Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells
Abstract
:1. Introduction
2. Isolation of Cells from Human Dental Follicles
3. Molecular Mechanisms of the Osteogenic Differentiation of DFCs
3.1. The BMP2/DLX3 Positive Feedback Loop
3.2. Protein Kinases C (PKC) and B (AKT)
3.3. Epigenetics and Non-Coding RNAs
3.4. Extracellular Matrix (ECM)
3.5. Influence of Cell Viability and Cellular Senescence
3.6. Pro- and anti-Inflammatory Factors
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donoghue, P.; Sansom, I.J.; Downs, J.P. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J. Exp. Zool. Part B Mol. Dev. Evol. 2006, 306, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, B.; Lee, A.; Ravi, V.; Maurya, A.K.; Lian, M.M.; Swann, J.B.; Ohta, Y.; Flajnik, M.F.; Sutoh, Y.; Kasahara, M.; et al. Elephant shark genome provides unique insights into gnathostome evolution. Nature 2014, 505, 174–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diekwisch, T.G. The developmental biology of cementum. Int. J. Dev. Biology. 2001, 45, 695–706. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11669371 (accessed on 4 May 2022).
- Takahashi, A.; Nagata, M.; Gupta, A.; Matsushita, Y.; Yamaguchi, T.; Mizuhashi, K.; Maki, K.; Ruellas, A.C.; Cevidanes, L.S.; Kronenberg, H.M.; et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proc. Natl. Acad. Sci. USA 2019, 116, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Thesleff, I. Current understanding of the process of tooth formation: Transfer from the laboratory to the clinic. Aust. Dent. J. 2013, 59, 48–54. [Google Scholar] [CrossRef]
- Hermans, F.; Hemeryck, L.; Lambrichts, I.; Bronckaers, A.; Vankelecom, H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front. Cell Dev. Biol. 2021, 9, 3043. [Google Scholar] [CrossRef]
- Zhou, T.; Pan, J.; Wu, P.; Huang, R.; Du, W.; Zhou, Y.; Wan, M.; Fan, Y.; Xu, X.; Zhou, X.; et al. Dental Follicle Cells: Roles in Development and Beyond. Stem Cells Int. 2019, 2019, 9159605. [Google Scholar] [CrossRef] [Green Version]
- Lyu, P.; Li, B.; Li, P.; Bi, R.; Cui, C.; Zhao, Z.; Zhou, X.; Fan, Y. Parathyroid Hormone 1 Receptor Signaling in Dental Mesenchymal Stem Cells: Basic and Clinical Implications. Front. Cell Dev. Biol. 2021, 9, 654715. [Google Scholar] [CrossRef]
- Marks, S.; Cahill, D. Experimental study in the dog of the non-active role of the tooth in the eruptive process. Arch. Oral. Biol. 1984, 29, 311–322. [Google Scholar] [CrossRef]
- Zhang, J.W.; Liao, L.J.; Li, Y.Y.; Xu, Y.; Guo, W.H.; Tian, W.D.; Zou, S.J. Parathyroid hormone-related peptide (1–34) promotes tooth eruption and inhibits osteogenesis of dental follicle cells during tooth devel-opment. J. Cell. Physiol. 2019, 234, 11900–11911. [Google Scholar] [CrossRef]
- Izumida, E.; Suzawa, T.; Miyamoto, Y.; Yamada, A.; Otsu, M.; Saito, T.; Yamaguchi, T.; Nishimura, K.; Ohtaka, M.; Nakanishi, M.; et al. Functional Analysis of PTH1R Variants Found in Primary Failure of Eruption. J. Dent. Res. 2020, 99, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Bastos, V.C.; Gomez, R.S.; Gomes, C.C. Revisiting the human dental follicle: From tooth development to its association with unerupted or impacted teeth and pathological changes. Dev. Dyn. 2021, 251, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wu, J.; Huang, L.; Liu, H.; Wang, R.; Karaplis, A.; Goltzman, D.; Miao, D. PTHrP nuclear localization and carboxyl terminus sequences modulate dental and mandibular development in part via the action of p27. Endocrinology 2016, 2016, en20151555. [Google Scholar] [CrossRef] [PubMed]
- Wise, G.E.; Ding, D.; Yao, S. Regulation of secretion of osteoprotegerin in rat dental follicle cells. Eur. J. Oral Sci. 2004, 112, 439–444. [Google Scholar] [CrossRef]
- Wise, G.E. Cellular and molecular basis of tooth eruption. Orthod. Craniofacial Res. 2009, 12, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Sherley, J.L. Asymmetric Cell Kinetics Genes: The Key to Expansion of Adult Stem Cells in Culture. Sci. World J. 2002, 2, 1906–1921. [Google Scholar] [CrossRef] [Green Version]
