-Pirker, B.; Pirich, C.; Kässmann, H.; Kreutzer, M.; Dovjak, P.; Reiter, R. Sarcopenia and osteoporosis are interrelated in geriatric inpatients. Z. Für Gerontol. Und Geriatr. 2019, 52, 688–693. [Google Scholar] [CrossRef] [Green Version]
- Okayama, A.; Nakayama, N.; Kashiwa, K.; Horinouchi, Y.; Fukusaki, H.; Nakamura, H.; Katayama, S. Prevalence of Sarcopenia and Its Association with Quality of Life, Postural Stability, and Past Incidence of Falls in Postmenopausal Women with Osteoporosis: A Cross-Sectional Study. Healthcare 2022, 10, 192. [Google Scholar] [CrossRef]
- Park, K.-S.; Lee, G.-Y.; Seo, Y.-M.; Seo, S.-H.; Yoo, J.-I. Disability, Frailty and Depression in the community-dwelling older adults with Osteosarcopenia. BMC Geriatr. 2021, 21, 69. [Google Scholar] [CrossRef] [PubMed]
- Pourhassan, M.; Buehring, B.; Stervbo, U.; Rahmann, S.; Mölder, F.; Rütten, S.; Trampisch, U.; Babel, N.; Westhoff, T.H.; Wirth, R. Osteosarcopenia, an Asymmetrical Overlap of Two Connected Syndromes: Data from the OsteoSys Study. Nutrients 2021, 13, 3786. [Google Scholar] [CrossRef] [PubMed]
- Salech, F.; Marquez, C.; Lera, L.; Angel, B.; Saguez, R.; Albala, C. Osteosarcopenia Predicts Falls, Fractures, and Mortality in Chilean Community-Dwelling Older Adults. J. Am. Med Dir. Assoc. 2021, 22, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Fahimfar, N.; Yousefi, S.; Noorali, S.; Gharibzadeh, S.; Sanjari, M.; Khalagi, K.; Mehri, A.; Shafiee, G.; Heshmat, R.; Nabipour, I.; et al. The association of cardio-metabolic risk factors and history of falling in men with osteosarcopenia: A cross-sectional analysis of Bushehr Elderly Health (BEH) program. BMC Geriatr. 2022, 22, 46. [Google Scholar] [CrossRef]
- Di Monaco, M.; Castiglioni, C.; Bardesono, F.; Milano, E.; Massazza, G. Sarcopenia, osteoporosis and the burden of prevalent vertebral fractures: A cross-sectional study of 350 women with hip fracture. Eur. J. Phys. Rehabil. Med. 2020, 56, 184–190. [Google Scholar] [CrossRef]
- Turkmen, I.; Ozcan, C. Osteosarcopenia increases hip fracture risk: A case-controlled study in the elderly. J. Back Musculoskelet. Rehabil. 2019, 32, 613–618. [Google Scholar] [CrossRef]
- Drey, M.; Sieber, C.C.; Bertsch, T.; Bauer, J.M.; Schmidmaier, R.; The FiAT intervention group. Osteosarcopenia is more than sarcopenia and osteopenia alone. Aging Clin. Exp. Res. 2016, 28, 895–899. [Google Scholar] [CrossRef]
- Saeki, C.; Kanai, T.; Nakano, M.; Oikawa, T.; Torisu, Y.; Abo, M.; Saruta, M.; Tsubota, A. Relationship between osteosarco-penia and frailty in patients with chronic liver disease. J. Clin. Med. 2020, 9, 2381. [Google Scholar] [CrossRef]
- Inoue, T.; Maeda, K.; Satake, S.; Matsui, Y.; Arai, H. Osteosarcopenia, the co-existence of osteoporosis and sarcopenia, is associated with social frailty in older adults. Aging Clin. Exp. Res. 2021, 34, 291. [Google Scholar] [CrossRef]
- Inoue, T.; Shimizu, A.; Satake, S.; Matsui, Y.; Ueshima, J.; Murotani, K.; Arai, H.; Maeda, K. Association between osteosarcopenia and cognitive frailty in older outpatients visiting a frailty clinic. Arch. Gerontol. Geriatr. 2021, 98, 104530. [Google Scholar] [CrossRef]
- Kelaiditi, E.; Cesari, M.; Canevelli, M.; van Kan, G.A.; Ousset, P.J.; Gillette-Guyonnet, S.; Ritz, P.; Duveau, F.; Soto, M.E.; Provencher, V.; et al. Cognitive frailty: International consensus group. J. Nutr. Health Aging 2013, 17, 2002. [Google Scholar]
- Kirk, B.; Zanker, J.; Duque, G. Osteosarcopenia: Epidemiology, diagnosis, and treatment—Facts and numbers. J. Cachex-Sarcopenia Muscle 2020, 11, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yu, D.; Xu, M.; Feng, R.; Sun, Y.; Yin, X.; Lai, H.; Wang, C.; Liu, J. β-Cell function is associated with osteosarcopenia in middle-aged and older nonobese patients with type 2 diabetes: A cross-sectional study. Open Med. 2021, 16, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Pechmann, L.M.; Petterle, R.R.; Moreira, C.A.; Borba, V.Z.C. Osteosarcopenia and trabecular bone score in patients with type 2 diabetes mellitus. Arch. Endocrinol. Metab. 2021, 65, 801–810. [Google Scholar] [CrossRef]
