A CRISPR/Cas9-Based System with Controllable Auto-Excision Feature Serving Cisgenic Plant Breeding and Beyond
Abstract
:1. Introduction
2. Results
2.1. Design of the CRISPR/Cas9-Based Vectors with Controllable Auto-Excision Feature
2.2. Undesired Genetic Traces Removed in Cisgenic Arabidopsis
2.3. Characterization of Targeted Editing Controlled by Different IPs and HTs
2.4. No Off-Target Mutations Detected
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Construction of Vectors
4.3. Transformation and Identification of Transformants
4.4. Post-Transformation Tests with PCR, ddPCR, and Confocal Fluorescence Microscopy
4.5. Characterization of Editing Activity Controlled by IPs and HTs
4.6. Sanger Sequencing
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance; |
AP1 | Promoter of Arabidopsis gene APETALA1 (flower meristem identity); |
BLAST | Basic local alignment search tool; |
CLV3 | Promoter of Arabidopsis gene CLAVATA3 (early stem cell identity); |
CN | Copy number; |
CRISPR | Clustered regularly interspaced short palindromic repeats; |
Cas | CRISPR-associated protein; |
Cas9p | Cas9 gene modified with plant-optimized codons; |
Cre-lox | site-directed recombination system including Cre recombinase and Lox sequence; |
ddPCR | Digital droplet polymerase chain reaction; |
DSB | Double-strand break; |
eGFP | Enhanced green fluorescent protein; |
EMS | embedded multi-clonal sequence; |
GM | Genetically modified; |
FLP-FRT | site-directed recombination system including recombinase flippase (FLP) and flippase recognition target (FRT); |
GOI | gene-of-interest; |
HDR | Homology-directed repair; |
Hsp | Heat shock protein; |
HT | Heat treatment; |
IP | inducible promoter; |
NHEJ | Non-homologous end joining; |
PAM | protospacer-adjacent motif; |
PCR | Polymerase chain reaction; |
PI | propidium iodine; |
RE | Restriction enzyme; |
RT-qPCR | Quantitative reverse transcription polymerase chain reaction; |
SCI | Single copy insert; |
sgRNA | single guide RNA; |
SMG | Selection marker gene; |
TALENs | Transcription activator-like effector nuclease; |
T-DNA | transferred DNA; |
ZFNs | Zinc finger nucleases |
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant. Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef] [PubMed]
- ISAAA: GM Approval Database. 2022. Available online: https://www.isaaa.org/gmapprovaldatabase/default.asp/ (accessed on 22 March 2022).
- Kumar, K.; Gambhir, G.; Dass, A.; Tripathi, A.K.; Singh, A.; Jha, A.K.; Yadava, P.; Choudhary, M.; Rakshit, S. Genetically modified crops: Current status and future prospects. Planta 2020, 251, 91. [Google Scholar] [CrossRef] [PubMed]
- Lusser, M.; Parisi, C.; Plan, D.; Rodriguez-Cerezo, E. Deployment of new biotechnologies in plant breeding. Nat. Biotechnol. 2012, 30, 231–239. [Google Scholar] [CrossRef]
- Holme, I.B.; Wendt, T.; Holm, P.B. Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol. J. 2013, 11, 395–407. [Google Scholar] [CrossRef]
- Schouten, H.J.; Krens, F.A.; Jacobsen, E. Cisgenic plants are similar to traditionally bred plants: International regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep. 2006, 7, 750–753. [Google Scholar] [CrossRef] [Green Version]
- De Vetten, N.; Wolters, A.M.; Raemakers, K.; van der Meer, I.; ter Stege, R.; Heeres, E.; Heeres, P.; Visser, R. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat. Biotechnol. 2003, 21, 439–442. [Google Scholar] [CrossRef]
- Holme, I.B.; Brinch-Pedersen, H.; Lange, M.; Holm, P.B. Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep. 2006, 25, 1325–1335. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Xie, C.; Qiu, H. Production of selectable marker-free transgenic tobacco plants using a non-selection approach: Chimerism or escape, transgene inheritance, and efficiency. Plant Cell Rep. 2009, 28, 373–386. [Google Scholar] [CrossRef]
- Yau, Y.-Y.; Stewart, C.N. Less is more: Strategies to remove marker genes from transgenic plants. BMC Biotechnol. 2013, 13, 36. [Google Scholar] [CrossRef] [Green Version]
