Cutaneous Melanomas: A Single Center Experience on the Usage of Immunohistochemistry Applied for the Diagnosis
Abstract
:1. Introduction
2. Diagnosis
2.1. Histological Exam
2.2. Immunohistochemistry
Immunohistochemical Markers | Main Application Fields for the Diagnosis of cM |
---|---|
S100 | (1) diagnosis of metastasis of unknown primary tumor; |
(2) diagnosis of primary cutaneous tumor with undifferentiated morphology; | |
(3) diagnosis of desmoplastic cM; | |
(4) identification of MM and NN in SLNB; | |
SOX10 | (1) diagnosis of metastasis of unknown primary tumor; |
(2) diagnosis of primary cutaneous tumor with undifferentiated morphology; | |
(3) diagnosis of desmoplastic cM; | |
(4) identification of MM and NN in SLNB; | |
(5) assessment of the nuclear profile of melanocytes (useful for the grading of melanocytic dysplasia in dysplastic cN); | |
(6) correct estimation of the spread of lentiginous melanocytic proliferations; | |
(7) correct assessment of the depth of invasion (Breslow thickness); | |
(8) identification of the lympho-vascular invasion, adnexal involvement, and peri-adnexal extension in cM; | |
(9) correct estimation of the intra-epithelial pagetoid spreading; | |
(10) differential diagnosis between scar and desmoplastic cM (especially in the excisional enlargement of desmoplastic cM); | |
HMB-45 | (1) diagnosis of metastasis of unknown primary tumor; |
(2) diagnosis of primary cutaneous tumor with undifferentiated morphology; | |
(3) identification of MM (and differential diagnosis with NN) in SLNB; | |
(4) evaluation of the gradient of melanocytic maturation in cN (present) and cM (absent and/or altered); | |
(5) evaluation of the junctional component of cN and cM (useful for the grading of melanocytic dysplasia in dysplastic cN); | |
(6) distinction between the dermal component of cN and cM (mainly nevoid cM); | |
Melan A/MART-1 | (1) diagnosis of metastasis of unknown primary tumor; |
(2) diagnosis of primary cutaneous tumor with undifferentiated morphology; | |
(3) identification of MM and NN in SLNB; | |
(4) evaluation of the silhouette (symmetry/asymmetry) of cN and cM; | |
(5) correct estimation of the depth of invasion in cM; | |
(6) identification of the lympho-vascular invasion, adnexal involvement, and peri-adnexal extension in cM; | |
Ki67 | (1) evaluation of the proliferation index (absolute value); |
(2) evaluation of the “dermal hot-spot” </≥5%, unusual/deep/asymmetrical staining pattern of the dermal component, Ki67(+) deep dermal cells with pleomorphism atypical nuclei, and Ki67(+) intraepithelial cells exhibiting pagetoid spreading; | |
p16 | (1) evaluation of dermal and/or nodular atypical melanocytic lesions/melanocytomas; |
(2) identification of a more aggressive phenotype acquired by the primary cM; | |
(3) identification of MM (and differential diagnosis with NN) in SLNB; | |
p21 | (1) evaluation of Spitz melanocytic lesions (especially acral); |
(2) evaluation of mucosal melanocytic lesions; | |
p53 | (1) differential diagnosis between neurofibroma-like desmoplastic cM and neurofibroma; |
PRAME | (1) evaluation of ambiguous melanocytic lesions (able to distinguish cM (PRAME+) from cN (PRAME-), with a high concordance rate via cytogenetic tests); |
(2) differential diagnosis between NN and MM in selected difficult cases; | |
(3) evaluation of surgical resection margins in lentigo maligna; | |
(4) distinction between the dermal “nevoid” component of nevoid cM and dermal cN in nevus-associated cM; | |
The introduction of PRAME for the diagnosis of melanocytic pathology is recent, and the fields of potential application are continuously evolving, as well as technical issues (cut-offs, interpretation of intermediate values, and discordant cases with the molecular tests); | |
BRAF V600E, c-Kit/CD117, ALK, ROS1, pan-TRK (NTRK1, NTRK2, NTRK3), RET, MET, β-catenin, PRKAR1A, BAP-1, NF1, and IDH1 | (1) identification of specific histological entities, characterized by specific molecular alterations (also see Table 2); |
(2) identification of potential therapeutic targets and increase of therapeutic choices; | |
HMB-45/Ki67 and MART-1/Ki67 | (1) correct assessment of Ki67 index in melanocytic lesions, almost exclusively junctional/intraepithelial; |
(2) correct assessment of Ki67 index in melanocytic lesions with a high inflammatory infiltrate; | |
CD34/SOX10 | (1) Identification of the lympho-vascular invasion in cM; |
HMB-45/PRAME and MART-1/PRAME | (1) correct assessment of PRAME score in melanocytic lesions, almost exclusively junctional/intraepithelial; |
(2) correct assessment of PRAME score in melanocytic lesions with a high inflammatory infiltrate; | |
(3) differential diagnosis between NN and MM in selected difficult cases; | |
(4) diagnosis of metastasis of unknown primary tumor (especially with limited available histological material); | |