- Park, S.; Na, W.; Sohn, C. Relationship between osteosarcopenic obesity and dietary inflammatory index in postmenopausal Korean women: 2009 to 2011 Korea National Health and Nutrition Examination Surveys. J. Clin. Biochem. Nutr. 2018, 63, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, Y.R.; Suriyaarachchi, P.; Gomez, F.; Curcio, C.L.; Boersma, D.; Gunawardene, P.; Demontiero, O.; Duque, G. Phenotype of sarcopenic obesity in older individuals with a history of falling. Arch. Gerontol. Geriatr. 2016, 65, 255–259. [Google Scholar] [CrossRef]
- Stefanaki, C.; Peppa, M.; Boschiero, D.; Chrousos, G.P. Healthy overweight/obese youth: Early osteosarcopenic obesity features. Eur. J. Clin. Investig. 2016, 46, 767–778. [Google Scholar] [CrossRef]
- Piovezan, J.M.; Premaor, M.O.; Comim, F.V. Negative impact of polycystic ovary syndrome on bone health: A systematic review and meta-analysis. Hum. Reprod. Update 2019, 25, 634–646. [Google Scholar] [CrossRef]
- Mario, F.M.; do Amarante, F.; Toscani, M.K.; Spritzer, P.M. Lean muscle mass in classic or ovulatory PCOS: Association with central obesity and insulin resistance. Exp. Clin. Endocrinol. Diabetes 2012, 120, 511–516. [Google Scholar] [CrossRef]
- Hoeger, K.M.; Dokras, A.; Piltonen, T. Update on PCOS: Consequences, challenges, and guiding treatment. J. Clin. Endocrinol. Metab. 2021, 106, e1071–e1083. [Google Scholar] [CrossRef]
- Kazemi, M.; Jarrett, B.Y.; Parry, S.A.; Thalacker-Mercer, A.E.; Hoeger, K.M.; Spandorfer, S.D.; Lujan, M.E. Osteosarcopenia in reproductive-aged women with polycystic ovary syndrome: A multicenter case-control study. J. Clin. Endocrinol. Metab. 2020, 105, e3400–e3414. [Google Scholar] [CrossRef] [PubMed]
- Bazdyrev, E.D.; Terentyeva, N.A.; Krivoshapova, K.E.; Masenko, V.L.; Wegner, E.A.; Kokov, N.; Pomeshkina, S.A.; Barbarash, O.L. Prevalence of Musculoskeletal Disorders in Patients with Coronary Artery Disease. Ration. Pharmacother. Cardiol. 2021, 17, 369–375. [Google Scholar] [CrossRef]
- Fahimfar, N.; Zahedi Tajrishi, F.; Gharibzadeh, S.; Shafiee, G.; Tanha, K.; Heshmat, R.; Nabipour, I.; Raeisi, A.; Jalili, A.; Larijani, B.; et al. Prevalence of osteosarcopenia and its association with cardiovascular risk factors in Iranian older people: Bushehr Elderly Health (BEH) Program. Calcif. Tissue Int. 2020, 106, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Espallargues, M.; Sampietro-Colom, L.; Estrada, M.D.; Solà, M.; Del Río, L.; Setoain, J.; Granados, A. Identifying Bone-Mass-Related Risk Factors for Fracture to Guide Bone Densitometry Measurements: A Systematic Review of the Literature. Osteoporos. Int. 2001, 12, 811–822. [Google Scholar] [CrossRef]
- Hirani, V.; Naganathan, V.; Blyth, F.; Le Couteur, D.G.; Seibel, M.J.; Waite, L.M.; Handelsman, D.J.; Hsu, B.; Cumming, R.G. Low hemoglobin concentrations are associated with sarcopenia, physical performance, and disability in older Australian men in cross sectional and longitudinal analysis: The concord health and ageing in men project. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1667–1675. [Google Scholar] [CrossRef] [Green Version]
- Duh, M.S.; Mody, S.H.; Lefebvre, P.; Woodman, R.C.; Buteau, S.; Piech, C.T. Anaemia and the Risk of Injurious Falls in a Community-Dwelling Elderly Population. Drugs Aging 2008, 25, 325–334. [Google Scholar] [CrossRef]
- Valderrábano, R.J.; Lee, J.; Lui, L.-Y.; Hoffman, A.R.; Cummings, S.R.; Orwoll, E.S.; Wu, J.Y. Older men with anemia have increased fracture risk independent of bone mineral density. J. Clin. Endocrinol. Metab. 2017, 102, 2199–2206. [Google Scholar] [CrossRef]
- Hassan, E.B.; Vogrin, S.; Viña, I.H.; Boersma, D.; Suriyaarachchi, P.; Duque, G. Hemoglobin Levels are Low in Sarcopenic and Osteosarcopenic Older Persons. Calcif. Tissue Res. 2020, 107, 135–142. [Google Scholar] [CrossRef]