- Mitsiadis, T.A.; Barrandon, O.; Rochat, A.; Barrandon, Y.; De Bari, C. Stem cell niches in mammals. Exp. Cell Res. 2007, 313, 3377–3385. [Google Scholar] [CrossRef]
- Venkei, Z.G.; Yamashita, Y.M. Emerging mechanisms of asymmetric stem cell division. J. Cell Biol. 2018, 217, 3785–3795. [Google Scholar] [CrossRef] [Green Version]
- Sheldrake, A.R. Cellular senescence, rejuvenation and potential immortality. Proc. R. Soc. B Boil. Sci. 2022, 289, 20212434. [Google Scholar] [CrossRef]
- Chiou, S.-H.; Yu, C.-C.; Huang, C.-Y.; Lin, S.-C.; Liu, C.-J.; Tsai, T.-H.; Chou, S.-H.; Chien, C.-S.; Ku, H.-H.; Lo, J.-F. Positive Correlations of Oct-4 and Nanog in Oral Cancer Stem-Like Cells and High-Grade Oral Squamous Cell Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 4085–4095. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Wang, C.-Y. Targeting cancer stem cells in squamous cell carcinoma. Precis. Clin. Med. 2019, 2, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Harada, H.; Kettunen, P.; Jung, H.S.; Mustonen, T.; Wang, Y.A.; Thesleff, I. Localization of Putative Stem Cells in Dental Epithelium and Their Association with Notch and Fgf Signaling. J. Cell Biol. 1999, 147, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Arthur, A.; Rychkov, G.; Shi, S.; Koblar, S.A.; Gronthos, S. Adult human dental pulp stem cells dif-ferentiate toward functionally active neurons under appropriate environmental cues. Stem. Cells 2008, 26, 1787–1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Völlner, F.; Ernst, W.; Driemel, O.; Morsczeck, C. A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation 2009, 77, 433–441. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19394129 (accessed on 4 May 2022). [CrossRef] [PubMed] [Green Version]
- Morsczeck, C.; Götz, W.; Schierholz, J.; Zeilhofer, F.; Kühn, U.; Möhl, C.; Sippel, C.; Hoffmann, K.H. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005, 24, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Friedenstein, A.; Kuralesova, A.I. Osteogenic Precursor Cells of Bone Marrow In Radiation Chimeras. Transplantation 1971, 12, 99–108. [Google Scholar] [CrossRef]
- Morsczeck, C.; Huang, G.T.J.; Shi, S. Stem and Progenitor Cells of Dental and Gingival Tissue Origin Morsczeck, Christian; Univ. Hosp. Regensburg, Dept. Cranial and Maxillofacial Surg.: Regensburg, Germany, 2013. [Google Scholar]
- Morsczeck, C. Molecular mechanisms in dental follicle precursor cells during the osteogenic differentiation. Histol. Histopathol. 2015, 30, 1161–1169. [Google Scholar] [CrossRef]
- Oh, J.E.; Yi, J.-K. Isolation and characterization of dental follicle–derived Hertwig’s epithelial root sheath cells. Clin. Oral Investig. 2020, 25, 1787–1796. [Google Scholar] [CrossRef]
- Ono, W.; Sakagami, N.; Nishimori, S.; Ono, N.; Kronenberg, H.M. Parathyroid hormone receptor sig-nalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation. Nat. Commun. 2016, 7, 11277. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, R.T.; Xiao, G.; Jiang, D.; Gopalakrishnan, R.; Yang, S.; Reith, E. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect. Tissue Res. 2003, 44 (Suppl. S1), 109–116. [Google Scholar] [CrossRef]
- Lin, G.L.; Hankenson, K.D. Integration of BMP, Wnt, and notch signaling pathways in osteoblast dif-ferentiation. J. Cell. Biochem. 2011, 112, 3491–3501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschi, R.T.; Ge, C. Control of the Osteoblast Lineage by Mitogen-Activated Protein Kinase Sig-naling. Curr. Mol. Biol. Rep. 2017, 3, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Morsczeck, C. Gene Expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in Dental Follicle Cells during Osteogenic Differentiation In Vitro. Calcif. Tissue Res. 2006, 78, 98–102. Available online: http://www.ncbi.nlm.nih.gov/pubmed/16467978 (accessed on 4 May 2022). [CrossRef] [PubMed]
- Hassan, M.Q.; Javed, A.; Morasso, M.I.; Karlin, J.; Montecino, M.; van Wijnen, A.J.; Stein, G.S.; Stein, J.L.; Lian, J.B. Dlx3 Transcriptional Regulation of Osteoblast Differentiation: Temporal Recruitment of Msx2, Dlx3, and Dlx5 Homeodomain Proteins to Chromatin of the Osteocalcin Gene. Mol. Cell. Biol. 2004, 24, 9248–9261. Available online: http://www.ncbi.nlm.nih.gov/pubmed/15456894 (accessed on 4 May 2022). [CrossRef] [Green Version]