(5) diagnosis of primary cutaneous tumor with undifferentiated morphology (especially with limited available histological material); |
Immunohistochemical Markers | Histological Entities Related to Their Over- and/or Aberrant Expression |
---|---|
BRAF V600E | (1) melanocytic lesions in intermittently sun-exposed skin (superficial spreading cM, simple lentigo, conventional and/or lentiginous cN, and dysplastic cN); |
(2) deep-penetrating cN (together with β-catenin); | |
(3) BAP1-inactivated melanocytic lesions (together with BAP1); | |
(4) PEM (together with PRKAR1A); | |
(5) metastatic cM; | |
(6) more rarely other melanocytic lesions [naevoid cM, nodular cM, and acral melanocytic lesions (especially cM), etc.]; | |
c-Kit/CD117 | (1) acral melanocytic lesions (especially cM); |
(2) lentigo maligna; | |
ALK, ROS1, TRK (NTRK1, NTRK2, NTRK3; all of them identified by immunohistochemistry for pan-TRK), RET and MET | (1) Spitz lesions (Spitz nevus, atypical Spitz tumor, and Spitz melanoma), including Reed cN; |
(2) acral melanocytic lesions (especially cM); | |
(3) more rarely other melanocytic lesions (nodular cM, superficial spreading cM, etc.); | |
PRKAR1A | (1) PEM (together with BRAF V600E); |
BAP1 | (1) BAP1-inactivated melanocytic lesions (together with BRAF V600E); |
(2) cM arising in blue cN and atypical cellular blue tumor; | |
β-catenin | (1) deep-penetrating cN (together with BRAF V600E); |
(2) rare cases of cM with a “deep-penetrating like silhouette”; | |
NF1 | (1) lentigo maligna; |
(2) desmoplastic cM; | |
(3) acral melanocytic lesions (especially cM); | |
IDH1 | recently introduced category of melanocytoma; |
2.2.1. Melanocytic Differentiation Markers
S100
SOX10
HMB-45
Melan A/MART-1
2.2.2. Markers Useful for the Differential Diagnosis between cN and cM
Ki67
p16, p21 and p53
PRAME
2.2.3. Markers Useful for the Identification of Specific Histological Subtypes of cN and cM (BRAF V600E, c-Kit/CD117, ROS1, ALK, pan-TRK, BAP-1, β-Catenin, PRKAR1A, NF1, and IDH1)
2.2.4. Double Stains (DS) (HMB-45/Ki67, MART-1/Ki67, CD34/SOX10, HMB-45/PRAME, and MART-1/PRAME)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Regad, T. Molecular and cellular pathogenesis of melanoma initiation and progression. Cell. Mol. Life Sci. 2013, 70, 4055–4065. [Google Scholar] [CrossRef]
- Strashilov, S.; Yordanov, A. Aetiology and Pathogenesis of Cutaneous Melanoma: Current Concepts and Advances. Int. J. Mol. Sci. 2021, 22, 6395. [Google Scholar] [CrossRef]
- Karimkhani, C.; Green, A.; Nijsten, T.; Weinstock, M.; Dellavalle, R.; Naghavi, M.; Fitzmaurice, C. The global burden of melanoma: Results from the Global Burden of Disease Study. Br. J. Dermatol. 2017, 177, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Carr, S.; Smith, C.; Wernberg, J. Epidemiology and Risk Factors of Melanoma. Surg. Clin. N. Am. 2020, 100, 1–12. [Google Scholar]
- Massi, G.; LeBoit, P.E. Histological Diagnosis of Nevi and Melanoma; Steinfopgg Verlag Darmstadt: Berlin, Germany, 2014. [Google Scholar]
- Elder, D.E.; Massi, D.; Scolyer, R.A.; Willemze, R. (Eds.) World Health Organization Classification of Skin Tumours; IARC Press: Lyon, France, 2018. [Google Scholar]
- Elder, D.E.; Bastian, B.C.; Cree, I.A.; Massi, D.; Scolyer, R.A. The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway. Arch. Pathol. Lab. Med. 2020, 144, 500–522. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, R.; Recule, F. Unusual Clinical Presentations of Malignant Melanoma: A Review of Clinical and Histologic Features with Special Emphasis on Dermatoscopic Findings. Am. J. Clin. Dermatol. 2018, 19, 15–23. [Google Scholar]
- Zarabi, S.K.; Azzato, E.M.; Tu, Z.J.; Ni, Y.; Billings, S.D.; Arbesman, J.; Funchain, P.; Gastman, B.; Farkas, D.H.; Ko, J.S. Targeted next generation sequencing (NGS) to classify melanocytic neoplasms. J. Cutan. Pathol. 2020, 47, 691–704. [Google Scholar] [CrossRef]
- Gaiser, T.; Kutzner, H.; Palmedo, G.; Siegelin, M.D.; Wiesner, T.; Bruckner, T.; Hartschuh, W.; Enk, A.H.; Becker, M.R. Classifying ambiguous melanocytic lesions with FISH and correlation with clinical long-term follow up. Mod. Pathol. 2010, 23, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Isobe, T.; Okuyama, T. The amino-acid sequence of S-100 protein (PAP I-b protein) and its relation to the calcium-binding proteins. Eur. J. Biochem. 1978, 89, 379–388. [Google Scholar]
- Isobe, T.; Okuyama, T. The amino-acid sequence of the alpha subunit in bovine brain S-100a protein. Eur. J. Biochem. 1981, 116, 79–86. [Google Scholar]
- Heizmann, C.W.; Fritz, G.; Schäfer, B.W. S100 proteins: Structure, functions and pathology. Front. Biosci. 2002, 7, d1356–d1368. [Google Scholar]
- Zimmer, D.B.; Wright Sadosky, P.; Weber, D.J. Molecular mechanisms of S100-target protein interactions. Microsc. Res. Tech. 2003, 60, 552–559. [Google Scholar] [CrossRef]
- Heizmann, C.W. S100B protein in clinical diagnostics: Assay specificity. Clin. Chem. 2004, 50, 249–251. [Google Scholar] [CrossRef] [Green Version]