- De Block, M.; Debrouwer, D. Two T-DNA’s co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor. Appl. Genet. 1991, 82, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Komari, T.; Hiei, Y.; Saito, Y.; Murai, N.; Kumashiro, T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 1996, 10, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Prakash, N.S.; Bhojaraja, R.; Shivbachan, S.; Priya, G.H.; Nagraj, T.; Prasad, V.; Babu, V.S.; Jayaprakash, T.; Dasgupta, S.; Spencer, T.M. Marker-free transgenic corn plant production through co-bombardment. Plant Cell Rep. 2009, 28, 1655. [Google Scholar] [CrossRef]
- Petolino, J.F.; Worden, A.; Curlee, K.; Connell, J.; Strange Moynahan, T.L.; Larsen, C.; Russell, S. Zinc finger nuclease-mediated transgene deletion. Plant Mol. Biol. 2010, 73, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, B.; Spalding, M.H.; Weeks, D.P.; Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 2012, 30, 390–392. [Google Scholar] [CrossRef]
- Sreekala, C.; Wu, L.; Gu, K.; Wang, D.; Tian, D.; Yin, Z. Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep. 2005, 24, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.-J.; Cho, H.-S.; Lim, S.-H.; Shin, K.-S.; Lee, S.-M.; Lee, K.-J.; Kim, D.-H.; Cho, Y.-G. Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system. Transgenic Res. 2009, 18, 455–465. [Google Scholar] [CrossRef]
- Dalla Costa, L.; Piazza, S.; Campa, M.; Flachowsky, H.; Hanke, M.-V.; Malnoy, M. Efficient heat-shock removal of the selectable marker gene in genetically modified grapevine. Plant Cell Tissue Organ Cult. 2016, 124, 471–481. [Google Scholar] [CrossRef]
- Pacher, M.; Schmidt-Puchta, W.; Puchta, H. Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 2007, 175, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, C.; Pacher, M.; Puchta, H. Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system. Plant J. 2019, 98, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J.-L. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Nekrasov, V.; Staskawicz, B.; Weigel, D.; Jones, J.D.; Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013, 31, 691–693. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [Green Version]
- Symington, L.S.; Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2011, 45, 247–271. [Google Scholar] [CrossRef]
- Li, J.-F.; Norville, J.E.; Aach, J.; McCormack, M.; Zhang, D.; Bush, J.; Church, G.M.; Sheen, J. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 2013, 31, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471, 602–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedenheft, B.; Sternberg, S.H.; Doudna, J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012, 482, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, Q.; Zhu, Q.; Liu, W.; Chen, Y.; Qiu, R.; Wang, B.; Yang, Z.; Li, H.; Lin, Y. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 2015, 8, 1274–1284. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.G. CRISPR/Cas9-based multiplex genome editing in monocot and dicot plants. Curr. Protoc. Mol. Biol. 2016, 115, 31–36. [Google Scholar] [CrossRef]
- Van Ex, F.; Verweire, D.; Claeys, M.; Depicker, A.; Angenon, G. Evaluation of seven promoters to achieve germline directed Cre-lox recombination in Arabidopsis thaliana. Plant Cell Rep. 2009, 28, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Naito, S.; Komeda, Y. The Arabidopsis HSP18. 2 promoter/GUS gene fusion in transgenic Arabidopsis plants: A powerful tool for the isolation of regulatory mutants of the heat-shock response. Plant J. 1992, 2, 751–761. [Google Scholar] [CrossRef]
- BLAST: Basic local Alignment Search Tool. 2018. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi/ (accessed on 22 May 2018).
- CRISPR-GE: A Toolkit for CRISPR-Based Genome Editing. 2018. Available online: http://skl.scau.edu.cn/ (accessed on 30 May 2018).
- LeBlanc, C.; Zhang, F.; Mendez, J.; Lozano, Y.; Chatpar, K.; Irish, V.F.; Jacob, Y. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J. 2018, 93, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liang, Z.; Zong, Y.; Wang, Y.; Liu, J.; Chen, K.; Qiu, J.-L.; Gao, C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 2016, 7, 12617. [Google Scholar] [CrossRef] [Green Version]
- Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016, 34, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Ma, X.; Zhu, Q.; Zeng, D.; Li, G.; Liu, Y.-G. CRISPR-GE: A convenient software toolkit for CRISPR-based genome editing. Mol. Plant 2017, 10, 1246–1249. [Google Scholar] [CrossRef] [Green Version]