- Choi, M.-K.; Bae, Y.-J. Dietary calcium, phosphorus, and osteosarcopenic adiposity in Korean adults aged 50 years and older. Arch. Osteoporos. 2021, 16, 89. [Google Scholar] [CrossRef]
- Gomez, F.; Curcio, C.L.; Brennan-Olsen, S.L.; Boersma, D.; Phu, S.; Vogrin, S.; Suriyaarachchi, P.; Duque, G. Effects of the falls and frac-tures clinic as an integrated multidisciplinary model of care in Australia: A pre–post study. BMJ Open 2019, 9, e027013. [Google Scholar] [CrossRef] [Green Version]
- Hong, A.R.; Kim, S.W. Effects of Resistance Exercise on Bone Health. Endocrinol. Metab. 2018, 33, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Beck, B.R.; Daly, R.M.; Singh, M.A.; Taaffe, D.R. Exercise and Sports Science Australia (ESSA) position statement on exercise pre-scription for the prevention and management of osteoporosis. J. Sci. Med. Sport. 2017, 20, 438–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleg, J.L. Aerobic exercise in the elderly: A key to successful aging. Discov. Med. 2012, 13, 223–228. [Google Scholar] [PubMed]
- Palombaro, K.M.; Black, J.D.; Buchbinder, R.; Jette, D.U. Effectiveness of exercise for managing osteoporosis in women postmeno-pause. Phys. Ther. 2013, 93, 1021–1025. [Google Scholar] [CrossRef] [Green Version]
- Frost, H.M. Bone’s mechanostat: A 2003 update. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 2003, 275, 1081–1101. [Google Scholar] [CrossRef]
- Galea, G.L.; Lanyon, L.E.; Price, J.S. Sclerostin’s role in bone’s adaptive response to mechanical loading. Bone 2016, 96, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Lichtenberg, T.; von Stengel, S.; Sieber, C.C.; Kemmler, W. The Favorable Effects of a High-Intensity Resistance Training on Sarcopenia in Older Community-Dwelling Men with Osteosarcopenia: The Randomized Controlled FrOST Study. Clin. Interv. Aging 2019, 14, 2173–2186. [Google Scholar] [CrossRef] [Green Version]
- Kemmler, W.; Kohl, M.; Fröhlich, M.; Jakob, F.; Engelke, K.; Von Stengel, S.; Schoene, D. Effects of High—Intensity Resistance Training on Osteopenia and Sarcopenia Parameters in Older Men with Osteosarcopenia—One-Year Results of the Randomized Controlled Franconian Osteopenia and Sarcopenia Trial (FrOST). J. Bone Miner. Res. 2020, 35, 1634–1644. [Google Scholar] [CrossRef]
- Kemmler, W.; Schoene, D.; Kohl, M.; von Stengel, S. Changes in body composition and cardiometabolic health after de-training in older men with osteosarcopenia: 6-month follow-up of the randomized controlled franconian osteopenia and sar-copenia trial (FrOST) study. Clin. Interv. Aging 2021, 16, 571. [Google Scholar] [CrossRef]
- Kirk, B.; Miller, S.; Zanker, J.; Duque, G. A clinical guide to the pathophysiology, diagnosis and treatment of osteosarcopenia. Maturitas 2020, 140, 27–33. [Google Scholar] [CrossRef]
- Bonnet, N.; Bourgoin, L.; Biver, E.; Douni, E.; Ferrari, S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J. Clin. Investig. 2019, 129, 3214–3223. [Google Scholar] [CrossRef] [PubMed]
- Phu, S.; Hassan, E.B.; Vogrin, S.; Kirk, B.; Duque, G. Effect of Denosumab on Falls, Muscle Strength, and Function in Community-Dwelling Older Adults. J. Am. Geriatr. Soc. 2019, 67, 2660–2661. [Google Scholar] [CrossRef] [Green Version]
- Klein, G.L. Pharmacologic Treatments to Preserve Bone and Muscle Mass in Osteosarcopenia. Curr. Osteoporos. Rep. 2020, 18, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Currow, D.C.; Maddocks, M.; Cella, D.; Muscaritoli, M. Efficacy of Anamorelin, a Novel Non-Peptide Ghrelin Analogue, in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC) and Cachexia—Review and Expert Opinion. Int. J. Mol. Sci. 2018, 19, 3471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClung, M.R. Denosumab for the treatment of osteoporosis. Osteoporos Sarcopenia 2017, 8–17, 74. [Google Scholar] [CrossRef] [PubMed]