- Tímár, J.; Udvarhelyi, N.; Bánfalvi, T.; Gilde, K.; Orosz, Z. Accuracy of the determination of S100B protein expression in malignant melanoma using polyclonal or monoclonal antibodies. Histopathology 2004, 44, 180–184. [Google Scholar] [CrossRef]
- Gaynor, R.; Herschman, H.R.; Irie, R.; Jones, P.; Morton, D.; Cochran, A. S100 protein: A marker for human malignant melanomas? Lancet 1981, 1, 869–871. [Google Scholar] [CrossRef]
- Palazzo, J.; Duray, P.H. Typical, dysplastic, congenital, and Spitz nevi: A comparative immunohistochemical study. Hum. Pathol. 1989, 20, 341–346. [Google Scholar] [CrossRef]
- Yaziji, H.; Gown, A.M. Immunohistochemical markers of melanocytic tumors. Int. J. Surg. Pathol. 2003, 11, 11–15. [Google Scholar] [CrossRef]
- Busam, K.J.; Iversen, K.; Coplan, K.C.; Jungbluth, A.A. Analysis of microphthalmia transcription factor expression in normal tissues and tumors, and comparison of its expression with S-100 protein, gp100, and tyrosinase in desmoplastic malignant melanoma. Am. J. Surg. Pathol. 2001, 25, 197–204. [Google Scholar] [CrossRef]
- Nonaka, D.; Chiriboga, L.; Rubin, B.P. Differential expression of S100 protein subtypes in malignant melanoma, and benign and malignant peripheral nerve sheath tumors. J. Cutan. Pathol. 2008, 35, 1014–1019. [Google Scholar] [CrossRef]
- Coindre, J.M.; de Mascarel, A.; Trojani, M.; de Mascarel, I.; Pages, A. Immunohistochemical study of rhabdomyosarcoma. Unexpected staining with S100 protein and cytokeratin. J. Pathol. 1988, 155, 127–132. [Google Scholar] [CrossRef]
- Redd, L.; Schmelz, M.; Burack, W.R.; Cook, J.R.; Day, A.W.; Rimsza, L. Langerhans Cell Histiocytosis Shows Distinct Cytoplasmic Expression of Major Histocompatibility Class II Antigens. J. Hematop. 2016, 9, 107–112. [Google Scholar] [CrossRef]
- Meyer, M.T.; Watermann, C.; Dreyer, T.; Ergün, S.; Karnati, S. 2021 Update on Diagnostic Markers and Translocation in Salivary Gland Tumors. Int. J. Mol. Sci. 2021, 22, 6771. [Google Scholar] [CrossRef]
- Chen, H.; Xu, C.; Jin, O.; Liu, Z. S100 protein family in human cancer. Am. J. Cancer Res. 2014, 4, 89–115. [Google Scholar]
- Cook, M.G.; Massi, D.; Szumera-Ciećkiewicz, A.; Joost Van den Oord, J.; Blokx, W.; van Kempen, L.C.; Balamurugan, T.; Bosisio, F.; Koljenović, S.; Portelli, F.; et al. An updated European Organisation for Research and Treatment of Cancer (EORTC) protocol for pathological evaluation of sentinel lymph nodes for melanoma. Eur. J. Cancer 2019, 114, 1–7. [Google Scholar] [CrossRef]
- Szumera-Ciećkiewicz, A.; Bosisio, F.; Teterycz, P.; Antoranz, A.; Delogu, F.; Koljenović, S.; van de Wiel, B.A.; Blokx, W.; van Kempen, L.C.; Rutkowski, P.; et al. SOX10 is as specific as S100 protein in detecting metastases of melanoma in lymph nodes and is recommended for sentinel lymph node assessment. Eur. J. Cancer 2020, 137, 175–182. [Google Scholar] [CrossRef]
- Potterf, S.B.; Mollaaghababa, R.; Hou, L.; Southard-Smith, E.M.; Hornyak, T.J.; Arnheiter, H.; Pavan, W.J. Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase. Dev. Biol. 2001, 237, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Kelsh, R.N. Sorting out Sox10 functions in neural crest development. Bioessays 2006, 28, 788–798. [Google Scholar] [CrossRef]
- Agnarsdóttir, M.; Sooman, L.; Bolander, A.; Strömberg, S.; Rexhepaj, E.; Bergqvist, M.; Ponten, F.; Gallagher, W.; Lennartsson, J.; Ekman, S.; et al. SOX10 expression in superficial spreading and nodular malignant melanomas. Melanoma Res. 2010, 20, 468–478. [Google Scholar] [CrossRef]
- Jeonghyun, S.; Vincent, J.G.; Cuda, J.D.; Xu, H.; Kang, S.; Kim, J.; Taube, J.M. Sox10 is expressed in primary melanocytic neoplasms of various histologies but not in fibrohistiocytic proliferations and histiocytosis. J. Am. Acad. Dermatol. 2012, 67, 717–726. [Google Scholar]
- Nonaka, D.; Chiriboga, L.; Rubin, B.P. Sox10: A pan-schwannian and melanocytic marker. Am. J. Surg. Pathol. 2008, 32, 1291–1298. [Google Scholar] [CrossRef]
- Jennings, C.; Kim, J. Identification of nodal metastases in melanoma using sox-10. Am. J. Dermatopathol. 2011, 33, 474–482. [Google Scholar] [CrossRef]
- Karamchandani, J.R.; Nielsen, T.O.; van de Rijn, M.; West, R.B. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl. Immunohistochem. Mol. Morphol. 2012, 20, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Kang, H.J.; Yoo, C.W.; Park, W.S.; Ryu, J.S.; Jung, Y.S.; Choi, S.W.; Park, J.Y.; Han, N. PLAG1, SOX10, and Myb Expression in Benign and Malignant Salivary Gland Neoplasms. J. Pathol. Transl. Med. 2019, 53, 23–30. [Google Scholar] [CrossRef]
- Ramos-Herberth, F.I.; Karamchandani, J.; Kim, J.; Dadras, S.S. SOX10 immunostaining distinguishes desmoplastic melanoma from excision scar. J. Cutan. Pathol. 2010, 37, 944–952. [Google Scholar] [CrossRef]
- Donaldson, M.R.; Weber, L.A. SOX10 commonly stains scar in Mohs sections. Dematol. Online J. 2020, 26. [Google Scholar] [CrossRef]