- Sumiyama, K.; Tanave, A. The regulatory landscape of the Dlx gene system in branchial arches: Shared characteristics among Dlx bigene clusters and evolution. Dev. Growth Differ. 2020, 62, 355–362. [Google Scholar] [CrossRef]
- Zheng, H.; Fu, J.; Chen, Z.; Yang, G.; Yuan, G. Dlx3 Ubiquitination by Nuclear Mdm2 Is Essential for Dentinogenesis in Mice. J. Dent. Res. 2022. [Google Scholar] [CrossRef]
- Choi, S.; Song, I.; Feng, J.; Gao, T.; Haruyama, N.; Gautam, P.; Robey, P.; Hart, T.C. Mutant DLX 3 disrupts odontoblast polarization and dentin formation. Dev. Biol. 2010, 344, 682–692. [Google Scholar] [CrossRef] [Green Version]
- Whitehouse, L.L.E.; Smith, C.E.L.; Poulter, J.A.; Brown, C.J.; Patel, A.; Lamb, T.; Brown, L.R.; O’Sullivan, E.A.; Mitchell, R.E.; Berry, I.R.; et al. Novel DLX3 variants in amelogenesis imperfecta with attenuated tricho-dento-osseous syndrome. Oral Dis. 2018, 25, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Sun, S.; Dong, L.; Liu, Y.; Liu, H.; Han, D.; Ma, Z.; Wang, Y.; Feng, H. DLX3 epigenetically regulates odontoblastic differentiation of hDPCs through H19/miR-675 axis. Arch. Oral Biol. 2019, 102, 155–163. [Google Scholar] [CrossRef]
- Bonnet, A.L.; Sceosole, K.; Vanderzwalm, A.; Silve, C.; Collignon, A.M.; Gaucher, C. “Isolated” Ame-logenesis Imperfecta Associated with DLX3 Mutation: A Clinical Case. Case Rep. Genet. 2020, 2020, 8217919. [Google Scholar]
- Viale-Bouroncle, S.; Felthaus, O.; Schmalz, G.; Brockhoff, G.; Reichert, E.T.; Morsczeck, C. The Transcription Factor DLX3 Regulates the Osteogenic Differentiation of Human Dental Follicle Precursor Cells. Stem Cells Dev. 2012, 21, 1936–1947. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22107079 (accessed on 4 May 2022). [CrossRef] [PubMed]
- Morsczeck, C.; Schmalz, G. Transcriptomes and Proteomes of Dental Follicle Cells. J. Dent. Res. 2010, 89, 445–456. Available online: http://www.ncbi.nlm.nih.gov/pubmed/20348482 (accessed on 4 May 2022). [CrossRef] [PubMed]
- Hassan, M.Q.; Tare, R.; Lee, S.H.; Mandeville, M.; Morasso, M.I.; Javed, A.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B. BMP2 Commitment to the Osteogenic Lineage Involves Activation of Runx2 by DLX3 and a Homeodomain Transcriptional Network. J. Biol. Chem. 2006, 281, 40515–40526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhaosong, M.; Na, F.; Shuling, G.; Jiacheng, L.; Ran, W. Heterogeneity affects the differentiation potential of dental follicle stem cells through the TGF-beta signaling pathway. Bioengineered 2021, 12, 12294–12307. [Google Scholar] [CrossRef]
- Li, Z.Z.; Wang, H.T.; Lee, G.Y.; Yang, Y.; Zou, Y.P.; Wang, B.; Gong, C.J.; Cai, Y.; Ren, J.G.; Zhao, J.H. Bleomycin: A novel osteogenesis inhibitor of dental follicle cells via a TGF-beta1/SMAD7/RUNX2 pathway. Br. J. Pharmacol. 2021, 178, 312–327. [Google Scholar] [CrossRef]
- Kemoun, P.; Narayanan, A.S.; Brunel, G.; Salles, J.P.; Laurencin-Dalicieux, S.; Rue, J.; Farges, J.C.; Gennero, I.; Conte-Auriol, F.; Briand-Mesange, F.; et al. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res. 2007, 329, 283–294. [Google Scholar] [CrossRef]
- Li, C.H.; Yang, X.; He, Y.J.; Ye, G.; Li, X.D.; Zhang, X.N.; Zhou, L.; Deng, F. Bone Morphogenetic Protein-9 Induces Osteogenic Differentiation of Rat Dental Follicle Stem Cells in P38 and ERK1/2 MAPK Dependent Manner. Int. J. Med. Sci. 2012, 9, 862–871. [Google Scholar] [CrossRef] [Green Version]
- Viale-Bouroncle, S.; Klingelhöffer, C.; Ettl, T.; Reichert, T.E.; Morsczeck, C. A protein kinase A (PKA)/β-catenin pathway sustains the BMP2/DLX3-induced osteogenic differentiation in dental follicle cells (DFCs). Cell. Signal. 2015, 27, 598–605. [Google Scholar] [CrossRef]
- Morsczeck, C.; Reck, A.; Beck, H.C. The hedgehog-signaling pathway is repressed during the osteogenic differentiation of dental follicle cells. Mol. Cell. Biochem. 2017, 428, 79–86. [Google Scholar] [CrossRef]