- Bilezikian, J.; Lin, C.; Brown, J.; Wang, A.; Yin, X.; Ebeling, P.; Fahrleitner-Pammer, A.; Franek, E.; Gilchrist, N.; Miller, P.; et al. Long-term denosumab treatment restores cortical bone loss and reduces fracture risk at the forearm and humerus: Analyses from the FREEDOM Extension cross-over group. Osteoporos. Int. 2019, 30, 1855–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belchior, G.F.; Kirk, B.; Da Silva, E.A.P.; Duque, G. Osteosarcopenia: Beyond age-related muscle and bone loss. Eur. Geriatr. Med. 2020, 11, 715–724. [Google Scholar] [CrossRef]
Author, Year [Ref] | Sample Size Age and Sex | Type of Intervention | % of OS | Relevant Results |
---|---|---|---|---|
Gomez, 2018 [71] | 106 (68% W) 78 ± 8 yrs | Multifactorial interventions: e.g., vitamin D/calcium supplement, osteoporosis medications, supervised group exercise programs; protein supplement, etc | 53% | At 6-month follow-up, the multidisciplinary interventions reduce falls by more than 80% and 50% fracture risk. In addition, 65% of patients had a reduced risk for falling and a 57% reduction in 10-year fracture probability. |
Lichtenberg, 2019 [78] | 43 M (21 EG group; 22 Inactive Control group CG 73 to 91 yrs. | FROST Study 18 months trial High-intensity dynamic resistance exercise (HIT-DRT), whey protein supplement (up to 1.5 g/kg/day in HIT-DRT and 1.2 g/kg/day in CG); vitamin D supplements (up to 800 IE/day). | 100% | The results show a significant effect of the exercise intervention on the sarcopenia Z-score (p < 0.001), a significant increase in the skeletal muscle mass index (SMI) (p < 0.001), and in handgrip strength (p < 0.001) in the HI-RT group and a significant worsening on the sarcopenia Z score in the CG group (p = 0.012). |
Kemmler, 2020 [79] | 43 M (21 EG group; 22 Inactive Control group CG 73 to 91 yrs. | FROST Study 18 months high-intensity dynamic resistance exercise (HIT-DRT), whey protein supplement (up to 1.5 g/kg/day in HIT-DRT and 1.2 g/kg/day in CG); vitamin D supplements (up to 800 IE/day). | 100% | After 12 months the lumbar spine (LS) BMD was maintained in the EG and decreased significantly in the CG (p < 0.001; standardized mean difference (SMD) = 0.90); SMI increased significantly in the EG and decreased significantly in the CG (p < 0.001; SMD = 1.95). Changes in maximum hip−/leg extensor strength were much more prominent (p < 0.001; SMD = 1.92) in the EG. |
Kemmler, 2021 [80] | 43 M (21 EG group; 22 Inactive Control group CG 73 to 91 yrs. | FROST Study 6 months of detraining after 18 months of intervention. | 100% | During detraining, the EG group lost approximately one-third of the HIT-DRT-induced gain and showed a significantly (p = 0.001) higher reduction in muscle quality than the CG. The negative effect was only significant for skeletal muscle mass index and hip/leg extensor strength (p = 0.002 and p = 0.013), but not for lumbar spine BMD (p = 0.068), total hip BMD (p = 0.069), handgrip strength (p = 0.066) and gait velocity (p = 0.067). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polito, A.; Barnaba, L.; Ciarapica, D.; Azzini, E. Osteosarcopenia: A Narrative Review on Clinical Studies. Int. J. Mol. Sci. 2022, 23, 5591. https://doi.org/10.3390/ijms23105591
Polito A, Barnaba L, Ciarapica D, Azzini E. Osteosarcopenia: A Narrative Review on Clinical Studies. International Journal of Molecular Sciences. 2022; 23(10):5591. https://doi.org/10.3390/ijms23105591
Chicago/Turabian StylePolito, Angela, Lorenzo Barnaba, Donatella Ciarapica, and Elena Azzini. 2022. "Osteosarcopenia: A Narrative Review on Clinical Studies" International Journal of Molecular Sciences 23, no. 10: 5591. https://doi.org/10.3390/ijms23105591
APA StylePolito, A., Barnaba, L., Ciarapica, D., & Azzini, E. (2022). Osteosarcopenia: A Narrative Review on Clinical Studies. International Journal of Molecular Sciences, 23(10), 5591. https://doi.org/10.3390/ijms23105591