- Behrens, E.L.; Boothe, W.; D’Silva, N.; Walterscheid, B.; Watkins, P.; Tarbox, M. SOX-10 staining in dermal scars. J. Cutan. Pathol. 2019, 46, 579–585. [Google Scholar] [CrossRef]
- Gown, A.M.; Vogel, A.M.; Hoak, D.; Gough, F.; McNutt, M.A. Monoclonal antibodies specific for melanocytic tumors distinguish subpopulations of melanocytes. Am. J. Pathol. 1986, 123, 195–203. [Google Scholar]
- Bacchi, C.E.; Bonetti, F.; Pea, M.; Martignoni, G.; Gown, A.M. HMB-45: A review. Appl. Immunohistochem. 1996, 4, 73–85. [Google Scholar]
- Orchard, G.E. Comparison of immunohistochemical labelling of melanocyte differentiation antibodies melan-A, tyrosinase and HMB 45 with NKIC3 and S100 protein in the evaluation of benign naevi and malignant melanoma. Histochem. J. 2000, 32, 475–481. [Google Scholar] [CrossRef]
- Skelton, H.G.; Smith, K.J.; Barrett, T.L.; Lupton, G.P.; Graham, J.H. HMB-45 staining in benign and malignant melanocytic lesions. A reflection of cellular activation. Am. J. Dermatopathol. 1991, 13, 543–550. [Google Scholar] [CrossRef]
- el-Naggar, A.K.; Ordóñez, N.G.; Sara, A.; McLemore, D.; Batsakis, J.G. Clear cell sarcomas and metastatic soft tissue melanomas. A flow cytometric comparison and prognostic implications. Cancer 1991, 67, 2173–2179. [Google Scholar] [CrossRef]
- Tazelaar, H.D.; Batts, K.P.; Srigley, J.R. Primary extrapulmonary sugar tumor (PEST): A report of four cases. Mod. Pathol. 2001, 14, 615–622. [Google Scholar] [CrossRef] [Green Version]
- Vang, R.; Kempson, R.L. Perivascular epithelioid cell tumor (‘PEComa’) of the uterus: A subset of HMB-45-positive epithelioid mesenchymal neoplasms with an uncertain relationship to pure smooth muscle tumors. Am. J. Surg. Pathol. 2002, 26, 1–13. [Google Scholar] [CrossRef]
- Folpe, A.L.; Mentzel, T.; Lehr, H.A.; Fisher, C.; Balzer, B.L.; Weiss, S.W. Perivascular epithelioid cell neoplasms of soft tissue and gynecologic origin: A clinicopathologic study of 26 cases and review of the literature. Am. J. Surg. Pathol. 2005, 29, 1558–1575. [Google Scholar] [CrossRef]
- Ricci, C.; Chiarucci, F.; Ambrosi, F.; Balbi, T.; Corti, B.; Piccin, O.; Pasquini, E.; Foschini, M.P. Co-expression of Myoepithelial and Melanocytic Features in Carcinoma Ex Pleomorphic Adenoma. Head Neck Pathol. 2021, 15, 1385–1390. [Google Scholar] [CrossRef]
- Dean, N.R.; Brennan, J.; Haynes, J.; Goddard, C.; Cooter, R.D. Immunohistochemical labeling of normal melanocytes. Appl. Immunohistochem. Mol. Morphol. 2002, 10, 199–204. [Google Scholar] [CrossRef]
- Smoller, B.R.; McNutt, N.S.; Hsu, A. HMB-45 staining of dysplastic nevi. Support for a spectrum of progression toward melanoma. Am. J. Surg. Pathol. 1989, 13, 680–684. [Google Scholar] [CrossRef]
- Magro, C.M.; Crowson, A.N.; Mihm, M.C. Unusual variants of malignant melanoma. Mod. Pathol. 2006, 2, S41–S70. [Google Scholar] [CrossRef]
- Prieto, V.G.; Shea, C.R. Use of immunohistochemistry in melanocytic lesions. J. Cutan. Pathol. 2008, 35, 1–10. [Google Scholar] [CrossRef]
- Prieto, V.G.; Shea, C.R. Immunohistochemistry of melanocytic proliferations. Arch. Pathol. Lab. Med. 2011, 135, 853–859. [Google Scholar] [CrossRef]
- Lezcano, C.; Pulitzer, M.; Moy, A.P.; Hollmann, T.J.; Jungbluth, A.A.; Busam, K.J. Immunohistochemistry for PRAME in the Distinction of Nodal Nevi From Metastatic Melanoma. Am. J. Surg. Pathol. 2020, 44, 503–508. [Google Scholar] [CrossRef]
- See, S.H.C.; Finkelman, B.S.; Yeldandi, A.V. The diagnostic utility of PRAME and p16 in distinguishing nodal nevi from nodal metastatic melanoma. Pathol. Res. Pract. 2020, 216, 153105. [Google Scholar] [CrossRef]
- Ricci, C.; Dika, E.; Lambertini, M.; Ambrosi, F.; Chiarucci, F.; Chillotti, S.; Fiorentino, M.; Fabbri, E.; Tassone, D.; Veronesi, G.; et al. The EORTC protocol for sentinel lymph node biopsy (SLNB) reveals a high number of nodal nevi and a strong association with nevus-associated melanoma. Pathol. Res. Pract. 2022, 233, 153805. [Google Scholar] [CrossRef]
- Ricci, C.; Dika, E.; Lambertini, M.; Ambrosi, F.; Chiarucci, F.; Chillotti, S.; Fiorentino, M.; Fabbri, E.; Tassone, D.; Veronesi, G.; et al. The European Organisation for Research and Treatment of Cancer (EORTC) Protocol for Sentinel Lymph Node Biopsy (SLNB) Reveals a High Number of Nodal Nevi and a Strong Association With Nevus-associated Melanoma. Mod. Pathol. 2022, 35, 640–656. [Google Scholar]
- Fetsch, P.A.; Marincola, F.M.; Filie, A.; Hijazi, Y.M.; Kleiner, D.E.; Abati, A. Melanoma-associated antigen recognized by T cells (MART-1): The advent of a preferred immunocytochemical antibody for the diagnosis of metastatic malignant melanoma with fine-needle aspiration. Cancer 1999, 87, 37–42. [Google Scholar] [CrossRef]
- Bergman, R.; Azzam, H.; Sprecher, E.; Manov, L.; Munichor, M.; Friedman-Birnbaum, R.; Ben-Itzhak, O. A comparative immunohistochemical study of MART-1 expression in Spitz nevi, ordinary melanocytic nevi, and malignant melanomas. J. Am. Acad. Dermatol. 2000, 42, 496–500. [Google Scholar] [CrossRef]