- Nagata, M.; Ono, N.; Ono, W. Mesenchymal Progenitor Regulation of Tooth Eruption: A View from PTHrP. J. Dent. Res. 2020, 99, 133–142. [Google Scholar] [CrossRef]
- Ohba, S. Hedgehog Signaling in Skeletal Development: Roles of Indian Hedgehog and the Mode of Its Action. Int. J. Mol. Sci. 2020, 21, 6665. [Google Scholar] [CrossRef] [PubMed]
- Klingelhöffer, C.; Reck, A.; Ettl, T.; Morsczeck, C. The parathyroid hormone-related protein is secreted during the osteogenic differentiation of human dental follicle cells and inhibits the alkaline phosphatase ac-tivity and the expression of DLX. Tissue Cell 2016, 48, 334–339. Available online: http://www.sciencedirect.com/science/article/pii/S0040816616300593 (accessed on 4 May 2022). [CrossRef] [PubMed]
- Pieles, O.; Reck, A.; Morsczeck, C. High endogenous expression of parathyroid hormone-related pro-tein (PTHrP) supports osteogenic differentiation in human dental follicle cells. Histochem. Cell Biol. 2020, 154, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Miao, D.; Su, H.; He, B.; Gao, J.; Xia, Q.; Zhu, M.; Gu, Z.; Goltzman, D.; Karaplis, A.C. Severe growth retardation and early lethality in mice lacking the nuclear localization sequence and C-terminus of PTH-related protein. Proc. Natl. Acad. Sci. USA 2008, 105, 20309–20314. [Google Scholar] [CrossRef] [Green Version]
- Viale-Bouroncle, S.; Gosau, M.; Morsczeck, C. NOTCH1 signaling regulates the BMP2/DLX-3 directed osteogenic differentiation of dental follicle cells. Biochem. Biophys. Res. Commun. 2014, 443, 500–504. [Google Scholar] [CrossRef]
- Zhou, B.; Lin, W.; Long, Y.; Yang, Y.; Zhang, H.; Wu, K.; Chu, Q. Notch signaling pathway: Architecture, disease, and therapeutics. Signal. Transduct. Target. Ther. 2022, 7, 95. [Google Scholar] [CrossRef]
- Viale-Bouroncle, S.; Klingelhöffer, C.; Ettl, T.; Morsczeck, C. The WNT inhibitor APCDD1 sustains the expression of β-Catenin during the osteogenic differentiation of human dental follicle cells. Biochem. Biophys. Res. Commun. 2015, 457, 314–317. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, J.; Ling, J.; Du, Y.; Hou, Y. Nkd2 promotes the differentiation of dental follicle stem/progenitor cells into osteoblasts. Int. J. Mol. Med. 2018, 42, 2403–2414. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, D.; Jing, X.; Li, C. DKK1 and TNF-alpha influence osteogenic differentiation of adBMP9-infected-rDFCs. Oral. Dis. 2020, 26, 360–369. [Google Scholar] [CrossRef]
- Pieles, O.; Reichert, T.E.; Morsczeck, C. Protein kinase A is activated during bone morphogenetic pro-tein 2-induced osteogenic differentiation of dental follicle stem cells via endogenous parathyroid hor-mone-related protein. Arch. Oral Biol. 2022, 138, 105409. [Google Scholar] [CrossRef]
- Guerquin, M.-J.; Charvet, B.; Nourissat, G.; Havis, E.; Ronsin, O.; Bonnin, M.-A.; Ruggiu, M.; Olivera-Martinez, I.; Robert, N.; Lu, Y.; et al. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J. Clin. Investig. 2013, 123, 3564–3576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Press, T.; Vialebouroncle, S.; Felthaus, O.; Gosau, M.; Morsczeck, C. EGR1 supports the osteogenic differentiation of dental stem cells. Int. Endod. J. 2014, 48, 185–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reumann, M.K.; Strachna, O.; Yagerman, S.; Torrecilla, D.; Kim, J.; Doty, S.B.; Lukashova, L.; Boskey, A.L.; Mayer-Kuckuk, P. Loss of transcription factor early growth response gene 1 results in impaired en-dochondral bone repair. Bone 2011, 49, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viale-Bouroncle, S.; Klingelhöffer, C.; Ettl, T.; Morsczeck, C. The AKT signaling pathway sustains the osteogenic differentiation in human dental follicle cells. Mol. Cell. Biochem. 2015, 406, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Pieles, O.; Reichert, T.E.; Morsczeck, C. Classical isoforms of protein kinase C (PKC) and Akt regulate the osteogenic differentiation of human dental follicle cells via both beta-catenin and NF-kappa B. Stem Cell Res. Ther. 2021, 12, 242. [Google Scholar] [CrossRef]