- Rommens, C.M. All-native DNA transformation: A new approach to plant genetic engineering. Trends Plant Sci. 2004, 9, 457–464. [Google Scholar] [CrossRef]
- Viswanath, V.; Strauss, S.H. Modifying plant growth the cisgenic way. ISB News Rep. 2010, 2010, 1–4. [Google Scholar]
- Hou, H.; Atlihan, N.; Lu, Z.-X. New biotechnology enhances the application of cisgenesis in plant breeding. Front. Plant Sci. 2014, 5, 389. [Google Scholar] [CrossRef] [Green Version]
- Davison, J.; Ammann, K. New GMO regulations for old: Determining a new future for EU crop biotechnology. GM Crops Food 2017, 8, 13–34. [Google Scholar] [CrossRef] [Green Version]
- Val Giddings, L. ‘Cisgenic’ as a product designation. Nat. Biotechnol. 2006, 24, 1327–1329. [Google Scholar] [CrossRef] [PubMed]
- De Cock Buning, T.; van Bueren, E.T.L.; Haring, M.A.; de Vriend, H.C.; Struik, P.C. ‘Cisgenic’ as a product designation. Nat. Biotechnol. 2006, 24, 1329–1331. [Google Scholar] [CrossRef] [PubMed]
- Schouten, H.; Krens, F.; Jacobsen, E. Reply to ‘Cisgenic’ as a product designation. Nat. Biotechnol. 2006, 24, 1331–1333. [Google Scholar] [CrossRef]
- EFSA Panel on Genetically Modified Organisms. Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis. EFSA J. 2012, 10, 2561. [Google Scholar] [CrossRef] [Green Version]
- Lusk, J.L.; Rozan, A. Consumer acceptance of ingenic foods. Biotechnol. J. 2006, 1, 1433–1434. [Google Scholar] [CrossRef]
- Gaskell, G.; Stares, S.; Allansdottir, A.; Allum, N.; Castro, P.; Esmer, Y.; Fischler, C.; Jackson, J.; Kronberger, N.; Hampel, J. Europeans and Biotechnology in 2010. Winds of Change? European Commission: Brussels, Belgium, 2010. [Google Scholar] [CrossRef]
- Gaskell, G.; Allansdottir, A.; Allum, N.; Castro, P.; Esmer, Y.; Fischler, C.; Jackson, J.; Kronberger, N.; Hampel, J.; Mejlgaard, N. The 2010 Eurobarometer on the life sciences. Nat. Biotechnol. 2011, 29, 113–114. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C.; Liu, W.; Gao, W.; Liu, C.; Song, G.; Li, W.-X.; Mao, L.; Chen, B.; Xu, Y. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci. Rep. 2016, 6, 23890. [Google Scholar] [CrossRef]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [Green Version]
T1 Lines | T2 Plant Counts | ||||
---|---|---|---|---|---|
Copy Number of eGFP (by ddPCR) | Gene Presence (by PCR) | ||||
2 CN | 1 CN | 0 CN | Bar | Cas9p | |
4–7 | 12 | 25 | 11 | 0 | 0 |
4–14 | 10 | 26 | 12 | 1 | 1 |
4–17 | 12 | 23 | 13 | 0 | 0 |
Chromosome | Position | Sequence 1 | Off-Target Score 2 | Gene | Number of Mutations |
---|---|---|---|---|---|
1 | 22260438 | CACCATCGACACCAAGTAAA ATG | 0.006 | AT1G60410 | 0 |
1 | 3107483 | GACCATCAGCACCAAGAGAC AGC | 0.005 | AT1G09590 | 0 |
1 | 3136508 | GACCATCAGCACCAAGAGAC AGC | 0.005 | AT1G09690 | 0 |
3 | 1155003 | CAACAGCGACACCTTGTGAC AGC | 0.002 | AT3G04350 | 0 |
2 | 12697016 | GACCAACCACACCTATTGCC AGC | 0 | AT2G29690 | 0 |
5 | 24455623 | GAGCATCGACACCGCTTGAC AAG | 0 | AT5G60790 | 0 |
3 | 22672488 | GAACATTGACAGCTACTCAC AGG | 0 | AT3G61250 | 0 |
2 | 13196454 | GACCTTCTACAGCTATTGAA AGG | 0 | AT2G31010 | 0 |
5 | 22363439 | GACCATCAAGAGCTTTTGAC AGG | 0 | AT5G55100 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© Her Majesty the Queen in Right of Canada 2022, as represented by the Minister of Agriculture and Agri-Food Canada. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Yu, F. A CRISPR/Cas9-Based System with Controllable Auto-Excision Feature Serving Cisgenic Plant Breeding and Beyond. Int. J. Mol. Sci. 2022, 23, 5597. https://doi.org/10.3390/ijms23105597
Hu H, Yu F. A CRISPR/Cas9-Based System with Controllable Auto-Excision Feature Serving Cisgenic Plant Breeding and Beyond. International Journal of Molecular Sciences. 2022; 23(10):5597. https://doi.org/10.3390/ijms23105597
Chicago/Turabian StyleHu, Hao, and Fengqun Yu. 2022. "A CRISPR/Cas9-Based System with Controllable Auto-Excision Feature Serving Cisgenic Plant Breeding and Beyond" International Journal of Molecular Sciences 23, no. 10: 5597. https://doi.org/10.3390/ijms23105597
APA StyleHu, H., & Yu, F. (2022). A CRISPR/Cas9-Based System with Controllable Auto-Excision Feature Serving Cisgenic Plant Breeding and Beyond. International Journal of Molecular Sciences, 23(10), 5597. https://doi.org/10.3390/ijms23105597