- Sundram, U.; Harvell, J.D.; Rouse, R.V.; Natkunam, Y. Expression of the B-cell proliferation marker MUM1 by melanocytic lesions and comparison with S100, gp100 (HMB45), and MelanA. Mod. Pathol. 2003, 16, 802–810. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Chu, A.Y.; Pasha, T.L.; Elder, D.E.; Zhang, P.J. Immunoprofile of MITF, tyrosinase, melan-A, and MAGE-1 in HMB45-negative melanomas. Am. J. Surg. Pathol. 2002, 26, 82–87. [Google Scholar] [CrossRef]
- Zhao, C.; Vinh, T.N.; McManus, K.; Dabbs, D.; Barner, R.; Vang, R. Identification of the most sensitive and robust immunohistochemical markers in different categories of ovarian sex cord-stromal tumors. Am. J. Surg. Pathol. 2009, 33, 354–366. [Google Scholar] [CrossRef]
- Loy, T.S.; Phillips, R.W.; Linder, C.L. A103 immunostaining in the diagnosis of adrenal cortical tumors: An immunohistochemical study of 316 cases. Arch. Pathol. Lab. Med. 2002, 126, 170–172. [Google Scholar] [CrossRef]
- Shidham, V.B.; Qi, D.Y.; Acker, S.; Kampalath, B.; Chang, C.C.; George, V.; Komorowski, R. Evaluation of micrometastases in sentinel lymph nodes of cutaneous melanoma: Higher diagnostic accuracy with Melan-A and MART-1 compared with S-100 protein and HMB-45. Am. J. Surg. Pathol. 2001, 25, 1039–1046. [Google Scholar] [CrossRef]
- Shidham, V.B.; Qi, D.; Rao, R.N.; Acker, S.M.; Chang, C.C.; Kampalath, B.; Dawson, G.; Machhi, J.K.; Komorowski, R.A. Improved immunohistochemical evaluation of micrometastases in sentinel lymph nodes of cutaneous melanoma with ‘MCW melanoma cocktail’—a mixture of monoclonal antibodies to MART-1, Melan-A, and tyrosinase. BMC Cancer 2003, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Uxa, S.; Castillo-Binder, P.; Kohler, R.; Stangner, K.; Müller, G.A.; Engeland, K. Ki-67 gene expression. Cell Death Differ. 2021, 28, 3357–3370. [Google Scholar] [CrossRef]
- Sun, X.; Kaufman, P.D. Ki-67: More than a proliferation marker. Chromosoma 2018, 127, 175–186. [Google Scholar] [CrossRef]
- Talve, L.A.; Collan, Y.U.; Ekfors, T.O. Nuclear morphometry, immunohistochemical staining with Ki-67 antibody and mitotic index in the assessment of proliferative activity and prognosis of primary malignant melanomas of the skin. J. Cutan. Pathol. 1996, 23, 335–343. [Google Scholar] [CrossRef]
- Niemann, T.H.; Argenyi, Z.B. Immunohistochemical study of Spitz nevi and malignant melanoma with use of antibody to proliferating cell nuclear antigen. Am. J. Dermatopathol. 1993, 15, 441–445. [Google Scholar] [CrossRef]
- Tu, P.; Miyauchi, S.; Miki, Y. Age-related proliferative activity in dermal melanocytic naevi detected by PCNA ⁄ cyclin expression. Br. J. Dermatol. 1993, 129, 65–68. [Google Scholar]
- Sparrow, L.E.; English, D.R.; Taran, J.M.; Heenan, P.J. Prognostic significance of MIB-1 proliferative activity in thin melanomas and immunohistochemical analysis of MIB-1 proliferative activity in melanocytic tumors. Am. J. Dermatopathol. 1998, 20, 12–16. [Google Scholar] [CrossRef]
- Bergman, R.; Malkin, L.; Sabo, E.; Kerner, H. MIB-1 monoclonal antibody to determine proliferative activity of Ki-67 antigen as an adjunct to the histopathologic differential diagnosis of Spitz nevi. J. Am. Acad. Dermatol. 2001, 44, 500–504. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Theos, A.; Kelly, D.R.; Busam, K.; Andea, A.A. Mitotically active proliferative nodule arising in a giant congenital melanocytic nevus: A diagnostic pitfall. Am. J. Dermatopathol. 2013, 35, e16–e21. [Google Scholar] [CrossRef]
- Uguen, A.; Talagas, M.; Costa, S.; Duigou, S.; Bouvier, S.; De Braekeleer, M.; Marcorelles, P. A p16-Ki-67-HMB45 immunohistochemistry scoring system as an ancillary diagnostic tool in the diagnosis of melanoma. Diagn. Pathol. 2015, 10, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, P.S.; Riber-Hansen, R.; Steiniche, T. Immunohistochemical double stains against Ki67/MART1 and HMB45/MITF: Promising diagnostic tools in melanocytic lesions. Am. J. Dermatopathol. 2011, 33, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Terzi, M.Y.; Izmirli, M.; Gogebakan, B. The cell fate: Senescence or quiescence. Mol. Biol. Rep. 2016, 43, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Al-Khalaf, H.H.; Nallar, S.C.; Kalvakolanu, D.V.; Aboussekhra, A. p16(INK4A) enhances the transcriptional and the apoptotic functions of p53 through DNA-dependent interaction. Mol. Carcinog. 2017, 56, 1687–1702. [Google Scholar] [CrossRef]
- Reed, J.A.; Loganzo, F., Jr.; Shea, C.R.; Walker, G.J.; Flores, J.F.; Glendening, J.M.; Bogdany, J.K.; Shiel, M.J.; Haluska, F.G.; Fountain, J.W.; et al. Loss of expression of the p16/cyclin-dependent kinase inhibitor 2 tumor suppressor gene in melanocytic lesions correlates with invasive stage of tumor progression. Cancer Res. 1995, 55, 2713. [Google Scholar]