- Morsczeck, C.; Reck, A.; Reichert, T.E. WNT5A supports viability of senescent human dental follicle cells. Mol. Cell. Biochem. 2018, 455, 21–28. [Google Scholar] [CrossRef]
- Tang, J.; Qing, M.F.; Li, M.; Gao, Z. Dexamethasone inhibits BMP7-induced osteogenic differentiation in rat dental follicle cells via the PI3K/AKT/GSK-3beta/beta-catenin pathway. Int. J. Med. Sci. 2020, 17, 2663–2672. [Google Scholar] [CrossRef]
- Yi, G.; Zhang, S.; Ma, Y.; Yang, X.; Huo, F.; Chen, Y.; Yang, B.; Tian, W. Matrix vesicles from dental follicle cells improve alveolar bone regeneration via activation of the PLC/PKC/MAPK pathway. Stem Cell Res. Ther. 2022, 13, 41. [Google Scholar] [CrossRef]
- Vidoni, C.; Ferraresi, A.; Secomandi, E.; Vallino, L.; Gardin, C.; Zavan, B.; Mortellaro, C.; Isidoro, C. Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells. Cell Commun. Signal. 2019, 17, 98. [Google Scholar] [CrossRef] [Green Version]
- Pieles, O.; Hartmann, M.; Morsczeck, C. AMP-activated protein kinase and the down-stream activated process of autophagy regulate the osteogenic differentiation of human dental follicle cells. Arch. Oral Biol. 2020, 122, 104951. [Google Scholar] [CrossRef]
- Saha, M.; Kumar, S.; Bukhari, S.; Balaji, S.A.; Kumar, P.; Hindupur, S.K.; Rangarajan, A. AMPK–Akt Double-Negative Feedback Loop in Breast Cancer Cells Regulates Their Adaptation to Matrix Deprivation. Cancer Res. 2018, 78, 1497–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, W.; Wu, B.-L.; Fang, F.-C. Overview of noncoding RNAs involved in the osteogenic differentiation of periodontal ligament stem cells. World J. Stem Cells 2020, 12, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Li, C.; Yue, J.; Huang, X.; Chen, M.; Gao, J. miR-21 and miR-101 regulate PLAP-1 expression in periodontal ligament cells. Mol. Med. Rep. 2012, 5, 1340–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klingelhöffer, C.; Codrin, C.; Ettl, T.; Reichert, T.; Morsczeck, C. miRNA-101 supports the osteogenic differentiation in human dental follicle cells. Arch. Oral Biol. 2016, 72, 47–50. [Google Scholar] [CrossRef]
- Aslani, S.; Rahbarghazi, R.; Rahimzadeh, S.; Rajabi, H.; Abhari, A.; Sakhinia, E. Dynamic of miR-NA-101a-3p and miRNA-200a during Induction of Osteoblast Differentiation in Adipose-derived Mesen-chymal Stem Cells. Int. J. Mol. Cell Med. 2020, 9, 140–146. [Google Scholar]
- Li, Y.; Wang, J.; Ma, Y.; Du, W.; Feng, K.; Wang, S. miR-101-loaded exosomes secreted by bone marrow mesenchymal stem cells requires the FBXW7/HIF1alpha/FOXP3 axis, facilitating osteogenic differ-entiation. J. Cell Physiol. 2021, 236, 4258–4272. [Google Scholar] [CrossRef]
- Ito, K.; Tomoki, R.; Ogura, N.; Takahashi, K.; Eda, T.; Yamazaki, F.; Kato, Y.; Goss, A.; Kondoh, T. MicroRNA-204 regulates osteogenic induction in dental follicle cells. J. Dent. Sci. 2020, 15, 457–465. [Google Scholar] [CrossRef]
- Liu, J.-L.; Liu, Y.-S.; Zheng, M.-J.; He, H.-Y. The management of bone defect using long non-coding RNA as a potential biomarker for regulating the osteogenic differentiation process. Mol. Biol. Rep. 2022, 49, 2443–2453. [Google Scholar] [CrossRef]
- Deng, L.; Hong, H.; Zhang, X.; Chen, D.; Chen, Z.; Ling, J.; Wu, L. Down-regulated lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway. Biochem. Biophys. Res. Commun. 2018, 503, 2061–2067. [Google Scholar] [CrossRef]
- Wu, L.; Deng, L.; Hong, H.; Peng, C.; Zhang, X.; Chen, Z.; Ling, J. Comparison of long non-coding RNA expression profiles in human dental follicle cells and human periodontal ligament cells. Mol. Med. Rep. 2019, 20, 939–950. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, J.; Hong, H.; Chen, D.; Deng, L.; Zhang, X.; Ling, J.; Wu, L. lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro. J. Cell. Physiol. 2020, 235, 8507–8519. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Pedrosa, E.; Shah, A.; Hrabovsky, A.; Maqbool, S.; Zheng, D.; Lachman, H.M. RNA-Seq of Human Neurons Derived from iPS Cells Reveals Candidate Long Non-Coding RNAs Involved in Neurogenesis and Neuropsychiatric Disorders. PLoS ONE 2011, 6, e23356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, A.; Viale-Bouroncle, S.; Morsczeck, C.; Muller, S. The SUMO-Specific Isopeptidase SENP3 Regulates MLL1/MLL2 Methyltransferase Complexes and Controls Osteogenic Differentiation. Mol. Cell 2014, 55, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, A.; Reck, A.; Morsczeck, C.; Muller, S. Flightless-I governs cell fate by recruiting the SUMO isopeptidase SENP3 to distinct HOX genes. Epigenetics. Chromatin. 2017, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, Q.; Xiao, Q.; Gong, P.; Kang, N. CHD7 Regulates Osteogenic Differentiation of Human Dental Follicle Cells via PTH1R Signaling. Stem Cells Int. 2020, 2020, 8882857. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhang, Y.; Qi, X.; Chen, Y.; Sheng, R.; Xu, R.; Yuan, Q.; Zhou, C. AFF4 regulates osteogenic differentiation of human dental follicle cells. Int. J. Oral Sci. 2020, 12, 20. [Google Scholar] [CrossRef]
- Li, M.; Fu, T.; Yang, S.; Pan, L.; Tang, J.; Chen, M.; Liang, P.; Gao, Z.; Guo, L. Agarose-based spheroid culture enhanced stemness and promoted odontogenic differentiation potential of human dental follicle cells in vitro. Vitr. Cell. Dev. Biol.-Anim. 2021, 57, 620–630. [Google Scholar] [CrossRef]
- Holle, A.W.; Engler, A.J. More than a feeling: Discovering, understanding, and influencing mechano-sensing pathways. Curr. Opin. Biotechnol. 2011, 22, 648–654. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21536426 (accessed on 4 May 2022). [CrossRef] [Green Version]
- Viale-Bouroncle, S.; Völlner, F.; Möhl, C.; Küpper, K.; Brockhoff, G.; Reichert, T.E.; Schmalz, G.; Morsczeck, C. Soft matrix supports osteogenic differentiation of human dental follicle cells. Biochem. Biophys. Res. Commun. 2011, 410, 587–592. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21684253 (accessed on 4 May 2022). [CrossRef]
- Watt, F.M.; Huck, W.T. Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 2013, 14, 467–473. [Google Scholar] [CrossRef]
- Viale-Bouroncle, S.; Gosau, M.; Morsczeck, C. Collagen I induces the expression of alkaline phosphatase and osteopontin via independent activations of FAK and ERK signalling pathways. Arch. Oral Biol. 2014, 59, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Viale-Bouroncle, S.; Gosau, M.; Morsczeck, C. Laminin regulates the osteogenic differentiation of dental follicle cells via integrin-α2/-β1 and the activation of the FAK/ERK signaling pathway. Cell Tissue Res. 2014, 357, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Jadlowiec, J.A.; Zhang, X.; Li, J.; Campbell, P.G.; Sfeir, C. Extracellular Matrix-mediated Signaling by Dentin Phosphophoryn Involves Activation of the Smad Pathway Independent of Bone Morphogenetic Protein. J. Biol. Chem. 2006, 281, 5341–5347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundu, A.K.; Putnam, A.J. Vitronectin and collagen I differentially regulate osteogenesis in mesen-chymal stem cells. Biochem. Biophys. Res. Commun. 2006, 347, 347–357. [Google Scholar] [CrossRef]
- Hynes, R.O. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 2002, 110, 673–687. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12297042 (accessed on 4 May 2022). [CrossRef] [Green Version]
- Klees, R.F.; Salasznyk, R.M.; Vandenberg, S.; Bennett, K.; Plopper, G.E. Laminin-5 activates extracel-lular matrix production and osteogenic gene focusing in human mesenchymal stem cells. Matrix Biol. J. Int. Soc. Matrix Biol. 2007, 26, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Morsczeck, C.; Schmalz, G.; Reichert, T.E.; Völlner, F.; Saugspier, M.; Viale-Bouroncle, S.; Driemel, O. Gene expression profiles of dental follicle cells before and after osteogenic differentiation in vitro. Clin. Oral Investig. 2009, 13, 383–391. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19252934 (accessed on 4 May 2022). [CrossRef]
- Mohamed, F.; Ge, C.; Binrayes, A.; Franceschi, R. The Role of Discoidin Domain Receptor 2 in Tooth Development. J. Dent. Res. 2020, 99, 214–222. [Google Scholar] [CrossRef]