- Al Dhaybi, R.; Agoumi, M.; Gagne, I.; McCuaig, C.; Powell, J.; Kokta, V. p16 expression: A marker of differentiation between childhood malignant melanomas and Spitz nevi. J. Am. Acad. Dermatol. 2011, 65, 357–363. [Google Scholar] [CrossRef]
- George, E.; Polissar, N.L.; Wick, M. Immunohistochemical evaluation of p16INK4A, E-cadherin, and cyclin D1 expression in melanoma and Spitz tumors. Am. J. Clin. Pathol. 2010, 133, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Bartkova, J.; Lukas, J.; Guldberg, P.; Alsner, J.; Kirkin, A.F.; Zeuthen, J.; Bartek, J. The p16-cyclin D ⁄ Cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis. Cancer Res. 1996, 56, 5475–5483. [Google Scholar]
- Scurr, L.L.; McKenzie, H.A.; Becker, T.M.; Irvine, M.; Lai, K.; Mann, G.J.; Scolyer, R.A.; Kefford, R.F.; Rizos, H. Selective loss of wild-type p16(INK4a) expression in human nevi. J. Investig. Dermatol. 2011, 13, 2329–2332. [Google Scholar] [CrossRef] [Green Version]
- Straume, O.; Sviland, L.; Akslen, L. Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and prognosis in patients with vertical growth phase melanoma. Clin. Cancer Res. 2000, 6, 1845–1853. [Google Scholar]
- Alonso, S.R.; Ortiz, P.; Pollan, M.; Pérez-Gómez, B.; Sánchez, L.; Acuña, M.J.; Pajares, R.; Martínez-Tello, F.J.; Hortelano, C.H.; Piris, M.A.; et al. Progression in cutaneous malignant melanoma is associated with distinct expression profiles. Am. J. Pathol. 2004, 164, 193–203. [Google Scholar] [CrossRef]
- Mihic-Probst, D.; Saremaslani, P.; Komminoth, P.; Heitz, P.U. Immunostaining for the tumour suppressor gene p16 product is a useful marker to differentiate melanoma metastasis from lymph-node nevus. Virchows Arch. 2003, 44, 745–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, C.; Ambrosi, F.; Grillini, M.; Serra, M.; Melotti, B.; Gruppioni, E.; Altimari, A.; Fiorentino, M.; Dika, E.; Lambertini, M.; et al. Next-generation sequencing revealing TP53 mutation as potential genetic driver in dermal deep-seated melanoma arising in giant congenital nevus in adult patients: A unique case report and review of the literature. J. Cutan. Pathol. 2020, 47, 1164–1169. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Hannon, G.J.; Zhang, H.; Casso, D.; Kobayashi, R.; Beach, D. p21 is a universal inhibitor of cyclin kinases. Nature 1993, 366, 701–704. [Google Scholar] [CrossRef]
- Karjalainen, J.M.; Eskelinen, M.J.; Kellokoski, J.K.; Reinikainen, M.; Alhava, E.M.; Kosma, V.M. P21WAF1/CIP1 expression in stage I cutaneous malignant melanoma: Its relationship with p53, cell proliferation and survival. Br. J. Cancer 1999, 79, 895–902. [Google Scholar] [CrossRef] [Green Version]
- Wiedemeyer, K.; Guadagno, A.; Davey, J.; Thomas Brenn, T. Acral Spitz Nevi: A Clinicopathologic Study of 50 Cases With Immunohistochemical Analysis of P16 and P21 Expression. Am. J. Surg. Pathol. 2018, 42, 821–827. [Google Scholar] [CrossRef]
- de Andrade, B.A.B.; León, J.E.; Carlos, R.; Delgado-Azañero, W.; Mosqueda-Taylor, A.; de Almeida, O.P. Immunohistochemical Expression of p16, p21, p27 and Cyclin D1 in Oral Nevi and Melanoma. Head Neck Pathol. 2012, 6, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Dika, E.; Lambertini, M.; Pellegrini, C.; Veronesi, G.; Melotti, B.; Riefolo, M.; Sperandi, F.; Patrizi, A.; Ricci, C.; Mussi, M.; et al. Cutaneous and Mucosal Melanomas of Uncommon Sites: Where Do We Stand Now? J. Clin. Med. 2021, 10, 478. [Google Scholar] [CrossRef]
- Soto, J.S.; Cabrera, C.M.; Serrano, S.; López-Nevot, M.A. Mutation analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B. BMC Cancer 2005, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Ragnarsson-Olding, B.; Platz, A.; Olding, L.; Ringborg, U. p53 protein expression and TP53 mutations in malignant melanomas of sun-sheltered mucosal membranes versus chronically sun-exposed skin. Melanoma Res. 2004, 14, 395–401. [Google Scholar] [CrossRef]
- Levin, D.B.; Wilson, K.; Valadares de Amorim, G.; Webber, J.; Kenny, P.; Kusser, W. Detection of p53 mutations in benign and dysplastic nevi. Cancer Res. 1995, 55, 4278–4282. [Google Scholar]
- Gerami, P.; Kim, D.; Zhang, B.; Compres, E.V.; Khan, A.U.; Yazdan, P.; Guitart, J.; Busam, K. Desmoplastic Melanomas Mimicking Neurofibromas. Am. J. Dermatopathol. 2020, 42, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Lethe, B.; Lehmann, F.; van Baren, N.; Baurain, J.F.; de Smet, C.; Chambost, H.; Vitale, M.; Moretta, A.; Boon, T.; et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997, 6, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Hemminger, J.A.; Toland, A.E.; Scharschmidt, T.J.; Mayerson, J.L.; Guttridge, D.C.; Iwenofu, O.H. Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma. Mod. Pathol. 2014, 27, 1238–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, C.; Franceschini, T.; Giunchi, F.; Grillini, M.; Ambrosi, F.; Massari, F.; Mollica, V.; Colecchia, M.; Fiorentino, M. Immunohistochemical Expression of Preferentially Expressed Antigen in Melanoma (PRAME) in the Uninvolved Background Testis, Germ Cell Neoplasia in Situ, and Germ Cell Tumors of the Testis. Am. J. Clin. Pathol. 2021, 157, 644–648. [Google Scholar] [CrossRef]
- Steger, B.; Floro, L.; Amberger, D.C.; Kroell, T.; Tischer, J.; Kolb, H.J.; Schmetzer, H.M. WT1, PRAME, and PR3 mRNA Expression in Acute Myeloid Leukemia (AML). J. Immunother. 2020, 43, 204–215. [Google Scholar] [CrossRef]
- Salmaninejad, A.; Zamani, M.R.; Pourvahedi, M.; Golchehre, Z.; Hosseini Bereshneh, A.; Rezaei, N. Cancer/Testis Antigens: Expression, Regulation, Tumor Invasion, and Use in Immunotherapy of Cancers. Immunol. Investig. 2016, 45, 619–640. [Google Scholar] [CrossRef]
- Lezcano, C.; Jungbluth, A.A.; Nehal, K.S.; Hollmann, T.J.; Busam, K.J. PRAME Expression in Melanocytic Tumors. Am. J. Surg. Pathol. 2018, 42, 1456–1465. [Google Scholar] [CrossRef]
- Lezcano, C.; Jungbluth, A.A.; Busam, K.J. Comparison of Immunohistochemistry for PRAME With Cytogenetic Test Results in the Evaluation of Challenging Melanocytic Tumors. Am. J. Surg. Pathol. 2020, 44, 893–900. [Google Scholar] [CrossRef]
- Raghavan, S.S.; Wang, J.Y.; Kwok, S.; Rieger, K.E.; Novoa, R.A.; Brown, R.A. PRAME expression in melanocytic proliferations with intermediate histopathologic or spitzoid features. J. Cutan. Pathol. 2020, 47, 1123–1131. [Google Scholar] [CrossRef]
- Gradecki, S.E.; Slingluff, C.L., Jr.; Gru, A.A. PRAME expression in 155 cases of metastatic melanoma. J. Cutan. Pathol. 2021, 48, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Ruby, K.N.; Li, Z.; Yan, S. Aberrant expression of HMB45 and negative PRAME expression in halo nevi. J. Cutan. Pathol. 2021, 48, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Gradecki, S.E.; Valdes-Rodriguez, R.; Wick, M.R.; Gru, A.A. PRAME immunohistochemistry as an adjunct for diagnosis and histological margin assessment in lentigo maligna. Histopathology 2021, 78, 1000–1008. [Google Scholar] [CrossRef]
- Lohman, M.E.; Steen, A.J.; Grekin, R.C.; North, J.P. The utility of PRAME staining in identifying malignant transformation of melanocytic nevi. J. Cutan. Pathol. 2021, 48, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Grillini, M.; Ricci, C.; Pino, V.; Pedrini, S.; Fiorentino, M.; Corti, B. HMB45/PRAME, a Novel Double Staining for the Diagnosis of Melanocytic Neoplasms: Technical Aspects, Results, and Comparison With Other Commercially Available Staining (PRAME and Melan A/PRAME). Appl. Immunohistochem. Mol. Morphol. 2022, 30, 14–18. [Google Scholar] [CrossRef]
- Hayward, N.K.; Wilmott, J.S.; Waddell, N.; Johansson, P.A.; Field, M.A.; Nones, K.; Patch, A.M.; Kakavand, H.; Alexandrov, L.B.; Burke, H.; et al. Whole-genome landscapes of major melanoma subtypes. Nature 2017, 545, 175–180. [Google Scholar] [CrossRef]
- Mehnert, J.M.; Kluger, H.M. Driver Mutations in Melanoma: Lessons Learned From Bench-to-Bedside Studies. Curr. Oncol. Rep. 2012, 14, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Greenwald, H.S.; Friedman, E.B.; Osman, I. Superficial spreading and nodular melanoma are distinct biological entities: A challenge to the linear progression model. Melanoma Res. 2012, 22, 1–8. [Google Scholar] [CrossRef]
- Dika, E.; Veronesi, G.; Altimari, A.; Riefolo, M.; Ravaioli, G.M.; Piraccini, B.M.; Lambertini, M.; Campione, E.; Gruppioni, E.; Fiorentino, M.; et al. BRAF, KIT, and NRAS Mutations of Acral Melanoma in White Patients. Am. J. Clin. Pathol. 2020, 153, 664–671. [Google Scholar] [CrossRef]
- Moon, K.R.; Choi, Y.D.; Kim, J.M.; Jin, S.; Shin, M.H.; Shim, H.J.; Lee, J.B.; Yun, S.J. Genetic Alterations in Primary Acral Melanoma and Acral Melanocytic Nevus in Korea: Common Mutated Genes Show Distinct Cytomorphological Features. J. Investig. Dermatol. 2018, 138, 933–945. [Google Scholar] [CrossRef] [Green Version]
- Wiesner, T.; Kutzner, H.; Cerroni, L.; Mihm, M.C., Jr.; Busam, K.J.; Murali, R. Genomic aberrations in spitzoid melanocytic tumours and their implications for diagnosis, prognosis and therapy. Pathology 2016, 48, 113–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kervarrec, T.; Pissaloux, D.; Tirode, F.; Samimi, M.; Jacquemus, J.; Castillo, C.; de la Fouchardière, A. Morphologic features in a series of 352 Spitz melanocytic proliferations help predict their oncogenic drivers. Virchows Arch. 2022, 480, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Yeh, I.; de la Fouchardiere, A.; Pissaloux, D.; Mully, T.W.; Garrido, M.C.; Vemula, S.S.; Busam, K.J.; LeBoit, P.E.; McCalmont, T.H.; Bastian, B.C.; et al. Clinical, histopathologic, and genomic features of Spitz tumors with ALK fusions. Am. J. Surg. Pathol. 2015, 39, 581–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappellesso, R.; Nozzoli, F.; Zito Marino, F.; Simi, S.; Castiglione, F.; De Giorgi, V.; Cota, C.; Senetta, R.; Scognamiglio, G.; Maria Anniciello, A.; et al. NTRK Gene Fusion Detection in Atypical Spitz Tumors. Int. J. Mol. Sci. 2021, 22, 12332. [Google Scholar] [CrossRef]