- Binrayes, A.; Ge, C.; Mohamed, F.F.; Franceschi, R.T. Role of Discoidin Domain Receptor 2 in Crani-ofacial Bone Regeneration. J. Dent. Res. 2021, 100, 1359–1366. [Google Scholar] [CrossRef]
- Guo, W.; Gong, K.; Shi, H.; Zhu, G.; He, Y.; Ding, B.; Wen, L.; Jin, Y. Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials 2012, 33, 1291–1302. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Hu, Y.; Sun, J.; Guo, W.; Li, H.; Chen, J.; Huo, F.; Tian, W.; Li, S. Treated dentin matrix particles combined with dental follicle cell sheet stimulate periodontal regeneration. Dent. Mater. 2019, 35, 1238–1253. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, B.; Yang, H.; Qiao, J.; Tian, W.; Yu, R. Xenogeneic dentin matrix as a scaffold for bio-mineralization and induced odontogenesis. Biomed. Mater. 2021, 16, 045020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lan, T.; Han, X.; Xu, Y.; Liao, L.; Xie, L.; Yang, B.; Tian, W.; Guo, W. Improvement of ECM-based bioroot regeneration via N-acetylcysteine-induced antioxidative effects. Stem Cell Res. Ther. 2021, 12, 202. [Google Scholar] [CrossRef] [PubMed]
- Grotheer, V.; Skrynecki, N.; Oezel, L.; Windolf, J.; Grassmann, J. Osteogenic differentiation of human mesenchymal stromal cells and fibroblasts differs depending on tissue origin and replicative senescence. Sci. Rep. 2021, 11, 11968. [Google Scholar] [CrossRef] [PubMed]
- Kamprom, W.; Tawonsawatruk, T.; Mas-Oodi, S.; Anansilp, K.; Rattanasompattikul, M.; Supokawej, A. P-cresol and Indoxyl Sulfate Impair Osteogenic Differentiation by Triggering Mesenchymal Stem Cell Senescence. Int. J. Med. Sci. 2021, 18, 744–755. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lee, J.Y.; Chung, C.P.; Park, Y.J. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21Cip1 pathway and restores osteoblastic differentiation in human dental pulp stem cells. Int. J. Nanomed. 2012, 7, 5091–5106. [Google Scholar] [CrossRef] [Green Version]
- Alraies, A.; Alaidaroos, N.Y.A.; Waddington, R.J.; Moseley, R.; Sloan, A.J. Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biol. 2017, 18, 12. [Google Scholar] [CrossRef] [Green Version]
- Mas-Bargues, C.; Vina-Almunia, J.; Ingles, M.; Sanz-Ros, J.; Gambini, J.; Ibanez-Cabellos, J.S.; Garcia-Gimenez, J.L.; Vina, J.; Borras, C. Role of p16(INK4a) and BMI-1 in oxidative stress-induced premature senes-cence in human dental pulp stem cells. Redox. Biol. 2017, 12, 690–698. [Google Scholar] [CrossRef]
- Morsczeck, C.; Gresser, J.; Ettl, T. The induction of cellular senescence in dental follicle cells inhibits the osteogenic differentiation. Mol. Cell. Biochem. 2016, 417, 1–6. [Google Scholar] [CrossRef]
- Morsczeck, C. Effects of Cellular Senescence on Dental Follicle Cells. Pharmacology 2020, 106, 137–142. [Google Scholar] [CrossRef]
- Vicencio, J.M.; Galluzzi, L.; Tajeddine, N.; Ortiz, C.; Criollo, A.; Tasdemir, E.; Morselli, E.; Ben Younes, A.; Maiuri, M.C.; Lavandero, S.; et al. Senescence, apoptosis or autophagy? Gerontology 2008, 54, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Chandeck, C.; Mooi, W.J. Oncogene-induced Cellular Senescence. Adv. Anat. Pathol. 2010, 17, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Morsczeck, C.; Hullmann, M.; Reck, A.; Reichert, T.E. The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells. Mol. Cell. Biochem. 2017, 439, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, D.; Wada, N.; Yoshida, S.; Mitarai, H.; Arima, M.; Tomokiyo, A.; Hamano, S.; Sugii, H.; Maeda, H. Wnt5a suppresses osteoblastic differentiation of human periodontal ligament stem cell-like cells via Ror2/JNK signaling. J. Cell Physiol. 2018, 233, 1752–1762. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Chen, M.; He, L.; Cai, B.; Du, Y.; Zhang, X.; Zhou, C.; Wang, C.; Mao, J.J.; Ling, J. Wnt5a regulates dental follicle stem/progenitor cells of the periodontium. Stem Cell Res. Ther. 2014, 5, 135. [Google Scholar] [CrossRef] [Green Version]
- Sakisaka, Y.; Tsuchiya, M.; Nakamura, T.; Tamura, M.; Shimauchi, H.; Nemoto, E. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells. Exp. Cell Res. 2015, 336, 85–93. [Google Scholar] [CrossRef]