- Yeh, I.; Lang, U.E.; Durieux, E.; Tee, M.K.; Jorapur, A.; Shain, A.H.; Haddad, V.; Pissaloux, D.; Chen, X.; Cerroni, L.; et al. Combined activation of MAP kinase pathway and β-catenin signaling cause deep penetrating nevi. Nat. Commun. 2017, 8, 644. [Google Scholar] [CrossRef]
- Llamas-Velasco, M.; Pérez-Gónzalez, Y.C.; Requena, L.; Kutzner, H. Histopathologic clues for the diagnosis of Wiesner nevus. J. Am. Acad. Dermatol. 2014, 70, 549–554. [Google Scholar] [CrossRef]
- Cohen, J.C.; Joseph, N.M.; North, J.P.; Onodera, C.; Zembowicz, A.; LeBoit, P.E. Genomic Analysis of Pigmented Epithelioid Melanocytomas Reveals Recurrent Alterations in PRKAR1A, and PRKCA Genes. Am. J. Surg. Pathol. 2017, 41, 1333–1346. [Google Scholar] [CrossRef]
- Kadokura, A.; Frydenlund, N.; Leone, D.A.; Yang, S.; Hoang, M.P.; Deng, A.; Hernandez-Perez, M.; Biswas, A.; Singh, R.; Yaar, R.; et al. Neurofibromin protein loss in desmoplastic melanoma subtypes: Implicating NF1 allelic loss as a distinct genetic driver? Hum. Pathol. 2016, 53, 82–90. [Google Scholar] [CrossRef]
- Macagno, N.; Pissaloux, D.; Etchevers, H.; Haddad, V.; Vergier, B.; Sierra-Fortuny, S.; Tirode, F.; de la Fouchardière, A. Cutaneous Melanocytic Tumors With Concomitant NRASQ61R and IDH1R132C Mutations: A Report of 6 Cases. Am. J. Surg. Pathol. 2020, 44, 1398–1405. [Google Scholar] [CrossRef]
- Idikio, H.A. Immunohistochemistry in diagnostic surgical pathology: Contributions of protein life-cycle, use of evidence-based methods and data normalization on interpretation of immunohistochemical stains. Int. J. Clin. Exp. Pathol. 2010, 3, 169–176. [Google Scholar]
- Petitt, M.; Allison, A.; Shimoni, T.; Uchida, T.; Raimer, S.; Kelly, B. Lymphatic invasion detected by D2-40/S-100 dual immunohistochemistry does not predict sentinel lymph node status in melanoma. J. Am. Acad. Dermatol. 2009, 61, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Feldmeyer, L.; Tetzlaff, M.; Fox, P.; Nagarajan, P.; Curry, J.; Ivan, D.; Carlos, A.; Cabala, T.; Victor, G.; Aung, P.P.; et al. Prognostic Implication of Lymphovascular Invasion Detected by Double Immunostaining for D2-40 and MITF1 in Primary Cutaneous Melanoma. Am. J. Dermatopathol. 2016, 38, 484–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straker, R.J., 3rd; Taylor, L.A.; Neuwirth, M.G.; Sinnamon, A.J.; Shannon, A.B.; Abbott, J.; Miura, J.T.; Chu, E.Y.; Xu, X.; Karakousis, G.C. Optimizing Detection of Lymphatic Invasion in Primary Cutaneous Melanoma With the Use of D2-40 and a Paired Melanocytic Marker. Am. J. Dermatopathol. 2022, 44, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Ricci, C.; Chillotti, S.; Ambrosi, F.; Corradini, A.G.; Lambertini, M.; Dika, E.; Fiorentino, M.; Melotti, B.; Corti, B. Novel Double Immunohistochemistry (CD34/SOX10) for the Detection of Lymphovascular Invasion in Cutaneous Melanoma. Clinical-pathological Evidence Emerging from a Routine Set. Mod. Pathol. 2021, 34, 312–313. [Google Scholar]
- Ricci, C.; Chillotti, S.; Ambrosi, F.; Corradini, A.G.; Lambertini, M.; Dika, E.; Fiorentino, M.; Corti, B. Hematoxylin and Eosin (H&E) is Preferable to Double Staining (CD34/SOX10) for the Detection of Lymphovascular Invasion in Cutaneous Melanoma. Mod. Pathol. 2022, 35, 402–455. [Google Scholar]
- Ricci, C.; Chillotti, S.; Ambrosi, F.; Corradini, A.G.; Lambertini, M.; Dika, E.; Fiorentino, M.; Corti, B. Hematoxylin and Eosin or Double Stain for CD34/SOX10: Which is Better for the Detection of Lymphovascular Invasion in Cutaneous Melanoma? Pathol. Res. Pract. 2022, 233, 153876. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, C.; Dika, E.; Ambrosi, F.; Lambertini, M.; Veronesi, G.; Barbara, C. Cutaneous Melanomas: A Single Center Experience on the Usage of Immunohistochemistry Applied for the Diagnosis. Int. J. Mol. Sci. 2022, 23, 5911. https://doi.org/10.3390/ijms23115911
Ricci C, Dika E, Ambrosi F, Lambertini M, Veronesi G, Barbara C. Cutaneous Melanomas: A Single Center Experience on the Usage of Immunohistochemistry Applied for the Diagnosis. International Journal of Molecular Sciences. 2022; 23(11):5911. https://doi.org/10.3390/ijms23115911
Chicago/Turabian StyleRicci, Costantino, Emi Dika, Francesca Ambrosi, Martina Lambertini, Giulia Veronesi, and Corti Barbara. 2022. "Cutaneous Melanomas: A Single Center Experience on the Usage of Immunohistochemistry Applied for the Diagnosis" International Journal of Molecular Sciences 23, no. 11: 5911. https://doi.org/10.3390/ijms23115911
APA StyleRicci, C., Dika, E., Ambrosi, F., Lambertini, M., Veronesi, G., & Barbara, C. (2022). Cutaneous Melanomas: A Single Center Experience on the Usage of Immunohistochemistry Applied for the Diagnosis. International Journal of Molecular Sciences, 23(11), 5911. https://doi.org/10.3390/ijms23115911