- Pieles, O.; Reck, A.; Reichert, T.E.; Morsczeck, C. p53 inhibits the osteogenic differentiation but does not induce senescence in human dental follicle cells. Differentiation 2020, 114, 20–26. [Google Scholar] [CrossRef]
- Xie, Y.; Han, N.; Li, F.; Wang, L.; Liu, G.; Hu, M.; Wang, S.; Wei, X.; Guo, J.; Jiang, H.; et al. Melatonin enhances osteoblastogenesis of senescent bone marrow stromal cells through NSD2-mediated chromatin re-modelling. Clin. Transl. Med. 2022, 12, e746. [Google Scholar] [CrossRef]
- Felthaus, O.; Gosau, M.; Klein, S.; Prantl, L.; Reichert, T.E.; Schmalz, G.; Morsczeck, C. Dexame-thasone-related osteogenic differentiation of dental follicle cells depends on ZBTB16 but not Runx. Cell Tissue Res. 2014, 357, 695–705. [Google Scholar] [CrossRef]
- Bendlová, B.; Vaňková, M.; Hill, M.; Vacínová, G.; Lukášová, P.; Vejražková, D.; Šedová, L.; Šeda, O.; Včelák, J. ZBTB16 Gene Variability Influences Obesity-Related Parameters and Serum Lipid Levels in Czech Adults. Physiol. Res. 2017, 66, S425–S431. [Google Scholar] [CrossRef]
- Liška, F.; Landa, V.; Zídek, V.; Mlejnek, P.; Šilhavý, J.; Šimáková, M.; Strnad, H.; Trnovská, J.; Škop, V.; Kazdová, L.; et al. Downregulation of Plzf Gene Ameliorates Metabolic and Cardiac Traits in the Spontaneously Hypertensive Rat. Hypertension 2017, 69, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.-L.; Liu, W.; Wu, Y.-M.; Sun, W.-L.; Dörfer, C.E.; El-Sayed, K.M.F. Oral Mesenchymal Stem/Progenitor Cells: The Immunomodulatory Masters. Stem Cells Int. 2020, 2020, 1327405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morsczeck, C.O.; Dress, J.; Gosau, M. Lipopolysaccharide from Escherichia coli but not from Porphy-romonas gingivalis induce pro-inflammatory cytokines and alkaline phosphatase in dental follicle cells. Arch. Oral Biol. 2012, 57, 1595–1601. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, B.; Tian, J.; Hong, H.; Du, Y.; Li, K.; Li, X.; Wang, N.; Yu, X.; Wei, X. Dental Follicle Stem Cells Ameliorate Lipopolysaccharide-Induced Inflammation by Secreting TGF-beta3 and TSP-1 to Elicit Macrophage M2 Polarization. Cell Physiol. Biochem. 2018, 51, 2290–2308. [Google Scholar] [CrossRef] [PubMed]
- Genç, D.; Zibandeh, N.; Nain, E.; Gökalp, M.; Özen, A.O.; Göker, M.K.; Akkoç, T. Dental follicle mesenchymal stem cells down-regulate Th2-mediated immune response in asthmatic patients mononuclear cells. Clin. Exp. Allergy 2018, 48, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Genc, D.; Zibandeh, N.; Nain, E.; Arig, U.; Goker, K.; Aydiner, E.K.; Akkoc, T. IFN-gamma stimulation of dental follicle mesenchymal stem cells modulates immune response of CD4(+) T lymphocytes in Der p1(+) asthmatic patients in vitro. Allergol. Immunopathol. (Madr.) 2019, 47, 467–476. [Google Scholar] [CrossRef]
- Sarica, L.T.; Zibandeh, N.; Genç, D.; Gül, F.; Akkoç, T.; Kombak, E.F.; Cinel, L.; Akkoç, T.; Cinel, I. Immunomodulatory and Tissue-preserving Effects of Human Dental Follicle Stem Cells in a Rat Cecal Ligation and Perforation Sepsis Model. Arch. Med. Res. 2020, 51, 397–405. [Google Scholar] [CrossRef]
- Hong, H.; Chen, X.; Li, K.; Wang, N.; Li, M.; Yang, B.; Yu, X.; Wei, X. Dental follicle stem cells rescue the regenerative capacity of inflamed rat dental pulp through a paracrine pathway. Stem. Cell Res. Ther. 2020, 11, 333. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morsczeck, C. Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells. Int. J. Mol. Sci. 2022, 23, 5945. https://doi.org/10.3390/ijms23115945
Morsczeck C. Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells. International Journal of Molecular Sciences. 2022; 23(11):5945. https://doi.org/10.3390/ijms23115945
Chicago/Turabian StyleMorsczeck, Christian. 2022. "Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells" International Journal of Molecular Sciences 23, no. 11: 5945. https://doi.org/10.3390/ijms23115945
APA StyleMorsczeck, C. (2022). Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells. International Journal of Molecular Sciences, 23(11), 5945. https://doi.org/10.3390/ijms23115945